[국양교수/Y.Kuk Lab] Nano Letters, 논문 게재
Quantum Interference Channeling at Graphene Edges
Electron scattering at graphene edges is expected to make a crucial contribution to the electron transport in graphene nanodevices by producing quantum interferences. Atomic-scale scanning tunneling microscopy (STM) topographies of different edge structures of monolayer graphene show that the localization of the electronic density of states along the C−C bonds, a property unique to monolayer graphene, results in quantum interference patterns along the graphene carbon bond network, whose shapes depend only on the edge structure and not on the electron energy.
Electron scattering at graphene edges is expected to make a crucial contribution to the electron transport in graphene nanodevices by producing quantum interferences. Atomic-scale scanning tunneling microscopy (STM) topographies of different edge structures of monolayer graphene show that the localization of the electronic density of states along the C−C bonds, a property unique to monolayer graphene, results in quantum interference patterns along the graphene carbon bond network, whose shapes depend only on the edge structure and not on the electron energy.