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Quantum state tomography is a basic tool in quantum information, but it becomes a challenging task that requires
an immense number of measurement configurations as the system dimension grows. We implement an adaptive com-
pressive tomography scheme capable of reconstructing any arbitrary low-rank spectral-temporal optical signal with
extremely few measurement settings and without any ad hoc assumption about the initially unknown signal. This is car-
ried out by implementing projections onto arbitrary user-specified optical modes. We present conclusive experimental
results for both temporal modes and frequency bins, which showcase the versatility of our method and thereby introduce
a universal optical reconstruction framework to these platforms. © 2021 Optical Society of America under the terms of the

OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.427645

1. INTRODUCTION

Encoding quantum information in the time and frequency
domains [1–3] has gained significant attention and has been
proven to be a suitable alternative for scalable quantum infor-
mation processing [4–6]. These encodings allow one to access
high-dimensional Hilbert spaces, which may provide enhance-
ments to quantum information extraction, cryptography, and
communication tasks [7–13]. In addition, such encodings distin-
guish themselves by being directly compatable with single-mode
fiber networks because they occupy only one single spatial mode.
However, reliable time measurements with high sufficient reso-
lution are still challenging, in particular at telecommunication
wavelengths.

Achieving quantum performance in applications requires
an efficient and trustworthy characterization of the experi-
mental procedures, which is the scope of tomography. The
proper and unambiguous estimation of quantum states with
minimal resources is thus of paramount importance. The infinite-
dimensional Hilbert space describing these encodings demands a
computationally effective and experimentally feasible procedure.

Compressive schemes have been concocted to efficiently reduce
the measurement settings required to reconstruct a signal [14].
However, they require a precise knowledge of the maximal rank of
the unknown state, which is not always feasible in realistic scenar-
ios. To bypass this drawback, in Refs. [15–19], new compressive
schemes have been designed to characterize various low-rank states,
gates, and measurements in different degrees of freedom. Crucially,

they require no assumptions about the unknown quantum objects
in question.

In this work, we develop and experimentally implement a
compressive tomography in the time-frequency (TF) domain that
allows us to uniquely determine unknown signal states that are
near-coherent using very few measurement configurations. This
is especially relevant in the single-photon regime [20–23], where
a small number of copies of a state and practical limitations on
measurement times require the efficient use of resources.

A critical component for our goal is the quantum pulse gate
(QPG) [24–26], which can perform projections of a random input
on tailored time-frequency modes. It is fed by spectrally shaped
gating pulses to select time-frequency modes from the input. By
shaping the gating pulse into all modes from a selected basis, one
can fully scan a random input in the basis. We stress that the QPG
operates on superpositions of time and/or spectral components.
The QPG is already a well-stablished device for projective measure-
ments on the temporal domain, and its complete tomography has
been performed [27].

We shall first introduce the basic elements concerning the kin-
ematic description of the electromagnetic field in the TF domain
and the compressive state tomography applied to arbitrary near-
coherent (low-rank) signal states encoded in this domain. After
detailing the experimental techniques, we present a novel set of
compressive tomography results for signals encoded in two broad
classes of specral-temporal formats, namely, the temporal modes
[27–29] that encode both temporal and spectral information and
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frequency bins [30–36] that reflect solely the spectral content.
These results show that compressive characterization of arbitrary
optical states is feasible and achievable with only a meager number
of measurement settings.

2. PHOTON SPECTRAL-TEMPORAL MODES

A. Kinematics

In the following, we shall present the basic underlying formalism
for our work, which applies to any spatially single-mode state of
light. In general, we have to consider the photon-number degree
of freedom when writing down the complete density operator of
a (single spatial-mode) quantum state. To keep the manuscript
clear and concise, we restrict all discussions to states that are well
approximated in the single-photon subspace, with focus on their
time-frequency modal properties. In this case, spectral-temporal
modes can be considered as a complete basis set that represents all
quantum states for a single photon (see [1]).

For a fixed polarization and transverse field distribution, a pure
single-photon quantum state ρ = |ψ〉〈ψ | can hence be expressed
as

|ψ〉 =

∫
dωa †

ω|0〉ũ(ω), (1)

which is the coherent superposition of frequency modes, where a †
ω

is the standard creation operator and ũ(ω) is the complex spectral
amplitude of the wave packet. The ket |ψ〉 can alternatively be
written as a superposition of temporal modes

|ψ〉 =

∫
dta †

t |0〉u(t), (2)

where the mode functions in the respective domains are Fourier
transforms of each other. Such a state belongs to the infinite-
dimensional Hilbert space spanned by the continuous bases
{|t〉 ≡ a †

t |0〉} and {|ω〉 ≡ a †
ω|0〉}. Both bases allow for a resolution

of the identity ∫
dt|t〉〈t| = 1=

∫
dω|ω〉〈ω|, (3)

and their overlap is 〈t|ω〉 = e i tω/
√

2π , confirming that they are
conjugate variables.

One can easily extend this formalism to describe mixed states in
the form

ρ =

∫
dt ′
∫

dt ′′|t ′〉u(t ′, t ′′)〈t ′′|

=

∫
dω′

∫
dω′′|ω′〉ũ(ω′, ω′′)〈ω′′| ≥ 0. (4)

Hermiticity imposes u∗(t ′, t ′′)= u(t ′′, t ′) and ũ∗(ω′, ω′′)=
ũ(ω′′, ω′), whereas positivity gives∫

dtu(t, t)= 1=
∫

dωũ(ω, ω). (5)

We mention that in spatial-temporal optics, ρ is also known as
the coherence operator [37].

Since ρ encodes all information accessible in both domains, it is
in principle possible to explore the full spectral-temporal content of
a given signal by placing both time and frequency on equal footing.

The most suitable way to do this is by using the so-called chrono-
cyclic Wigner function [38–42], which is an adapted version of the
original idea of Wigner [43]. It is defined as

W(t, ω)= 2
∫

dt ′e2iωt ′
〈t − t ′|ρ|t + t ′〉,

= 2
∫

dω′e−2iω′t
〈ω−ω′|ρ|ω+ω′〉, (6)

with normalization
∫

dt ′dω′W(t ′, ω′)/(2π)= 1. The term
“chronocyclic” signifies the juxtaposed appearances of both time
and frequency variables.

A practical TF encoding can be accomplished through basis
projections [44]. More specifically, by employing a finite set of
states

∑d−1
n=0 |φn〉〈φn| = 1d that span a d -dimensional subspace,

we may define the d -dimensional state

ρd =

d−1∑
n,n′=0

|φn〉〈φn|ρ|φn′〉〈φn′ |. (7)

A handy basis to express this finite-dimensional state is the set of
Hermite–Gaussian (HG) modes [45–48] (|φn〉 ≡ |HGn〉)

〈t|HGn〉 =
1

√
π1/22nn!

e−t2/2 Hn (t) , (8)

where Hn(·) is the Hermite polynomial. In these modes, the
Wigner function takes the form [49,50]

W(t, ω)= 2e−2|α|2
d−1∑

n,n′=0

(−1)n<ρnn′
2n>

2n<

√
n<!
n>!

× |α|n>−n<e−i(m−n)θ L (n<)n>−n<

(
4|α|2

)
, (9)

where ρnn′ are the matrix elements of ρ in that basis, L (µ)n (·) is
the associated Laguerre polynomial, α = (t + iω)/

√
2= |α|e iθ ,

n> =max{n, n′}, and n< =min{n, n′}. For the HG modes, the
Wigner function reduces to

Wn(t, ω)= 2(−1)ne−(t
2
+ω2)

2
Ln
(
2t2
+ 2ω2) , (10)

that is, simple Laguerre–Gaussian functions.
Pulse shapers [51] can be used to generate temporal modes of

arbitrary spectral-temporal content. As a special case, one can fash-
ion pulses that are well enveloped only in the frequency domain.
A specific type of such pulses are frequency bins, where discrete
spectra of narrowband frequencies are selected to define their
single-mode states. From the spectral decomposition in Eq. (4), the
mode amplitude ũ(ω′, ω′′) of these frequency bins takes the ideal
form

ũ(ω′, ω′′)=
d−1∑

n,n′=0

ũnn′δ(ω
′
−ωn)δ(ω

′′
−ωn′), (11)

for a set of d frequency bands {ωn}
d−1
n=0. It proves often conven-

ient to consider equally spaced frequencies ωn =ω0 +1ω[n −
(d − 1)/2] about a central frequency ω0 with a level spacing of
1ω. The resulting d -dimensional frequency-bin state derived
from the second equality in Eq. (4),
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ρ =

d−1∑
n,n′=0

|ωn〉ũnn′〈ωn′ |, (12)

thus has the Wigner function

W(t, ω)=
d−1∑

n,n′=0

ũnn′e i(ωn−ωn′ )tδ(ω− (ωn +ωn′)/2). (13)

Although W(t, ω) is now plane-wave oscillatory in t and sin-
gular in ω, as is expected from an overidealized model that has
perfectly well-defined frequency bands of zero width in the spectral
domain, terms in t andωmay be disregarded, as they are auxiliary.
Operationally, it is the complex amplitudes ũnn′ that truly contain
all purely spectral information about the frequency-binned sys-
tem and can hence be easily represented by their positive matrix
ũ=

∑d−1
n,n′=0 en ũnn′ en′

T in some computational basis {en}.

B. Generalized Measurements with the Quantum Pulse
Gate

An ideal QPG mode matched to the source acts on an arbitrary
single-photon input stateρin according to [1]

ρout = Qζ
θρin Qζ†

θ , (14)

where

Qζ
θ = 1− |A

ζ
〉〈Aζ | − |B〉〈B | + cos θ

(
|Aζ 〉〈Aζ | + |B〉〈B |

)
+ sin θ

(
|B〉〈Aζ | − |Aζ 〉〈B |

)
, (15)

and

|Aζ 〉 = Aζ†
|0〉 ≡

∫
dωa †

ω|0〉ζ(ω) (16)

is the source mode. This consists of a family of unitary trans-
formations on the single-photon state space composed of two
nonoverlapping frequency bands: one spanned by the input mode
state |Aζ 〉 and a single TF mode |B〉 occupying the other. Note
that this operation describes a special quantum mechanical beam
splitter as sketched in Fig. 1.

Given an input state with photon mean number Nρ , the mean
photon number in the output mode |B〉 of the QPG is

〈Nζ
ρ 〉 = Nρη|γ

ζ
ρ |

2, (17)

Fig. 1. QPG implements a beam splitter operation between two sets of
modes {A} and {B}, where one user-chosen input mode Aζ is converted
to an output mode B , while all other modes are transmitted. Photon
detection in the output mode then implements a projection of an input
state ρ onto mode Aζ .

with η= sin2θ the conversion efficiency of the QPG and
γ ζρ = 〈A

ζ
|ρ|Aζ 〉 the overlap between the input mode |Aζ 〉 of

the QPG and the input stateρ.
Only the part of ρ overlapping with the QPG input mode is

converted to mode |B〉. Subsequent photon counting in this mode
then effectively implements a projection of ρ onto |Aζ 〉, where
|Aζ 〉〈Aζ | is a projector of a measurement basis.

3. RANDOMIZED COMPRESSIVE TOMOGRAPHY

A rank-r state of dimension d , described by a positive unit-trace
operator ρd , can be uniquely determined by (2d − r )r − 1
independent parameters. On the other hand, a set of
d[(2d − r )r − 1]/(d − 1)e measurement bases generally can-
not fully characterize such a state (here, d × e denotes the ceiling
function giving the least integer greater than or equal to x ). For
instance, it has been shown that two bases can never fully character-
ize arbitrary states of d = 2—the finite version of the Pauli problem
[52,53]. Nevertheless, one can still search for a set of M� O(d2)

measurement outcomes that can unambiguously reconstruct the
set of states of known rank r � d . We call such a measurement
set informationally complete (IC). However, when r and all other
information aboutρ are unknown to the observer, surmising that a
fixed set of measurements with an M� O(d2) would completely
determine ρd before a tomography experiment generally leads to
unreliable reconstruction results.

In this section, we introduce a randomized compressive tomog-
raphy scheme (RCT) for characterizing an unknown low-rank
time-frequency state ρd of a finite dimension d and rank r � d .
We show that, without resorting to any ad hoc assumption about
ρd , we can still determine whether a given number M� O(d2)

of randomly chosen orthonormal bases can uniquely reconstruct
ρd . Each basis is denoted asBk = {|bk0〉, |bk1〉, . . . , |bkd−1〉}, with∑d−1

l=0 |bkl〉〈bkl| = 1. This scheme is therefore universal, in the
sense that with it, states of arbitrary time-frequency modes can be
compressively characterized using general bases measurements
that can be very reliably generated using the QPG as discussed in
Section 2.B.

The RCT scheme is a bottom-up iterative procedure, in which
independent bases B(k) = {B1,B2, . . . ,Bk} are chosen and mea-
surements in these bases are made on independent and identically
prepared copies of the state. The resulting outcomes and data are
accumulated until the time-frequency state estimator ρ̂d ≥ 0 is
unique. When this happens, it implies that apart from ρ̂d , there
is no other state that is consistent with the measurements. More
specifically, in the kth iterative step, after a basisBk is measured, the
accumulated bases set B(k) and corresponding relative frequency
data νk = (ν10, ν11, . . . , ν1d−1, . . . , νk0, νk1, . . . , νkd−1)

>

for these bases (
∑d−1

l=0 νkl = 1) are analyzed to see if these
measurements are IC.

This procedure involves two following stages as illustrated in
Fig. 2. In the first stage, the column of raw relative frequencies
νk are mapped to the corresponding column p̂k whose elements
p̂kl = 〈bkl|ρd |bkl〉 are physical probabilities obtained from some
positive unit-trace operator ρd . This mapping is necessary to
ensure that the analysis is physical. For this, we may invoke the
maximum-likelihood (ML) method [54–58] that would give us
the column p̂k that maximizes the likelihood function describing
the QPG measurement scenario over the physical d -dimensional
state space [59].
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Fig. 2. Schematic figure of the iterative RCT scheme. The signal
carrying the unknown state ρ interacts with the QPG so that a ran-
domly chosen basis is measured in the kth step. This gives a set of relative
frequencies that is combined with previous measurements. All k measured
bases B(k) and their corresponding relative frequencies νk are then pro-
cessed numerically by first carrying out the ML routine to obtain physical
probabilities, and next subjecting the results to the ICC algorithm that
computes the completeness indicator s CVX using two semidefinite pro-
grams (SDPs) (discussed in Appendix A). The whole cycle repeats until
s CVX drops below a certain small threshold at k = K IC, implying that
(B(K IC), νK IC) is IC.

The second stage of RCT at the kth step is to find out if there
is more than one state that gives such physical ML probabilities
p j k—the informational completeness certification (ICC). If this
were true, then in principle there will be convex set (Ck) of states
with a nonzero volume. The task is to deterministically figure out
the value k = K IC at which the volume of CK IC is zero. To do this,
we introduce an indicator s CVX that monotonically decreases with
the convex-set volume. When s CVX,K IC = 0, it can be argued easily
that CK IC is a single point, telling us that [B(K IC), νK IC ] is IC [15].
The computation of s CVX can be done with the help of semidefinite
programming and is explained in Appendix A.

In TF optical experiments, the state ρ = ρd (or the coherence
operator) encodes all information about the spectral-temporal
content of the source. The bases data νk are a collection of normal-
ized count rates that is proportional to the intensity expectation
value. The relevant measurement bases are designed with the QPG
and additional optical components that manipulate signals in
the TF domain. Since the state ρd essentially is endowed with all
the properties of a quantum state, we may directly apply the RCT
scheme to compressively reconstruct any unknown rank-deficient
ρ in such settings.

4. EXPERIMENTAL TECHNIQUES

In our realization, we implement the QPG with a group-velocity-
matched (GVM) sum-frequency generation in a periodically
poled, 35 mm long, and 7 µm wide titanium in-diffused lithium
niobate waveguide. The 4.4 µm poling period grants quasi-phase-
matching at the desired GVM wavelengths; 1541 nm for the input
state ρ and 857 nm for the pump mode ζ . The GVM process is
engineered so that the output mode |B〉 at 554 nm is solely defined
by the phase-matching function φ(ωin, ωout) of the process. This
realizes the mode-selective process described in Section 2.B.

The transfer function is then the product of the phase-
matching function and the pump mode envelope ϕ(ωin, ωout)=

ζ(ωpump)φ(ωin, ωout). It describes the relation between input and
output frequencies for the SFG process. An example of a transfer
function with a first-order Hermite–Gaussian envelope of the
pump mode is depicted in the inset in Fig. 3(b). Only the parts
of the input state that overlap with the transfer function will be
converted to the output and detected with a single-photon detec-
tor. Hence, for any input state, the QPG performs a projective
measurement on the mode defined by the pump.

In its current realization, the QPG provides one single out-
put only. In consequence, we must sequentially project onto the
basis components for the RCT measurement. This is, however,
not a limitation, since RCT requires only information about the
mean occupation per measurement mode and no intermodal
correlations. The concept of the QPG readily generalizes to imple-
mentations that provide multiple parallel outputs and hence
facilitate the simultaneous measurement of several basis compo-
nents [60], which reduces overall measurement times but does not
lead to an improved overall performance of RCT.

Signal and pump fields are emitted from a titanium-sapphire
(Ti:Sa) laser and an optical parametric oscillator (OPO) with a
repetition rate of 80 MHz. These coherent-state fields are then
attenuated to the few-photon level, and we have demonstrated
in earlier work that the quantum pulse gate does not change the
photon-number statistics of the incoming signal light. We empha-
size that one may safely assume that the photon statistics of the
signal are Poissonian, such that the terminology “quantum state
tomography” is still appropriate.

The few-photon signal is shaped into the appropriate input
time-frequency states ρin using a fiber-coupled commercial spec-
tral shaper (Finisar Waveshaper). The output of the shaper is then
coupled to the QPG in free space with a lens. A delay line is used to
match the arrival time of the signal pulses to those of the pump at
the QPG. The pump field is sent to a home-built spectral shaper
setup consisting of a holographic grating (2000 lines/mm), a cylin-
drical mirror, and a spatial light modulator (SLM) (Hamamatsu
LCOS-SLM X12513-07) in a folded 4 f line configuration. This
allows us to shape the pump envelope ζ into any base component
for the RCT measurements. The shaped pump pulses are then
coupled to the QPG through the same optical path as the input
field.

At the output of the QPG, the unconverted input and transmit-
ted pump fields are separated from the upconverted output with
dichroic mirrors. The upconverted green output field is then sent
to a tunable spectral filter consisting of a grating, a lens, and a slit
with a variable width with a mirror on its back, in a folded 4 f line
configuration. The filter is set to 30 pm FWHM to filter out the
sidelobes of the QPG sinc phase-matching function [51] and to
further increase the selectivity of the mode-selective process. The
filtered output is then sent to an avalanche photon detector (APD)
(ID Quantique) connected to a time-tagger (Swabian Instruments)
to collect the measurement data.

We calculate the number of photons per input pulse from the
measured output counts in the APD from test measurements
that were conducted between measuring different bases. In these
measurements, the pump was set to fully overlap with the input
signal, which allowed us to track drifts during the duration of a
measurement. The total output APD counts during one 20 ms
duration measurement are

Coutput = ηNinput, (18)



Research Article Vol. 8, No. 10 / November 2021 / Optica 1300

(a) (b)

Fig. 3. (a) Experimental setup. A Ti:Sa-OPO laser system emits ultrafast pulses at the required wavelengths. The input signal at telecommunication
wavelengths is spectrally shaped using a commercial shaper, and the pump field is shaped using a home-built 4 f line shaper setup with an SLM device. A
delay line on the input field arm is used to match it temporally with the pump field for the QPG process. At the output of the QPG, unconverted input
and throughput pump are separated from the output field with dichroic mirrors that were not depicted to simplify the sketch. The output field is then fil-
tered with a homemade spectral filter and sent to the APD. (b) Experimental realization of the QPG. Input and pump fields are coupled into the QPG wave-
guide device where the process’s transfer function selects the mode Aζ from the input state ρ and upconverts it to the output mode B . The transfer function
ϕ(ωin, ωout) inside the QPG describes the relation betwen the input and output frequencies depending on the phase-matching function φ and the pump
mode ζ . The pump amplitude at 1/e2 is plotted in red dashed lines as a reference.

where Ninput is the total number of input photons and
η= ηAPD ηfiber η4 f ηQPG comprises the efficiencies of the APD
ηAPD = 50%, the fiber coupling to the APD ηfiber = 50%, the total
4 f line setup transmission η4 f = 10%, and the QPG conversion
efficiency ηQPG = 3%. The latter is due to low pulse energies of the
shaped pump pulses, and we note that this is not a fundamental
limit as reviewed by some of the authors in [61]. From 14× 103

counts in the output in the 1.52× 106 pulses of the 20 ms dura-
tion single measurement, the number of photons per pulse in
the input field is ≈ 12. This number was chosen as compromise
between photon-level input light and total measurement time; the
QPG has already been used for the conventional time-frequency
tomography of genuine heralded single photons [47].

The input states to be reconstructed are chosen to be either tem-
poral modes whose envelopes are HG functions or frequency bins
of dimension d . The temporal modes have an spectral FWHM of 1
THz, and the frequency bins are 0.07 THz wide. The pump modes
are then shaped into the d -dimensional randomly rotated basis
modesBk of each input state. Note that RCT exhibits compressive
effects with any pump modes, since the ICC procedure always
decisively verifies whether any given measurement dataset is IC
regardless of the unknown state.

The rotation uses randomly generated unitary matrices. This
necessarily means that the overlap between each single measure-
ment mode and the signal may be low, since we do not assume any
prior knowledge about the signal. While this leads to low overall
count rates per measurement mode, this is not an issue here; the
QPG does not add noise to the converted output signal [47]. Given
that the detector has sufficiently low dark counts, a low spectral
overlap between the signal and measurement mode will not reduce
the RCT performance. Furthermore, a longer measurement time
can help to increase the total count rates per measurement mode.
In general, this is a challenge every quantum state tomography has
to overcome in one way or another.

We generate between 100 and 200 bases of M randomly rotated
bases modes, M being equal to the dimension d chosen for the

experiment. The projection onto each mode of each base is mea-
sured for 20 ms on the APD. The resulting raw counts 〈Nζ

ρ 〉 at the
output B are measured and stored. The experimental procedure
and the raw counts from the measurements of a complete ten-
dimensional basis are showcased in Fig. 5. The relative frequencies
νjk are then calculated from the raw counts with the repetition rate
of the laser and the measurement time. Every 10 measurements,
the time delay between signal input and pump is realigned auto-
matically by maximizing the mode selectivity to account for drifts
in the setup. To realize measurements on mixed input states, we
measure different inputs with the same set of randomly rotated
bases. We then mix the measured data with appropriate weights in
postprocessing.

The randomly rotated bases implement a nonuniform sampling
of the input state that accomplishes compressive sensing [62,63].
In a sense, the QPG can be considered a single-pixel camera for
temporal modes. States with temporal features much faster than
the resolution of the single-photon detector are reconstructed by
modulating the input signal with random temporal masks. In addi-
tion, the use of compressed sensing facilitates signal reconstruction
with fewer measurements than a direct sampling approach [64].
This is especially beneficial in situations in which a signal must be
reconstructed from a limited number of photons.

5. RESULTS

A. Temporal Modes

The first class of low-rank TF states we shall use to demonstrate
the RCT scheme constitutes the HG modes and their statistical
mixtures. These are highly relevant, as they closely approximate the
eigenbasis of parametric downconversion processes [65] and have
been shown to be optimal for certain metrology tasks. In terms of
their chronocyclic Wigner function representation, states corre-
sponding to the first three HG modes, for instance, are expressed
as
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Fig. 4. Reconstruction results for time-frequency states of d = 10 with respect to the number of bases measured (K ). (a) and (b) The average drop in s CVX

for each state rank r coincides with the average rise in fidelity F . The 1-σ error regions are computed with 10 experimental runs per value of r . For r > 1,
each run is conducted with a state that is a randomized mixture of the components {|HG0〉〈HG0|, ... , |HGr−1〉〈HGr−1|}. The value of K IC for which
s CVX,K IC = 0 steadily increases with r as it should. Whenever s CVX 6= 0, F is computed for ρmin (see Appendix A). (c) and (d) Sample Wigner functions
for the rank-one HG0 mode and a random rank-three mixture of the HG modes (ρr=3 = |HG0〉0.17〈HG0| + |HG1〉0.70〈HG1| + |HG2〉0.13〈HG2|) are
shown.

Wn=0(t, ω)= 2e−y2
,

Wn=1(t, ω)= 2e−y 2
(2y − 1),

Wn=2(t, ω)= 2e−y 2
(2y 2
− 4y + 1), (19)

where y = t2
+ω2. These states are all rotationally symmetric in

the spectral-temporal content.
A total of ten HG basis modes,

∑9
n=0 |HGn〉〈HGn| = 110, are

used to project ρ onto a finite-dimensional subspace of dimension
d = 10. Random von Neumann basis measurements of the same
dimension are generated with the QPG to collect measurement
data for the rank-one modes HG0, HG1, HG2, and HG3, and their
statistical mixtures. These basis measurements are parametrized
by random unitary rotations distributed according to the Haar
measure [66]. Figure 4 shows the results for the different low-rank
time-frequency states. For the rank-one graphs in panels (a) and
(b), the results are averaged over experimental runs of all the four
HG modes.

As the number of independent parameters characterizing a
rank-r state increases roughly linearly in r for r � d , the number
of measurement bases needed to uniquely reconstruct rank-r states
should also increase linearly in r in this regime [16].

To gain further insights into this point, in Fig. 6 we present
all important simulation plots that showcase the average scaling
behavior (over 20 random rank-r states distributed uniformly
with respect to the Hilbert–Schmidt measure [67]) of K IC in
the absence of statistical fluctuation. After simulating quan-
tum systems of various dimensions, numerical evidence clearly
shows that K IC is linear in both r and log d . While the pre-
cise fitted expression is given in the figure caption within the
95% confidence level, we state the underlying ansatz form
K IC = (αr + β)(log d + a log r )− ar + b that is used to
compare with the experimental values. For d = 10, we have
the theoretical predictions K IC = 3.92, 6.08, and 7.60 for the
ranks r = 1, 2, and 3, respectively. This characteristic behavior

can be already observed in Figs. 4(a) and 4(b), despite the presence
of statistical noise and experimental imperfections in the mea-
surement data. Note also that K IC may be very different from the
results considered in conventional compressed-sensing protocols,
which heavily rely on the rank assumption without ICC.

The choice of an effective dimension d to describe an optical
state depends on the actual context, and various calibration tech-
niques can be used to estimate this dimension. For our purpose,
since the tested HG projectors span a four-dimensional subspace,
it is clear that d = 10 is sufficient to describe any statistical mixture
of these projectors. In Fig. 7 we give the plots of s CVX and fidelityF
for the |HG0〉〈HG0| projector in dimensions d = 10, 20, 40, and
60, all derived from real experimental data. The results confirm,
as they should, that larger dimensions evidently do not affect the
results of RCT so long as these Hilbert spaces adequately contain
all physical features of the unknown state, which is clearly the case
for this projector.

Fig. 5. Experimental measurements for a ten-dimensional basis. The
original HG modes are rotated through a unitary to form a new basis.
Each mode of the rotated basis is then sent as a pump to the QPG with
a the signal under investigation, and the converted raw counts are mea-
sured. The raw counts are then used to obtain the relative frequencies and
perform one loop of the RCT.
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(a)

(b) (c)

Fig. 6. Graphical summary of revealing the compressivity for random
Haar bases (RHB). (a) The scaling behavior for K IC =mr log d + c r is
linear in log d for all simulated dimensions d ∈ {2, 3, ... , 16, 32}. For
the tested ranks 1≤ r ≤ 6, (b) the gradient turns out to be mr = αr + β
with α = 1.006± 0.009 and β =−0.3528± 0.0359, and (c) the inter-
cept c r = a [(αr + β) log r − r ] + b involves a =−1.02± 0.03 and
b = 1.407± 0.075. All error intervals are of 95% confidence.

B. Frequency Bins

The second class of low-rank states that we consider here are
frequency-bin states. These are states defined by a discrete set of
narrowband frequency bins. The corresponding complex matrix
ũ that dresses these continuous frequency bases inasmuch as Eq.
(11) is a positive matrix that contains the full information about
a general state defined by these frequency bins in the spectral
domain.

(a) (b)

Fig. 7. RCT in high-dimensional Hilbert spaces on |HG0〉〈HG0|

using experimental data for calibrative purposes.

For illustration, we focus on ten-dimensional states supported
by 10 pre-chosen frequency bins {|ωn〉〈ωn|}

9
n=0. We generate four

rank-one states ρ = |ψ〉〈ψ | that are superpositions of such bins,
namely,

|ψ〉 =
1
√

3


|ω0〉 + |ω3〉 + |ω6〉

|ω0〉 − |ω3〉 + |ω6〉

|ω3〉 − |ω6〉 + |ω0〉

|ω6〉 − |ω0〉 + |ω3〉

. (20)

For mixed states of higher ranks, we consider statistical mixtures
of the above four superpositions with random mixture probabil-
ities. The measurements used to probe all these states are again
random bases generated by unitary operators sampled uniformly
from the Haar measure.

Figure 8 gives the performances of RCT on the class of
frequency-bin states. The general behavior of s CVX as a func-
tion of the number of bases measured K is consistent with that for
the time-frequency states, confirming the basic understanding that
compressive methods are system independent. The K IC values for
r > 1 are on average larger than the those in Fig. 4, owing to more
significant experimental noise present in these states, as commen-
surately reflected in the fidelity graphs of Fig. 8(b). The matrix

Fig. 8. Reconstruction results for frequency-bin states of d = 10 with respect to the number of bases measured (K ). The technical specifications are the
same as in Fig. 4, except that for r > 1, each run is conducted with a state that is a randomized mixture of the first r components in Eq. (20) in the stated
order. (a) and (b) The behaviors of s CVX andF for each rank of ρ or ũ follow similarly to those in Fig. 4. (c) and (d) Sample matrix plots of Re(ũ) for a rank-
one frequency-bin superposition (ρ = |ψ〉〈ψ | with |ψ〉 = |ω0〉 + |ω3〉 + |ω6〉/

√
3) and a random rank-two mixture of frequency bins (described by a ũ

with eigenvalues 0.73 and 0.27) are shown.
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plots of Re{ũ} that represents all frequency-bin states present
example reconstructions one would expect in typical experiments.
Theoretical values of the average K IC quoted in Section 5.B may be
used as comparisons with the experimental ones.

In terms of experimental fidelity values, those for the frequency-
bin state reconstructions are generally lower than those for the
time-frequency state reconstructions. We note that this is not an
indication of failure of the RCT scheme; the self-consistent ICC
routine presented in Appendix A implies that RCT works even for
full-rank states, albeit with a much larger K IC. Rather, we found
that a higher systematic noise level is present in the frequency-bin
basis measurements as compared to time-frequency basis measure-
ments. To demonstrate that this is a major factor in influencing
the optical tomography performance, we further modeled the sys-
tematic errors in the manner presented in Appendix B and showed
that, indeed, such systematic errors result in lower reconstruction
fidelity values.

6. CONCLUSIONS

We have demonstrated a versatile compressive quantum tomogra-
phy scheme that can characterize arbitrary near-coherent quantum
states in the TF domain using extremely few measurements. The
method is very robust and requires no spurious assumptions about
the states: this includes the degree of sparsity or coherence, which
could most likely be inconsistent with the actual implementation.

From a technical perspective, our method allows for the efficient
characterization of the temporal behaviour of telecommunication
light at the single-photon level and can thus pave the way for many
new quantum technologies.

The great performance of the method largely relies on the
flexibility of the QPG, which has allowed us to implement linear
optics single-photon quantum operations in terms of the tem-
poral modes: the natural variables to deal with these signals in
the quantum domain. These modes are compatible with wave-
guide technology, making them ideal candidates for integration
into existing communication networks. In addition, they are not
affected by typical medium distortions such as linear dispersion,
which renders them robust basis states for real-world applications
[1].

Through real experimental demonstrations, we showed that our
compressive scheme can perform complete reconstruction of any
TF quantum state using readily accessible algorithms that are much
more versatile than the tool kits offered by conventional coherent
spectroscopy.

APPENDIX A: INFORMATIONAL COMPLETENESS
CERTIFICATION

Whenever a given set of bases BL is not IC, then by definition
there shall be (infinitely) many states corresponding to the physical
ML probabilities p̂L extracted from the relative frequencies νL

of BL . More precisely, there exists a convex set CL of states {ρ ′}
that is consistent with the constraints ρ ′ ≥ 0, tr{ρ ′} = 1, and
〈bkl|ρ

′
|bkl〉 = p̂kl for all 1≤ k ≤ L and 0≤ l ≤ d − 1.

As L increases to L = K IC, the convex set CL→ CK IC eventu-
ally becomes a single point containing a unique estimator that is
close to the unknown state provided that the number of photo-
detector clicks N for each basis measurement is sufficiently large.
The task of ICC is to determine the value of K IC at which this
happens. For this purpose, we note that since CL is convex, if both

the minimum and maximum values over CL of a strictly convex or
strictly concave function of ρ ′ are equal to each other, then it must
be the case that CL is a single point of size 0. This argument clearly
applies also to any linear function ofρ ′.

This implies that a successful ICC involves the solution to the
following equivalently semidefinite programs [68]:

ICC
Maximize and minimize f Z(ρ

′)= tr{ρ ′Z}
subject to

• ρ ′ ≥ 0,
• tr{ρ ′} = 1,
• 〈bkl|ρ

′
|bkl〉 = p̂kl.

Define s CVX = f max
Z − f min

Z and check if s CVX = 0.

Here, Z is some fixed full-rank operator that is randomly cho-
sen. This is necessary to ensure that f Z has no plateau structure that
would violate the strict-convexity requirement. After obtaining the
minimum f min

Z and maximum f max
Z values of f Z , we may define

s CVX = f max
Z − f min

Z . Because of the convexity properties of the
entire problem of ICC, s CVX turns out to be a monotonic indi-
cator of the size of CL . If s CVX = 0, then CL is a single point with
L ≡ K IC. In general, an analytical understanding of the behavior of
s CVX with the number of measured bases k is apparently intangible.
As an alternative, we present a numerical exposition Section 5 for
the spectral-temporal optical states of interest.

APPENDIX B: SIMULATIONS FOR MODELING
EXPERIMENTAL SITUATIONS

For the actual experiments, bases measurements of the different
types of time-frequency modes experience varying degrees of
systematic errors. The frequency-bin bases, in particular, are sus-
ceptible to a larger systematic fluctuation in their collected data
than the generalized time-frequency counterparts. The small fre-
quency span contained in a frequency bin makes it more sensitive
to slight changes in the overall envelope of the pulse from which
each bin is carved. These changes are related to temperature insta-
bilities on the laboratory environment, drifts of the laser system,
and small changes in the free-space optical components, among
other confounding factors. This is the reason why the fidelity
values for frequency-bin states are generally lower than those for
time-frequency states.

To model such a situation, we introduce an effective system-
atic noise level ηS > 0 that perturbs the true basis probabilities
pkl = 〈bkl|ρ|bkl〉 defined by the true state ρ. Given the true prob-
ability column pk for the kth basis, the corresponding noisy
probability column p̃k =N [ pk + ηSrk] is used to generate noisy
relative frequencies ν̃k , where N symbolizes the normalization
to unit sum and rk is a column of random numbers uniformly
distributed between 0 and 1. Note that, in our case, the common
practice of modeling with Gaussian rk ’s typically generates too
much noise that strongly deviates the s CVX values from those
observed experimentally.

Figure 9 presents the essence of the physical situation in the
laboratory. The respective values of ηS used to generate the graphs
for time-frequency and frequency-bin states are 0.025 and 0.05.
The respective number of copies N per basis for these two kinds of
states are taken to be 8,000 and 13,000, which are the typical values
measured in our experiments.
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(a)

(b)

Fig. 9. Simulation results that approximately reproduce the
experimental ones.
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