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Abstract
We train convolutional neural networks to predict whether or not a set of measurements is
informationally complete to uniquely reconstruct any given quantum state with no prior
information. In addition, we perform fidelity benchmarking based on this measurement set
without explicitly carrying out state tomography. The networks are trained to recognize the fidelity
and a reliable measure for informational completeness. By gradually accumulating measurements
and data, these trained convolutional networks can efficiently establish a compressive
quantum-state characterization scheme by accelerating runtime computation and greatly reducing
systematic drifts in experiments. We confirm the potential of this machine-learning approach by
presenting experimental results for both spatial-mode and multiphoton systems of large
dimensions. These predictions are further shown to improve when the networks are trained with
additional bootstrapped training sets from real experimental data. Using a realistic beam-profile
displacement error model for Hermite–Gaussian sources, we further demonstrate numerically that
the orders-of-magnitude reduction in certification time with trained networks greatly increases the
computation yield of a large-scale quantum processor using these sources, before state fidelity
deteriorates significantly.

1. Introduction

Recent advances in quantum algorithms and error correction [1–6] have fueled the development of noisy
intermediate-scale quantum computing devices. This progress requires an efficient assessment of the
relevant quantum systems [6–8], gates [9–13] and measurements [14–21]. Toolkits developed in quantum
tomography [22–33] have concomitantly evolved into modern schemes appropriate for characterizing those
components efficiently. A notable branch of schemes attempt to cope with a large number of qubits by
directly estimating quantum properties [34–42].

As typical quantum tasks involve pure states, unitary gates, and projective measurements, there also
exists a series of compressed-sensing-related proposals [43–51] that fully reconstruct low-rank quantum
components with few measurement resources. However, they rely on prior knowledge about the rank,
which often turns out to be unreliable in practice because of noise. Very recently, compressive-tomography
methods without assuming any prior information has been developed and applied to the individual
low-resource characterization of quantum states, processes and measurements [52–56]. A crucial ingredient
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in these methods is informational completeness certification (ICC) that determines whether or not a given
measurement set and its corresponding data is informationally complete (IC). This is done by computing a
uniqueness measure based on the given measurements. Such a computation can be performed with classical
semidefinite programs (SDPs) [57] of (worst-case) polynomial-time complexities.

Like any tomography scheme that invokes rounds of optimization routines, an accumulation of errors
can occur in real experiments while running SDPs on-the-fly. As a practically feasible solution, we propose
to train an artificial neural network to verify the IC property for a set of quantum measurements and
corresponding raw data. We further introduce an auxiliary network to be used concurrently for us to
validate the fidelity of the unknown state for the given measurement set without carrying out explicit
reconstruction. Once a set of IC measurement data is collected, it takes only one final round of state
reconstruction to obtain the unique physical estimator, if so desired.

Network training can be done offline using simulated noisy datasets, and the stored network model can
later be retrieved and used in real experiments with statistical noise. More specifically, a convolutional
neural-network (CNN) architecture shall be used for training and prediction. Among other kinds of
networks that have been widely adopted by the quantum-information community [58–63], this is a popular
network architecture that is used in image-pattern recognition [64–67], with boosted support by a recent
universality proof [68] that such networks can indeed forecast any continuous function mapping. Both
its classical application and quantum analog have also gained traction in quantum-information
science [69–72].

In this work, we train an informational completeness certification net (ICCNet) and a fidelity prediction
net (FidNet), each made up of a sequence of convolution and pooling neural layers that is reasonably deep.
Partnered with FidNet for direct fidelity benchmarking without the need for state tomography, ICCNet
constitutes the foundational core for deciding if the given measurement resources are sufficient to uniquely
characterize any unknown state in real experimental situations. Neural-network (NN) training is versatile in
the sense that noise models may be incorporated into the training procedure to improve the predictive
power of the networks. After offline training, the network models can heavily reduce the computation time
of the uniqueness certification by orders of magnitude for large dimensions while running the experiments.
This essentially realizes a compressive tomography scheme that is drift-proof, comprising a highly efficient
uniqueness certification and fidelity-benchmarking protocols.

Apart from Monte Carlo simulations, we also use real data obtained from two separate groups of
experiments to demonstrate that the resulting trained network models can predict the average behaviors of
both the IC property and fidelity very well, despite the presence of errors and experimental imperfections.
We also show that performances in predicting both properties can be further boosted when the neural
networks are trained with additional bootstrapped experimental datasets. Finally, simulations on a
time-dependent error model relevant to Hermite–Gaussian sources are performed as an example to
illustrate the effectiveness of our NN certification tools in suppressing systematic drifts during quantum
computation.

2. Background

2.1. Ascertaining informational completeness
The main procedure for certifying whether a generic measurement dataset is sufficient to unambiguously
determine an unknown quantum state can be represented as a simple flowchart in figure 1(a). Given a
positive operator-valued measure (POVM) that models the measurements performed, the corresponding
data counts are noisy due to statistical fluctuation arising from finite data samples. Proper data analysis first
entails the extraction of physical probabilities from the accumulated data, which can be done with
well-established statistical methods, such as those of maximum likelihood (ML) [23, 24, 73–75] and least
squares (LS) [76, 77], subject to the physical constraint of density matrices (refer also to section 2.1).

After obtaining the physical probabilities, one may proceed to evaluate the measurements and find out
whether they are IC. More specifically, a uniqueness indicator 0 � sCVX � 1 can be directly computed from
the POVM and data with the help of SDPs—the ICC. When sCVX > 0, there is equivalently a convex set of
state estimators that are consistent with the physical probabilities. It can be shown [52] that a unique
estimator is obtained from the measured POVM and corresponding data if and only if sCVX = 0.

Bottom-up resource-efficient quantum-state tomography is thus an iterative program involving rounds
of extracting physical probabilities from the measurement data and certifying uniqueness based on these
probabilities. At each round, the computed sCVX is used to decide whether new measurements are needed in
the next one. In this manner, the POVM outcomes may be accumulated bottom-up until sCVX = 0, after
which a physical state reconstruction using either the ML or LS scheme is carried out to obtain the unique
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Figure 1. The physical-probabilities extraction and SDP-based ICC of a resource-efficient quantum-state tomography scheme in
(a) may be entirely replaced by the ICCNet and FidNet shown in (b), each of which is a sequence of convolutional blocks (shown
here for d = 16 as an example). Each convolutional block typically consists of a convolutional layer (conv), a batch normalization
layer (BN), the rectified linear unit (relu) activation layer, a dropout layer and a pooling layer (maxpool or avgpool) (more details
in section 2.2). Specific network structures may vary for systems of different dimensions. Numerical values after the
convolutional blocks are flattened and activated with the sigmoid function just before the sCVX computation, and passed through
a fully-connected (FC) layer before the fidelity F computation.

estimator. The size of the resulting IC POVM is minimized accordingly. We remark that ICC turns out to be
the limiting procedure in practical implementation relative to a typical quantum-state reconstruction. This
is because an estimation over the space of quantum states can be very efficiently implemented with an
iterative scheme, where each step involves a regular gradient update and just one round of convex
projection [75]. (The case for quantum processes has also been discussed [78].) On the other hand,
satisfying both Born’s rule and quantum positivity constraint in ICC requires a separate iterative procedure
just to carry out the correct convex projection onto their intersection [79]. To date, there exists no efficient
way to perform projections of these constraints to the authors’ knowledge.

By recalling the results in references [52, 53], we briefly describe the simple procedures that
deterministically verify whether a set of POVM outcomes {Πj � 0} is IC given their corresponding set of
relative frequency data {ν j}. The first necessary step is to acquire the physical probabilities from ν j. To this
end, we consider two popular choices often considered in quantum tomography, namely the ML and LS
methods. In ML, we maximize the log-likelihood function log L that best describes the physical scenario
over the quantum state space. Since we predominantly discuss von Neumann measurement bases, each basis
induces a multinomial distribution such that we have the form log L ∝

∑
j νj log p′j, where p′j = tr

{
ρ′Πj

}
are our sought-after physical probabilities to be optimized over the operator space in which ρ′ � 0 and
tr{ρ′} = 1. In LS, which we have adopted to deal with arbitrary projective measurements that do not sum
to the identity operator in general, the distance D = ‖νj − p′j‖2 is minimized with respect to p′j over the
space of ρ′ � 0, this time with the unit-trace constraint relaxed and later reinstated after the minimization is
completed.

Using the obtained physical probability estimators p̂j through the aforementioned optimization
strategies, we can now define and fix a randomly generated full-rank state Z and conduct the following two
SDPs:

minimize/maximize f = tr{ρ′Z} over ρ′

subject to:

ρ′ � 0, tr{ρ′} = 1, tr
{
ρ′Πj

}
= p̂j. (2.1)

It is now clear why the SDPs are to be carried out with the physical probabilities p̂j instead of raw data ν j:
the relative frequencies ν j are statistically noisy and in general do not correspond to a feasible solution set in
(2.1). It has been shown that when sCVX ≡ fmax − fmin is zero, this implies that any quantum-state estimator
reconstructed from {Πj} and {ν j} is unique and equal to the solution for (2.1).

2.2. Training the ICCNet and FidNet
We propose to tackle the combined problem of physical probabilities extraction and uniqueness
certification by predicting with trained neural networks. We also demonstrate the possibility of performing
fidelity evaluation on the reconstruction with such neural networks without explicitly carrying out physical
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state tomography. To do this, we introduce the ICCNet and FidNet, illustrated in figure 1(b), where each
possesses a convolutional network architecture that analyzes the given POVM and data by regarding them as
images. Such a treatment allows one to train the networks with far less trainable parameters to recognize

sCVX and fidelity F(ρ̂, ρtarg) = tr

{√√
ρ̂ ρtarg

√
ρ̂

}2

between the state estimator ρ̂ and some target state ρtarg

as compared to using, for instance, the multilayer perceptron (feed-forward) architecture [80, 81] that
consists only of FC or dense layers.

The purpose of FidNet is to assess the quality of the reconstruction after each measurement set is made.
Before the point of informational completeness, the reconstructed state ρ̂ is not unique by definition.
Throughout this article, for consistency, ρ̂ shall always be taken as the ML estimator that minimizes the
linear function in (2.1). This is only a particular choice used to define FidNet that is chosen as a standard.
One may end up with a slightly more conservative FidNet by setting ρ̂ to be the minimum-fidelity estimator
with respect to the SDP constraints stated in the last line of (2.1). This would require another round of
fidelity minimization in every step of the training-data-generation phase.

For predicting sCVX and F , both ICCNet and FidNet employ a sequence of two-dimensional array
manipulating layers. Two important types of layers responsible for these operations are the convolution
layer, which are two-dimensional filters that carry out multiplicative convolutions with the layer input
numerical array, and the pooling layer that generally down-samples a layer input array into a smaller output
array with a simple numerical-summarizing computation. To each convolution layer, an activation function
is applied to further introduce nonlinear characteristics for predicting general network output functions.

The convolutional ICCNet and FidNet take on a similar architecture, which consists of convolution,
max-pooling and average-pooling layers. Each convolution layer consists of nf filters, where each filter is a
3 × 3 array window that slides vertically and across layer input arrays with stride 1 in both directions. We
design the sequence of convolution layers to have an exponentially increasing nf with the network depth.
These pooling layers are generally responsible for shrinking the layer input array to a smaller layer output
array. The actions of all types of layers are summarized in figure 2. We insert the default ‘relu’ activation
function after every convolution layer, which is defined as frelu(x) = max(0, x). At the end of ICCNet and
FidNet, the respective output values are computed with the sigmoid activation function given by
fsigmoid(x) = 1/(1 + e−x).

Overfitting can be an issue in machine learning, in which case the neural networks are prone to fitting
training datasets much better than unseen ones. It is therefore essential to regulate network training by
keeping the problem of overfitting in check so that the resulting trained models have high predictive power.
This problem often arises when the neural network is deep. The addition of dropout layers has been proven
to be an effective method for combating overfitting [82–84], which randomly exclude trainable parameters.
More recently, it has been demonstrated that NN training can be further enhanced by adding BN layers.
This was supported not only by the initial observation that the distribution of layer input values are
stabilized with BN [85], but also by the even more relevant finding that the gradient landscape of the
network loss function (the figure of merit quantifying the difference between the actual output value and
that computed by the network) seen by the optimization routine that trains the network becomes
smoother [86], making training much more stable.

All trainable parameters in the relevant neural layers of ICCNet and FidNet are optimized using a
variant of stochastic gradient descent known as NAdam [87], where the network gradients are computed in
batches of the training data. To prepare ICCNet training input datasets, for von Neumann measurements of
a fixed number (K) of bases considered in sections 4.1 and 4.2, the initial network input X is an
m × K(d2 + d) matrix that contains m training datasets, each recording the K measured bases and
corresponding relative frequencies {νjk}d−1 K

j=0 k=1 (
∑

j ν jk = 1). To encode the measurement bases, we regard

all bases as some unitary rotation Uk | j〉 〈 j|U†
k of the standard computational basis {| j〉}d−1

j=0 , where U1 = 1.
These unitary operators are then logarithmized in order to obtain their Hermitian exponents
Hk = −i log Uk (H1 = 0), from which the diagonals and upper triangular real and imaginary matrix
elements are extracted. Each row of X is thus a flattened K(d2 + d)-dimensional row of real numerical
values formatted properly to encode U1, U2, . . . , UK, ν01, . . . , νd−11, ν02, . . . , νd−12, . . . , ν0 K , . . . , νd−1K in
this order. This input matrix is then processed into a 	

√
K(d2 + d)� × 	

√
K(d2 + d)� square training array

of elements, which is then fed to ICCNet (see figure 3). Zeros are padded to this array in order to complete
the square. Similarly, for a fixed set of L projective measurements discussed in section 4.3, analogous
arguments lead to the necessary 	

√
L(d2 + 1)� × 	

√
L(d2 + 1)� input square training array. For each

dimension, the randomly generated full-rank state Z needed to solve (2.1) is fixed during the training and
testing stages.

On the other hand, training the FidNet requires input information about not only the measured
bases (or projectors) and their corresponding data, but also the additional m target states to be included
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Figure 2. Operations carried out by the convolution and pooling layers. A max-pooling layer picks the maximum number from
the layer input within a selected window, while an average-pooling layer computes average values over the selected window. In
this example, the 8 × 8 input layer is reduced to a 6 × 6 output layer after going through a convolution layer consisting of a single
3 × 3 filter array of trainable parameters that takes stride 1. This output layer becomes the input layer with respect to either the
max-pooling or average-pooling layer that each consists of a single 2 × 2 filter array of stride 2. The final output layer (rounded
off for illustration purposes) is therefore a 4 × 4 numerical array.

Figure 3. A juxtaposition of (a) a 33 × 33 pixelated ICCNet input-data image, which encodes a four-qubit POVM containing
K = 4 bases and corresponding probabilities, and (b) a down-sampled photograph of a stuffed toy of the same resolution. Here,
the ICCNet input-data image is generated by proportionately scaling all numerical values in the square training array X to values
between 0 and 255 only for the purpose of illustrative comparison.

as inputs, one for each dataset. The correct dimensions of the training arrays are 	
√

(K + 1)d2 + Kd� ×
	
√

(K + 1)d2 + Kd� or 	
√

(L + 1)d2 + L� × 	
√

(L + 1)d2 + L� respectively for basis and projective
measurements. We note that to predict fidelities for simulated test datasets of d = 16, 32 and 64 as shown in
figures 7 and 8,

For all purely-simulation figures, FidNet training is done with target states defined by the true states that
generated the simulated training datasets. On the other hand, for all experimental results in figure 99,
FidNet training is carried out simultaneously with the target states derived from the corresponding true
states and those that deviate from them in order to account for systematic errors more effectively and
improve average prediction accuracy. The list of hyperparameters that define the architectures of ICCNet
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Figure 4. Experimental scheme to generate and characterize spatial photon states. Attenuated radiation of laser diode is spatially
filtered by a single-mode optical fiber (SMF1) and directed on the first spatial light modulator (SLM1). Hologram displayed on
the SLM1 transforms the fundamental fiber mode into the desired superposition of Hermite–Gaussian beams defining the
particular quantum state of photons. The iris placed in the middle of the telescope with unit magnification (lenses L1 and L2) is
used to clean the structured beam from the undiffracted light by selection of the first order of diffraction at the far-field plane of
the SLM1. The second light modulator (SLM2) followed by a single-mode optical fiber (SMF2) and a single photon counter (D)
plays a role of spatial detector, which realize a projective measurement by the right choice of a hologram on the second SLM
display.

and FidNet, as well as the technical analyses of network input-data generation and network training are
given in sections II and III of supplementary material (https://stacks.iop.org/NJP/23/103021/mmedia).

Once an IC set of measurements are performed and assessed with ICCNet and FidNet, the density
matrix representing the final state estimator may be obtained using the accelerated projected-gradient
algorithm developed in [75]. Alternatively, it is possible to append our networks with additional conditional
generative networks to yield the density matrix [62, 63].

3. Experiments

3.1. Spatial-mode photonic systems
Apart from evaluating simulation test datasets, we also run the trained ICCNet and FidNet models to
benchmark real experimental datasets. In the first group of experiments, we showcase the accuracy of
ICCNet and FidNet predictions on experimental data acquired from an attenuated laser source prepared in
quantum states projected onto Hermite–Gaussian spatial-mode bases of various dimensions d. With this
group of experiments, for the sake of variety, we shall consider measurement bases that are obtained from
adaptive compressive tomography (ACT). These are eigenbases of the state that minimizes the von
Neumann entropy subject to the same SDP constraints in (2.1). It has been demonstrated that successive
measurements of such eigenbases result in a fast convergence of sCVX [52, 53]. An explicit protocol to
construct these bases is given in section I of supplementary material.

The Hilbert space of photonic spatial degrees of freedom is typically discretized using an appropriate
basis of transverse modes. To produce high-dimensional quantum states we attenuate an 808-nm diode
laser, filter the resulting radiation with a single-mode optical fiber and then adjust the spatial structure of
the light field with a spatial light modulator (SLM, see figure 4). The holographic approach [88] allows us to
transform the incident light into arbitrary transverse modes by controlling the phase pattern on the SLM’s
display.

We work with Hermite–Gaussian (HG) modes HGnm(x, y), which are the solutions to the Helmholtz
equation in Cartesian coordinates (x, y) and form a complete orthonormal basis. By bounding the sum of
beam orders n + m, we restrict the dimension of the generated quantum systems. Since holograms
displayed on the SLM make use of a blazed grating, in order to select the first diffraction order, we place an
iris in the middle of the telescope, where different diffraction orders are well separated. Using a second
SLM, a single-mode optical fiber, followed by a single photon counting module, we realize a well-known
technique of projective measurements in the spatial-mode space [89]. These allows us to also conveniently
implement general ACT basis measurements in arbitrary dimensions.

3.2. Multiphoton systems
In the second group of experiments, we switch to a different flavor of informational completeness by
discussing two-mode photon-number states. In particular, we look at quantum states of up to three photons
occupying two optical modes. Such three-photon states were of interest in the study of high-order quantum
polarization properties beyond the Stokes vectors [90]. The resulting Hilbert space is effectively
four-dimensional and spanned by the set {|nH, nV〉}nH+nV=3 = {|0, 3〉, |1, 2〉, |2, 1〉, |3, 0〉}. Here nH and nV

denote the number of photons in the horizontal and vertical polarization modes, respectively.
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Figure 5. Experimental scheme to generate and characterize three-photon states. Two horizontally polarized photons and two
vertically polarized photons, produced by the double-pair emission of non-collinear spontaneous parametric down-conversion
(SPDC) process, are spatially combined with a polarizing beam splitter (PBS), thereby producing the four-photon state
|2, 2〉 〈2, 2|. After detecting a single photon at detector D1, the reflected three-photon system from a partially-polarizing beam
splitter (PPBS) are prepared in a particular quantum state, determined by the half-wave plate (HWP) angle θ1. For state
characterization, four-fold coincidence counts at detectors D1, D2, D3, and D4 are acquired for all 16 rank-one projectors
pictorialized in figure 6. These measurement projectors are determined by the HWP and quarter-wave plate (QWP) angles of θ2

and θ3 in the table with a PBS and beam splitters (BS).

To perform tomography on the multiphoton quantum states, expectation values of a set of 16 rank-one
projectors are measured. In principle, any set of 16 linearly independent projectors are suitable for a
complete characterization of arbitrary four-dimensional states without ICC. For these experiments, we

define each projector Πj by a ket b†j
3 |0, 0〉 /

√
6, where b†j and the other unobserved counterpart c†j are

photonic creation operators derived from an SU(2) unitary operator Ũj according to the transformation(
b†j
c†j

)
= Ũj

(
a†H
a†V

)
, (3.1)

and a†H and a†V are the creation operators of the horizontal and vertical polarization modes [91]. Clearly,∑
j Πj �= 1 this time, as the projectors are independently measured.
Figure 5 depicts the experimental setup to generate and characterize three-photon states. Four photons

are produced through double pair emission of non-collinear SPDC process. The initial state is prepared in
|2, 2〉 by combining two horizontally polarized photons and two vertically polarized photons with a PBSTo
ensure that the photons are indistinguishable in the frequency domain, interference filters of 3 nm
bandwidth centered at 780 nm are placed before sending the photons into the PBS. The four photons are
then reduced into three photons by detecting a photon at D1 and the reflected three photons from a PPBS
are in the state of |1, 2〉 〈1, 2|. The PPBS perfectly reflects vertically polarized photons and reflects 1/3 of
horizontally polarized photons. The HWP setting of θ1 = 0◦ leaves the state unchanged, whereas the setting
of θ1 = 45◦ transforms the state into |2, 1〉 〈2, 1|. In addition, the mixed state (|1, 2〉 〈1, 2|+ |2, 1〉 〈2, 1|)/2 is
obtained by incoherently adding the relevant pure states through post-processing. These three-photon states
are used to demonstrate the performances of ICCNet and FidNet in figure 9(b).

Experimentally [90], the three-photon states were characterized by acquiring the four-fold coincidence
counts at D1, D2, D3, and D4 for 16 rank-one projectors after passing through a PBS and BS. The SU(2)

unitary operators Ũj that define the projectors Πj = b†j
3 |0, 0〉 1

6 〈0, 0| b3
j according to rule (3.1) are

determined by the QWP and HWP angles of θ2 and θ3 inasmuch as Ũj = H(θ3)Q(θ2), where the matrix

7
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Figure 6. Reduced visualization of the 16 two-photon measurement projectors on the single-qubit Bloch sphere. The projectors

of three-photon states are defined as b†j
3 |0, 0〉 /

√
6 in accordance with equation (3.1). The projection states are chosen to equally

distribute the corresponding single-photon component pure states b†j |0, 0〉 on the equatorial great circle and two small circles on
the Bloch sphere, together with the south pole.

representations for the wave plates are given by

Q(θ) =̂
1√
2

(
1 − i cos(2θ) −i sin(2θ)
−i sin(2θ) 1 + i cos(2θ)

)
,

H(θ) =̂

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
. (3.2)

In our experiments, we consider SU(2) rotations that fairly distribute the single-photon component b†j |0, 0〉
on three Bloch-spherical circles parallel to the equatorial plane [90, 92] as shown in figure 6. The
measurement angles that realize these projectors are given in figure 5.

4. Results

4.1. Simulations—neural-network performances
We first present performance graphs of ICCNet and FidNet in figure 7 based on two sets of simulations on
four-qubit states (d = 16) using random measurement bases generated with the Haar measure for the
unitary group (see section I of supplementary material), and bases found using ACT. In each set of
simulations, for both cases where statistical noise is either absent or present, we collect simulation data of
various number (K) of bases (sCVX is normalized to 1 at K = 1 by default), each case recording
measurements of 5000 randomly-generated quantum states of uniformly distributed rank 1 � r � 3. The
explicit CNN architecture employed is specified in section 2.2. The accurate fit between the actual
computed values and those predicted by ICCNet and FidNet suggests that faithful neural network
predictions of both the degree of informational completeness and fidelity are a definite possibility in both
noiseless and statistically noisy environments. Sample codes for network training and evaluation with
four-qubit simulation datasets are available online [93].

In separate simulations on four- (d = 16), five- (d = 32) and six-qubit (d = 64) systems with random
Haar measurement bases, numerical evidence presented in figure 8 shows that the computation times in
sCVX NN predictions can be significantly reduced by about four orders of magnitude relative to ordinary
SDP calculations, and this difference grows wider with larger dimensions. The corresponding ICCNet and
FidNet performance graphs similar to figure 7 are given in section V of supplementary material.

4.2. Experimental performance with spatial-mode photonic states
For each value of d, we experimentally generated random pure states and construct their respective ACT
measurement bases in order to evaluate the performance of ICCNet and FidNet, which were previously
trained with 10 000 simulation datasets of random quantum states of uniformly distributed rank 1 � r � 3
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Figure 7. Performance of ICCNet and FidNet in the prediction of sCVX and F for different number (K) of measurement bases
generated by (a) random unitaries sampled from the Haar unitary group and (b) adaptive unitaries from ACT, accompanied by
1-σ error bars derived from 50 simulated test experiments for each rank r that are not seen by the neural networks. The main
plots correspond to perfect measurement data, whereas the insets show results under statistical noise with N = 1000 sampling
copies per basis. Both the actual computed values and NN predictions are evidently in extremely good agreement.

and different K values. These simulated training datasets are modeled with statistical noise arising from a
multinomial distribution defined by N = 5000 sampling copies per basis, which is close to the experimental
average.

Owing to experimental noise, the resulting spatial-mode quantum states are, as a matter of fact, nearly
pure but sufficiently low-rank. Figure 9(a) confirms that ICC and fidelity benchmarking with
simulation-trained neural network models are accurate even with real experimental test data. One can
observe the relative network-prediction stability of sCVX in contrast with that of F . This coincides with the
expectation that while the fidelity is strongly affected by statistical noise and other imperfections such as
systematic errors, the degree of informational completeness is more intimately related to the quantum
measurements and rank of the quantum state, such that noise only introduces perturbations on the
functional behavior of sCVX. Regardless, figure 9(a) shows that all predictions made by the
simulation-trained ICCNet and FidNet models remain roughly within the error margins of actual
computed values.

4.3. Experimental performance with multiphoton states
For every fixed number (L) of projectors chosen from the complete set of 16 defined in section 3.2,
simulation datasets of 10 000 random d = 4 quantum states of uniformly distributed r are fed into both
ICCNet and FidNet for training. These datasets are obtained from randomized sequences of the 16
projectors described above. Statistical noise is introduced into the simulation with multinomial
distributions defined by N = 500 per projective measurement. To test the trained models and acquire
prediction results depicted in figure 9(b), we make use of three different sets of 20 experimental runs
outside the training datasets, each set corresponding to a different quantum state.

9
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Figure 8. Comparison of the average ICC computation time by carrying out the grayed subroutine (physical-probabilities
extraction and SDP-based ICC) in figure 1 (unfilled markers) and a trained ICCNet model (solid markers) over many simulated
experimental runs and states of various ranks. For d = 32 and 64, a set of 1000 datasets (N = 1000) each is used to acquire
average computation times that are sufficiently representative (the sCVX and F graphs are separately presented in the
supplementary material). These timing are obtained through CUDA 10.2 interfaced with the GPU-enabled TensorFlow 1.9
package on Python 3.5.3, with the Keras 2.1.6 frontend running on a twelve-core Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40 GHz
and an Nvidia GTX 1080 TI GPU of native settings. A trained FidNet model, on average, performs fidelity benchmarking in
times that are roughly the same orders of magnitude. That the d = 16 neural-network time curve is between those for d = 32 and
64 is due to neural-network-architectural differences for different d values. Performance gaps are barely noticeable in practice.

4.4. Noise training and reduction
Experimental noise due to imperfections and systematic errors are always present in any real dataset.
Fluctuating deviations of NN predicted values from actual ones as observed in figure 9 arise from the lack
of such experimental noise in all simulated training datasets, apart from purely statistical fluctuations, used
to train ICCNet and FidNet.

When more knowledge about the noisy environment is acquired, data simulation from such knowledge
may be carried out to improve the network predictions under such an environment. Here, we show that
when some samples of experimental data that are sufficiently representative of the overall noise behavior
can be spared for training, it is possible to train ICCNet and FidNet with both statistically-noisy simulated
datasets and bootstrapped experimental datasets in order to learn the experimental noise effects
approximately well and improve network predictions.

Bootstrapping entails using a given experimental dataset to generate numerous mock datasets using
Monte Carlo procedures. More specifically, in the multinomial setting, the column νk of relative frequencies
for the kth basis possess a Gaussian distribution of mean pk and covariance matrix Σ(k)

p = [diag(pk) −
pk pk

T]/N for sufficiently large N owing to the central limit theorem, where diag(·) forms a diagonal matrix
whose diagonals are defined by the argument. A direct substitution of νk for pk leads to the following
simple rule for bootstrapping experimental ACT datasets from Hermite–Gaussian mode photonic system:
νk’ = N�0{νk +wk}, where wk is a column of random variables collectively distributed according to the
Gaussian distribution of zero mean and covariance matrix Σ(k)

ν where Σ(k)
ν is to be evaluated with the

measurement relative frequencies of the particular kth basis and N is set to 5000, which is the estimated
number of copies per ACT basis considered in section 4.2. The operation N�0 is a composition of absolute
value of the argument followed by its sum normalization over 0 � j � d − 1 for the kth ACT basis. Finally,
the states that produce the bases relative frequencies used in the bootstrapping procedure are different from
the test states used to evaluate the network predictions.

Owing to a limited set of three-photon states, we adopt a different method to bootstrap experimental
datasets acquired from these states. Since these datasets are obtained from measuring independent
projectors, we randomly permute these projectors and their corresponding relative (unnormalized)
frequencies in order generate new measurement sequences as mock datasets. The 16 projectors offer us a
total of 16! permutations for each state, allowing us to conveniently generate an abundance of bootstrapped
training datasets that are clearly different from those used for testing. By a similar token to the spatial-mode
photonic systems, each relative frequency ν l here is a binomial random variable normalized by the number
of copies N used to measure the lth projector. Therefore, bootstrapping these relative frequencies may be
carried out by additive Gaussian random variables inasmuch as ν ′l = νl + wl

√
νl(1 − νl)/N, where wl is a

standard Gaussian random variable of zero mean and unit variance, and N = 500 is fixed as the estimated
number of copies used to obtain the measured relative frequency for each projector, consistent with
figure 9(b).
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Figure 9. (a) The NN predictions of sCVX and F for spatial-mode photonic states of dimensions d = 4, 6 and 9. All graphs and
1-σ error bars of each dimension d are obtained from 15 experimental test states used to evaluate the networks. The average
fidelity mapped out by FidNet lies closely with the actual computed curve. (b) Performances on three-photon systems are given
for states |1, 2〉 〈1, 2|, |2, 1〉 〈2, 1|, and the rank-two (|1, 2〉 〈1, 2|+ |2, 1〉 〈2, 1|)/2 in this order. All graphs and 1-σ error bars are
obtained from 20 experimental test runs per quantum state. Despite the large error bars of the actual values owing to noise and
experimental imperfections, the average fidelity curve is correctly identified by FidNet.

Figure 10 shows the enhanced prediction performances of ICCNet and FidNet. To generate this figure, a
total of 5000 simulated and 5000 bootstrapped datasets are employed (m = 10 000) for each group of
experiments to train the networks for every value of K and L. These new plots indicate that slightly
fluctuating NN prediction curves on noisy experimental data can be smoothened when bootstrapped
information about the noisy environment is incorporated into the training.

4.5. Suppression of systematic errors
To end this section, we shall now discuss the implications of all presented results, especially the
computation performance graphs shown in figure 8, as far as real-time experimental systematic errors are
concerned [94, 95]. As analytical results are unavailable, we resort to numerical analyses on the effects of
ICC-computation-time reduction on such errors. For this purpose, we provide an important example of a
kind of systematic drift phenomenon that is highly typical in optical fibers that carry spatial-mode photons,
such as those of Hermite–Gaussian modes discussed in this article.

Focusing only on the transverse plane relative to the propagation direction of a laser beam, a given
Hermite–Gaussian mode function um(x) of order m in the spatial x-coordinate is given by [96]

um(x) =

(
2

π

)1/4 1√
2m m!w0

H m

(√
2x

w0

)
e
− x2

w2
0 , (4.1)

with w0 being the beam waist, and H m (x) a degree-m Hermite polynomial in x. Upon using the ket
notation, one can express the mode function in the familiar manner inasmuch as 〈x|m; 0〉HG = um(x). An
ideal fiber would carry spatial-mode photons of a mode function that has a stable center point, which is
usually set at the Cartesian origin as in (4.1). In real experiments, however, a main source of
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Figure 10. The bootstrapped performance of ICCNet and FidNet in predicting sCVX and F for the same test datasets that are
used in figure 9, where fluctuating features are generally smoothened with bootstrapped noise training.

time-dependent systematic errors is transversal displacements of um(x) away from the origin [97, 98], which
we may approximately model as random Wiener processes. Such displacements would distort the originally
intended true state. Suppose that a basis ket |m〉HG ≡ |m; 0〉HG is displaced away from the origin by a, it is
shown in section IV of supplementary material that the resulting displaced |m; a〉HG = e−iaP|m; 0〉HG, where
〈x| e−iaP = 〈x − a|, possesses the following transformation function

|m; a〉HG =
∑

l

|l; 0〉HGHG〈l; 0|m; a〉HG,

HG〈l; 0|m; a〉HG =

∫
dx′ um(x′ − a) ul(x′)

=
e−

a2
2w0

√
m! l!

(−1)m

(
a

w0

)n>−n<

U(−n<, 1 + n> − n<, a2/w2
0), (4.2)

where n> = max{m, l}, n< = min{m, l}, and

U(−n<, 1 + n> − n<, x−2) = x−2n<

n<∑
l=0

(−x2)l
(n<

l

) n>!

(n> − l)!
(4.3)

is Kummer’s confluent hypergeometric function. This result reduces to that in [97] for the m = 0 special
case. The complete two-dimensional transverse profile of a Hermite–Gaussian mode in space is therefore
described by the mode function um,n(x, y) ≡ um(x)un(y), where the corresponding displaced kets
|m, n; a〉HG ≡ |m; a1〉HG|n; a2〉HG exhibit the transformation

|m, n; a〉HG =
∑

l,l′
|l, l′; 0〉HGHG〈l; 0|m; a1〉HGHG〈l′; 0|n; a2〉HG, (4.4)
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Figure 11. (a) Random single-direction displacements of the beam-profile center shows an increasing variance around the
zero-displacement origin that is expected of random-walk Wiener processes. Such variance drifts give rise to the fidelity curves
with respect to ideal true states ρ in (b) for the noisy true states ρ̃ = ρ̃(t) and those in (c) for the reconstructed estimators
ρ̂ = ρ̂(t), in contrast to the driftless scenarios in (d).

where the coefficients are pair-products of one-dimensional transformation functions as in (4.2).
Components of the two-dimensional displacement a = (a1 a2)� are assumed to be independent. After a
period of time t, the noisy true state ρ̃ =

∑
m,n,m′,n′ |m, n; a(t)〉HG ρmn,m′n′HG〈m′, n′; a(t)| is now defined in

the displaced Hermite–Gaussian basis of some displacement a(t). The same type of disturbances apply to
the POVM outcomes since they are implemented digitally using SLMs with the same beams.

In the experiments that gathered data used in plotting figure 9(a), the root-mean-square displacement of
the Hermite–Gaussian beam center was measured to be about 5% of the beam waist w0 after a period of
24 hours. This approximately coincides with a model of a Wiener process specified by the random
displacement variable a(t) = a(t − 1) + b(t − 1), which is a cumulative temporal sum of random variables
b(t) that are each distributed according to the standard Gaussian distribution defined by the standard
deviation σ ≈ w0/95 when the time coordinate t is in units of an hour. Figure 11 shows the
Hermite–Gaussian beam-profile center displacement and fidelity curves in time t for various dimensions d,
where d = d2

0 is the product of the individual dimensions d0 of the truncated Hilbert space spanned by the
finite set of Hermite–Gaussian basis kets of orders 0 � m, n � d0 − 1. In actual experiments, there most
likely exist other time-dependent sources of errors not modeled here that could worsen the fidelities.

To appreciate the significance of systematic-error suppression, we consider a quantum processor that
utilizes Hermite–Gaussian beams as a source for producing high-dimensional initial states for quantum
computation. Suppose that the processor is running continuously under server conditions, and
maintenance is carried out before significant systematic drifts are anticipated. Whenever the processor
refreshes after each set of computations is completed, the newly prepared initial state ρ undergoes
compressive state tomography to ensure that it is within the expected error margins.

As an instructive example, we consider at an eight-qubit processor controlled by a d = 256
Hermite–Gaussian source [99]. Each projector exposure time is about 1.5 s so that the measurement time
of K von Neumann bases is tmeas = 1.5Kd = 1920 s. Preliminary calibration indicates that such an exposure
period yields N = 1000d = 2.56 × 105 state copies per basis. For a realistic error modeling, the expressions
of tmeas and N in d were calibrated from the actual setup used to collect our experimental data for figures 9
and 10. We focus on the preparation of pure states, each of which requires only K = 5 random bases for an
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Figure 12. The fidelity F of the input state ρ with (a) the noisy true state ρ̃ = ρ̃(t), and that with (b) its IC estimator ρ̂ = ρ̂(t),
before each round of quantum computation commences (step labeled by Nc) for an eight-qubit (d = 256) processor executed
with Hermite–Gaussian optical sources. Using ICCNet in place of SDP-based ICC not only triples the computation output Nc in
a given period of time (assuming negligible quantum-computation timescales), but also maintains a much more stable fidelity
for the same number of computations. All 1-σ error regions are computed from 10 different runs.

IC reconstruction [53], the average time, estimated over five random sets of K = 5 bases, for an ICC
verification (two SDPs) is tSDP = 4000 s using the personal computer with hardware specification given in
the caption of figure 8. After carrying out the basis measurements and ICC, the final state estimator ρ̂ is
given by the ML estimator that takes an average of tML ≈ 240 s to generate using the accelerated
projected-gradient algorithm in [75], which is insignificant in comparison to tSDP. The time for each round
of quantum computation depends on the actual application. For simplicity, we assume that each round of
quantum computation is executed almost instantly since no classical post-processing is needed. From these
specifications, we note that tSDP ≈ 2tmeas, and the prefactor grows with d > 256. Therefore, in the case of
d = 256, replacing the two SDP algorithms in ICC with a trained ICCNet would shave about 66% of the
total computation time off. For larger dimensions, if so desired, the ML estimation procedure may be
completely replaced with trained conditional generative networks [62, 63] to eliminate tML.

Figure 12 shows the fidelity of the estimator ρ̂ with the generated initial state ρ before every
quantum-computation step (Nc of them in total). The graphs highlight the adverse effects of systematic
errors when initial-state verification takes too long. Hence, compressive tomography performed with
trained neural networks provides a better solution to real-time device certification with a higher fidelity
stability, so that quantum computation can run much more smoothly with a greater Nc output before drift
maintenance is applied.

5. Concluding remarks

We took advantage of the universality of convolutional networks to train two neural networks that can very
efficiently certify a low-measurement-cost quantum-state characterization scheme. These networks can
respectively benchmark the quantum completeness of a given set of measurement outcomes and
corresponding data for reconstructing an unknown quantum state, as well as the resulting fidelity without
explicitly carrying out the state reconstruction. Our machine-learning-assisted scheme therefore allows
experimentalists to rapidly assess the sufficiency of measurement resources for an unambiguous
characterization of arbitrary quantum states and achieve accelerated real-time verification without having to
perform any optimization routine during the experiment. This becomes essential for many practical
quantum tasks that do require fast execution times to avoid noise accumulation and drifts.

An arguably interesting problem would be to minimize the time required to acquire the trained neural
networks. This includes both the training time and the generation of adequate training datasets. While the
former can now be easily parallelized with graphics processing units, the latter involves two rounds of
semidefinite programming per dataset as discussed in section 2.1, the acceleration of which is still a subject
of ongoing research [100].

On the other hand, while classical algorithms for these procedures have worst-case polynomial time
complexities in the dimension of the Hilbert space, it is known [101] that quantum algorithms can execute
SDPs with polylogarithmic time complexities in the dimension. This immediately reveals the possibility of
completely transforming the neural networks employed here, or part thereof, into their quantum
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counterparts (fused with the training-data processing procedures that use quantum semidefinite
programming) that could assimilate into a much larger set of networks for a grander purpose. Practical
feasibility in implementing such extended quantum neural networks still remains to be seen.

Note.—Nearing the submission of our work, we discovered another very recent preprint reference [102]
that purely discusses the estimation of the fidelity with FC networks. Apart from the clear distinction in
architectures, we remark that while the networks in this reference were specifically trained for Pauli
measurements, our CNN-based FidNet is compatible with generalized measurement inputs that can be
readily used in parallel with ICCNet or any other quantum task that relies on arbitrary measurements. The
objectives of both works are hence very different. The next key distinction is network training, which in this
reference is based on categorical training that splits the continuous fidelity range into small intervals. As
mentioned in the preprint itself, network training can be slow when the intervals are too small. In our
current work, FidNet directly computes the fidelity values without such output splitting, and hence training
efficiency is not sacrificed for prediction accuracy.
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