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Abstract
We propose a practical strategy for choosing sets of input coherent states that are near-optimal for
reconstructing single-mode Gaussian quantum processes with output-state heterodyne
measurements. We first derive analytical expressions for the mean squared-error that quantifies the
reconstruction accuracy for general process tomography and large data. Using such expressions,
upon relaxing the trace-preserving (TP) constraint, we introduce an error-reducing set of input
coherent states that is independent of the measurement data or the unknown true process—the
geometrical set. We numerically show that process reconstruction from such input coherent states
is nearly as accurate as that from the best possible set of coherent states chosen with the complete
knowledge about the process. This allows us to efficiently characterize Gaussian processes even
with reasonably low-energy coherent states. We numerically observe that the geometrical strategy
without trace preservation beats all nonadaptive strategies for arbitrary TP Gaussian processes of
typical parameter ranges so long as the displacement components are not too large.

1. Introduction

Continuous-variable (CV) systems play an important role in quantum information theory [1–7]. Gaussian
states [2], for example, form the basic ingredients in key discussions of CV quantum information
processing, notably for the study of secure quantum key distribution protocols [8–11]. These are quantum
states described by Gaussian quasiprobability distributions [12, 13], which include the set of squeezed
coherent states. The primary engines that generate these states are Gaussian processes, which are quantum
processes that are also representable by a Gaussian quasidistribution. Gaussian quantum processes have
been widely studied, especially in the context of channel capacity and quantum communication [14–20].

Proper characterization of Gaussian quantum processes is crucial to ensure that Gaussian resources are
reliably generated and utilized. Techniques in multiparameter estimation are commonly well-sought tools
for this purposes, but very often, they are used to primarily investigate the quantum Fisher information
[21–26] that bounds the mean squared-error (MSE) of the estimated parameters. This requires optimal
output-state measurements that are technically challenging to achieve in practice [27].

In this work, we shall explore a highly feasible route to optimal Gaussian process tomography that is
much more accessible in experiments using input coherent states [28] that can be readily prepared with a
well-controlled laser source. To this end, we search for a computationally efficient set of input states that
lead to near-optimal precision given a fixed measurement acting on the output states. We shall consider
heterodyne detection [29–36] as the output-state measurement for the exclusive advantage of its
tomographic performance in reconstructing Gaussian states [37–39] over homodyne detection [40–42],
both of which essentially constitute the typical CV measurements that can be carried out in practice.
Another key departure from previous work is that generic Gaussian processes shall be considered in our
study, rather than just their subclasses.
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The MSE for all the parameters characterizing the unknown Gaussian process is adopted as the figure of
merit for the reconstruction quality. To analyze the MSE for general Gaussian processes with large data
samples, we shall derive its asymptotic formulas by extending methods previously developed for quantum
states [39, 43, 44]. Next, without imposing the trace-preserving (TP) constraint, we construct a convenient
set of input coherent states that minimize the MSE Cauchy–Schwarz upper bound for the unknown
Gaussian process. We demonstrate that such states give an MSE that is almost identical to the optimal value
provided by the best nonadaptive set of input states obtainable only with the complete knowledge about the
process of interest. This near-optimality turns even reasonably low-energy coherent states into formidable
resources for reconstructing Gaussian processes. Such an input set is ‘geometrical’ since the phase-space
arrangement of these coherent states is predetermined by only the output-state measurements employed
and nothing else. Furthermore, we show numerically that for arbitrary completely-positive-trace-preserving
(CPTP) Gaussian processes of parameter ranges typically considered in experiments (to be specified more
concretely in section 5), the non-TP geometrical strategy emerges as the optimal nonadaptive strategy by
asymptotically outperforming the best TP strategy so long as the process displacement components are not
very large.

After some background introduction to the general formalism of Gaussian processes in sections 2 and 3
shall be devoted to the explanation and derivation of the MSE formulas for both TP and non-TP
reconstruction methods. With the aid of these formulas, section 4 then proceeds with the construction of
geometrical input states. Finally, section 5 compares the geometrical strategy with existing common
nonadaptive input-state strategies for realistic CPTP Gaussian processes.

2. Characterization of Gaussian processes

A physical quantum process Φ transforms an input state ρIN into the output state ρOUT = Φ[ρIN]. A
standard operational description for the quantum process Φ makes use of the Choi–Jamiołkowski formalism
[45], which essentially states that all information about Φ is encoded into a positive operator (ρΦ). For a
d-dimensional discrete-variable system, any process operator Φd[ρd] = ρ′d can be expressed as

ρΦd
=
∑d2−1

m=0

∑d2−1
m′=0wmm′σm ⊗ σm′ in terms of traceless Hermitian operators σm>0, which are proportional

to single-qubit Pauli operators if d = 2, and σ0 = 1/
√

d. The TP property trout{ρΦd
} = 1in additionally

enforces the necessary and sufficient [46] constraints wm0 = 0 for m > 0 and w00 = 1/2 on the coefficient.
However, a more natural representation is preferable for CV systems, where all process operators ρΦ are
infinite-dimensional (d = ∞). One such form of representation is a quasidistribution function. In
particular, we say that a single-mode process Φ is Gaussian if it possesses a two-mode Gaussian
quasidistribution. In this case, it is convenient to represent Φ by its Husimi Q function

QΦ = exp
(
−Z†AZ + B†Z + c0

)
, (2.1)

which is defined by a complex matrix A, a complex column B (both in the computational basis) and a real
constant c0. Here Z = (z1, z2)� consolidates the complex variables labeling the process input [z1 = (z1,z∗1)�]
and output [z2 = (z2, z∗2)�] modes, where we adopt the phase-space-variable subscript shorthands 1 ↔ in
and 2 ↔ out.

Gaussian process tomography pertains to the characterization of any given unknown ρΦ on the premise
that its QΦ is Gaussian. The connection between ρΦ and QΦ is made by heterodyne measurements [29–36]
that sample the overcomplete set of coherent states {|z〉 〈z|} to probe the output state
ρout = tr1{ρ�in ⊗ 1ρΦ}, where the transposition is defined for the Fock basis in which all matrices are
written in this article. Apart from directly recovering the Q-function parameters, these measurements are
also known to give a smaller MSE for characterizing covariance matrices of Gaussian and broad classes of
non-Gaussian quantum states compared to its homodyne counterpart [37–39]. Another reason for this
choice of measurements is that when input coherent states {|α〉 〈α|} are used, the heterodyne measurement
is equivalent to a direct sampling of the process Q function, as QΦ(α,α∗, z, z∗) = 〈α|ρOUT|α〉.

For a completely-positive (CP) Φ (ρΦ � 0), A, B and c0 are constrained such that QΦ is positive and
square-integrable. One way to identify these constraints systematically is by reverting to the real phase-space
representation: QΦ = exp (−R�A′R + B′�R + c0) with R = (x1p1x2p2)�. This is done by recognizing that
the transformations Z = UR, A′ = U†AU and B′ = U†B are exacted with the unitary matrix U = 1 ⊗ U0

and U0 =

(
1 i
1 −i

)
/
√

2. It is now clear that the conditions A′ � 0 and A � 0 are necessary for QΦ to be

real and square-integrable. These give a total of 15 independent real parameters, that is 10 from A, 4 from
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B, and c0. We may parametrize A and B as

A =

(
A1 A2

A†
2 A3

)
, A1 =

(
a1/2 −c∗1
−c1 a1/2

)
,

A2 =
1

2

(
g2 g∗1
g1 g∗2

)
, A3 =

(
a2/2 −c∗2
−c2 a2/2

)
,

B =

(
b1

b2

)
, b1 =

(
b1

b∗1

)
, b2 =

(
b2

b∗2

)
.

(2.2)

A useful Φ in quantum information theory is typically also TP (tr{ρin} = 1 = tr{ρout}). Under this
constraint, for an invertible A3, it is shown in appendix A that 6 of the 15 real parameters are fixed by the
rest inasmuch as

A1 = A2A−1
3 A†

2 (3 parameters),

b1 = A2A−1
3 b2 (2 parameters),

c0 = log(2
√

det{A3}) − 1

4
b†

2A−1
3 b2 (1 parameter).

(2.3)

As a simple example, if we consider a beam splitter that transforms a pair of input mode operators a and b
into the pair of output operators c = a cosθ + b sin θ and d = −a sinθ + b cosθ, then the relevant
Choi–Jamiołkowski operator for a single output mode (c) clearly describes a CPTP process and possesses the
Q function QΦ = exp(−|z1|2(cos θ)2 − |z2|2 + z1z2 cos θ + z∗1z∗2 cos θ) [47]. In this case, a consistency check
gives b2 = 0, A3 = 1/2, A2 = −(cos θ)σx/2, A1 = A2A−1

3 A†
2 = (cos θ)21/2, b1 = 0 and c0 = 0, with σx

being the usual Pauli x matrix in the standard basis.
If the TP constraint is absent from the process reconstruction, the parameter c0 is not estimable since

any experimental data can only recover ρΦ uniquely up to a constant multiple [48, 49], such that Φ may
only be fully characterized up to its operator trace. Therefore, the complete characterization of a general
single-mode Gaussian Φ requires 14 real recoverable parameters:

x = (a1, a2, b1,r, b1,i, b2,r, b2,i, c1,r, c1,i, c2,r, c2,i, g1,r, g1,i, g2,r, g2,i)
�, (2.4)

where the subscripts r and i denote the real and imaginary parts of a complex parameter. Formally, the
coherent-state sampling measurements by heterodyning gather raw data sampled from the Q function
Qout(x; z2 ≡ z, z∗2 ≡ z∗) of ρOUT (originating from a given ρIN) that encodes x. Numerical techniques are
then used to obtain the estimator x̂ (distinguished from the true parameter by a caret).

In this work, we focus on studying the accuracy of x̂ for a given unknown x. This may be quantified by
the MSE (x̂ − x)2, where the overline denotes an average over all possible data of a fixed total sample size.
For an analytical study, we shall investigate the asymptotic expression of the MSE that applies to typical
tomography situations involving large datasets.

3. Mean squared-error formulas

3.1. Relaxation of the TP constraint
To better facilitate the understanding of some important mathematical elements behind Gaussian process
tomography, we first study the characterization of an unknown Gaussian process Φ without imposing the
TP constraint. We emphasize that this is simply a numerical technique of choice one could make in
quantum-process tomography that is completely independent of the unknown Φ, which can be any
arbitrary (usually CPTP) process operator. As we shall elaborate in sections 4 and 5, non-TP Gaussian
process tomography methods optimized in a certain way can play a significantly beneficial role in
minimizing the MSE.

Given an input coherent state ρin = |α〉 〈α| of amplitude α, the output Gaussian Q function QOUT can
be written in the form

Qout = e−v�x′ ,

v�

2
=

(
|α|2

2
,
|z|2
2

,αr, αi, zr,−zi, (α2)r, (α2)i, (z2)r,−(z2)i, (αz∗)r, (αz∗)i, (α∗z∗)r, (α∗z∗)i,
1

2

)
,

(3.1)

where x′ = (x,c0)� carries the non-estimable c0. In Gaussian process tomography, x may be extracted from
a discretized system of equations governed by (3.1). The latter is established by first sending J input
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Figure 1. Schematic diagram of (Gaussian) process characterization. A set of J input coherent states of amplitudes {αj}, lying in
the phase-space box region −L � αj,r,αj,i � L, are fed to the unknown Gaussian process Φ. Heterodyne measurements,
implemented through simultaneous measurements of the position (X) and momentum (P) quadratures, are performed N times
on each of the respective output states. The collected data from all J output states are processed on the discretized phase space of
K = M2 bins, after which the Q-function estimator Q̂Φ is reconstructed from the binned data.

coherent states {
∣∣αj

〉 〈
αj

∣∣}J
j=1, next performing heterodyne measurements on all corresponding output

states ρ(j)
out, and later bin the collected data into an M × M phase-space grid. If the number of phase-space

bins K = M2 is large, the final reconstructed x̂ (Q̂out) should approximate the actual x (QOUT) efficiently.
The entire flow of Gaussian-process characterization is concisely pictorialized in figure 1.

For a sufficiently large J, we can extract x = Ṽ−u by inverting the exponent of equation (3.1) after

taking the logarithm on both sides—the logarithmic inversion (LI) procedure. Here Ṽ− is the matrix of the
first 14 rows of the left-pseudoinverse V−(V−V = 1) that is defined for the JK × 15 matrix
V = (vα1,z1 , . . . ,vα1,zK ,vα2,z1 , . . . ,vα2,zK , . . . ,vαJ ,z1 ,vαJ ,zK )�

and JK × 1 column u = (− log p11, . . . ,− log p1K ,− log p21, . . . ,− log p2K , . . . ,− log pJ1, . . . ,− log pJK)�

acquired from an M × M phase-space grid. Each probability pjk is proportional to Q(j)
out(x; zk, z∗k ) up to

proper normalization as a consequence of binning.
For LI to be successful, the system u = Vx′ must be informationally complete (IC), that is, there exists a

V− that is uniquely given by V− = (V†V)−1V †. This implies that measurement data collected with such a
set of input states uniquely characterize the unknown Gaussian process. In equivalent linear-algebraic
terms, an IC set of linearly independent input states gives rise to an invertible Gram matrix G = V †V if
J � 6. To understand why this is the case, we observe that as 6 out of the 15 terms in v do not depend on z,
when J < 6, there naturally exists at least one null right eigenvector e for V of the form
e = (e1, 0, e2, e3, 0, 0, e4, e5, 0, 0, 0, 0, 0, 0, e6)�, where the six-dimensional (e1 e2 e3 e4 e5 e6) is orthogonal to
(|αj|2, 2αj,r, 2αj,i, 2(α2

j )r, 2(α2
j )i, 1) for any amplitude αj. This observation is therefore consistent with the

alternative arguments in [47].
In realistic scenarios, the log-probability column u is to be replaced by the column of relative

log-frequencies û = (− log νjk) that reflects the physical relative photodetection counts. Note that∑
k ν jk = 1, and ν jk → pjk as N  1 in a statistically consistent setting. As a consequence, the LI procedure

that now handles these noisy data ν jk should be modified. As the counts are noisy with statistical
fluctuation, for any finite number of sampling copies N per input state, there very likely exist entries in û
that are infinite (ν jk = 0 for some j and k), especially when the corresponding Q-function magnitudes are
small. To cope with statistical noise in LI, one may consider only finite entries of û. After some statistical
reasoning (see appendix B), we obtain the asymptotic expression

MSE ≡ (x̂ − x)2 =
1

N
Tr
{

Ṽ−†Ṽ−Y
}

,

Yjk,j′k′ = δj,j′ [1 − (1 − p̃jk)N][1 − (1 − p̃jk′)
N ]

(
δk,k′

p̃jk
− 1

)
,

(3.2)

where we note that
∑

kp̃jk = 1 are the normalized true probabilities related to pjk through p̃jk = pjk/
∑

kpjk.
Figure 2 illustrates the positive match between the theoretical expression in (3.2) and simulation results for
a given Gaussian process. The real and imaginary parts of the complex input coherent-state amplitude
αj = αj,r + iαj,i are chosen from the closed interval [−L, L], where the influence of L on the characterization
quality of Φ is explored. We assume that γ j ≡

∑
k pjk are known with small statistical fluctuation up to a

scalar multiple.
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Figure 2. The resource performance of four simulated tomography scenarios on a random Gaussian process using various
numbers of randomly-chosen input coherent states and a phase-space grid of K = 400 as an illustration. All MSEs are computed
over all the 14 estimable parameters, and averaged over 100 experiments and 50 random sets of input states for each J and N.
Dashed curves are results obtained from the analytical formula in equation (3.2) that asymptotically approximates the MSE based
on LI reconstruction. The values of L chosen for example illustrations are within the mean-photon-number range that is
achievable in CV experiments [50]. The general trend is consistent with the physical understanding that the accuracy of x̂
improves when J and L are large.

We stress that the LI estimator x̂ introduced here, while useful as a formalism for an analytical grasp of
the actual characterization problem, usually does not lead to a physical process estimator Φ̂, since the
inversion procedure pays no attention to the positivity requirement for the estimated complex Â matrix.
Numerically, it is possible to enforce such a positivity constraint in LI, in which case the resulting estimator
will have some statistical bias and an MSE that deviates slightly from the expression in (3.2). One may also
choose to perform LI followed by a projection onto the real and positive A′-space in the real phase-space
representation, as previously discussed in section 2, to obtain a sufficiently good physical estimator x̂.

Supposing that the estimated real matrix Â′ = UdiagDU†
diag is diagonalized by the unitary Udiag, this

projection is done through the map Â′ �→ Â′
physical = Tr {D}UdiagD+U†

diag/Tr{D+}, where D+ is essentially
the diagonal matrix D with all negative eigenvalues set to zero.

While LI with positivity constraint and the projection method gives highly similar estimators for
sufficiently large N, the scaling behaviors in JN for both methods generally vary. To put things on firmer
statistical grounds, more meaningful estimators, such as the maximum-likelihood (ML) estimators, should
be considered. In the context of non-TP process characterization, ML asymptotically gives very similar
reconstructions to LI under the physical process constraints. Section 3.2 provides an explanation regarding
this connection and presents a recipe for the ML reconstruction prescription.

3.2. Imposition of the TP constraint
If the unknown Gaussian process Φ is TP, then the constraints specified in (2.3) collectively imply that 9
parameters are enough to characterize Φ:

x = (a2, b2,r, b2,i, c2,r, c2,i, g1,r, g1,i, g2,r, g2,i)
�. (3.3)

We note that in this case, A � 0 so long as A3 > 0, since we may write

A
̂

=

⎛
⎝ A2A−1/2

3

A1/2
3

⎞
⎠( A−1/2

3 A†
2, A1/2

3

)
(3.4)

with well-defined matrix square roots. This also implies that A is rank-2 and that a2
2 − 4|c2|2 > 0 is the only

necessary and sufficient positivity condition for a CPTP Gaussian Φ as no other constraints are imposed on
A2 and b2.

Because of the nonlinear dependence on the 9 parameters in the exponent of the output Q function in
accordance with (2.3), LI is no longer applicable as it only works with a highly specific form of the output Q
function stated in (3.1). Instead, statistical method is usually a more favorable option to infer x from the
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collected data. A popular method is to maximize the log-likelihood function log L =
∑

jk νjk log(pjk/
∑

j′k′

pj′k′) that takes the multinomial form when each output state is measured with N sampling copies of
heterodyne detection independently, subject to the positivity constraint of A3 � 0. The log-likelihood
log L may in general be a nonconvex function of the TP Gaussian-process parameters, so standard
numerical techniques might be needed to search for its global maximum for optimal accuracy.

We emphasize that the ML scheme may be applied to any tomographic situation, which evidently
includes the characterization of non-TP processes. In this context, with respect to the variable probabilities
p′jk = exp(−vjk

�x′), we consider only those ν jk > 0 in

log L = −
∑

jk

νjkvjk
�x′ −

⎛
⎝∑

j′
γj′

⎞
⎠ log

⎛
⎝∑

jk

e−vjk
�x′

⎞
⎠ , (3.5)

where we again assume that the γ js can be determined through calibration procedures up to a multiplicative
constant and are not part of the statistical consideration. Maximizing log L involves scaling its gradient

δ log L

δx′ =
∑

jk

⎛
⎜⎝−νjk +

μp′jk∑
j′k′

p′j′k′

⎞
⎟⎠ vjk

� (3.6)

for the parameter x′ and μ =
∑

j′ γ j′ . If the solution to μp′jk/
∑

j′k′p
′
j′k′ = νjk exists under the physical

constraints of the parameter estimator x̂ for which the corresponding process estimator Φ̂ remains a CP
process (namely A � 0 as stated in (2.2)), then the peak of log L can obviously be reached by the
maximization. Under this situation, both ML and LI schemes are equivalent when p′jk = νjk. In the
hypothetical event that ν jk are completely noiseless, then this solution uniquely maximizes the
log-likelihood. For finite N, satisfying the constraints of x almost surely leads to p′jk �= νjk. Nevertheless, for
sufficiently large N, the MSEs obtained with both schemes are typically not too far from each other in the
absence of other sources of external systematic errors.

The asymptotic MSE expression for the ML estimator x̂ml for x may be approximately calculated by
assuming that N  1 per output state is large enough so that δx ≡ x − x̂ml is typically small. Similar to the
treatment presented in section 3.1, we can define a JK × 9 matrix VTP such that its (j, k)th row is equal to
the 1 × 9 row

v�
TP = (〈〈M†

1,jk|E1, 〈〈M2,jk + M†
2,jk|E2, 〈〈M†

3,jk|E3), (3.7)

where the definitions of all auxiliary matrices are given in appendix B. The principle of small variations thus
states that VTP δx = δu. It follows that the asymptotic MSE for estimating the 9 independent CPTP
parameters using the constrained ML method is approximately

MSE ≡ (x̂ml − x)2 ≈ 1

N
Tr
{

V−
tp
†
V−

tpY
}

, (3.8)

where Y is as specified in equation (3.2).
The ML estimator x̂ml is to be constrained by the positivity of A3 and is typically a biased estimator. In

general, there could still be a small difference between the ML MSE and the right-hand side of
equation (3.8) that is obtained from operator derivatives that assume the existence of open sets without
parameter boundary constraints. Barring this technical issue, figure 3 shows that (3.8) can still serve as a
pretty good estimate for the actual MSE.

4. Geometrical set of input coherent states

The LI procedure discussed in section 3.1 hinges on the existence of V−. This is again synonymous to
having a V with no null right eigenvectors, thereby ruling out sets of coherent states with identical
amplitudes |αj| ≡ |α| as candidates for LI, since they result in at least one such null eigenvector, namely
e ∝ (−1/|α|2, 0, . . . , 0, 1)�, for any J. Therefore, choices that include the set of coherent states with
complex amplitudes that form a ring of radius r in phase space—αj = r e2πi j/J for r > 0 and 1 � j � J—are
non-IC and shall result in failures of the LI scheme. In the regime of ML estimation, these symmetric sets of
coherent states give a convex set of estimated parameters that are consistent with the ML probabilities
obtained from the measurement data. One therefore cannot obtain a unique parameter reconstruction with
such input states.

A general observation from figures 2 and 3 is that input coherent states with lower phase-space energies
(L = 1 for instance) also tend to give larger average MSE values. This is because a set of low-energy
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Figure 3. The resource performance of four simulated tomography scenarios on a random Gaussian TP process of general
specifications identical to those of figure 2, where 50 simulated experiments and 20 random input coherent states are used to
average the MSE for the 9 CPTP parameters. Here, J = 3 turns out to be the minimum number of input coherent states to fully
determine an unknown TP Gaussian process [47]. Dashed curves are results obtained from the analytical formula in
equation (3.8), which approximate the respective simulated ML MSEs well for large JN.

coherent states are typically quite closely packed in phase space and their Gram matrix G can at times be
ill-conditioned, that is, its smallest eigenvalue can be very close to zero. Colloquially, low-energy coherent
states are not very linearly independent. However, with appropriate optimization strategies, low-energy
input coherent states can still be highly effective in characterizing any unknown Gaussian process with
significantly higher accuracy than using random low-energy input states, thereby allowing us to maximally
utilize these energy-efficient resources.

Regardless of whether or not the TP constraint is imposed when reconstructing Φ, the best performance
of any Gaussian-process characterization is ultimately tied to the optimal value of the figure of merit in
question. For our case, this is quantified by the minimum of the MSE. The truly optimal set of input states
that minimizes the MSE according to either equation (3.2) or (3.8) requires the knowledge of the unknown
Gaussian process. Such a set is therefore operationally unobtainable.

We introduce a solution to approximately minimize the MSE without such knowledge by first noting
that since Y � 0, a variant of the Cauchy–Schwarz inequality for positive matrices reads

MSE � 1

N
Tr
{

Ṽ−†Ṽ−
}

Tr{Y} ≈ JN Tr
{

Ṽ−†Ṽ−
}

, (4.1)

where the approximation in the second line of the calculation is valid for sufficiently large M, so that
p̃jk � 1 and Yjk,j′k′ ≈ N2p̃jkδj,j′δk,k′ . Under this approximation, it is clear that the upper bound of the
asymptotic MSE is independent of Φ and is therefore a purely geometrical term that solely depends on the
collective phase-space arrangement of the input coherent states. Therefore, such geometrical sets of input
states that minimize the MSE Cauchy–Schwarz upper bound can be universally defined for any Gaussian
process since they are independent of the measurement data and the unknown process.

Figure 4 illustrates some desirable properties of geometrical input states. In particular, when J = 6
(minimal case), the geometrical set is unique up to a collective rotation, whereas arrangements can vary for
J > 6, at times with the possibility of two or more coherent states being very close to each other owing to
overcomplete redundancy. The recipe for deriving such geometrical sets of input states does not apply to the
TP version of the asymptotic MSE in equation (3.8), since the TP constraint tangles the 9 independent
Gaussian parameters in a highly nonlinear way that cannot be cleanly separated from the phase-space
variables (V TP depends on these parameters).

As we shall see in section 5, for heterodyne detection, such a geometrical set of coherent states on
average gives a nearly-optimal MSE when the TP constraint is lifted. Moreover, these special input states can
also beat optimal input states that minimizes the MSE when trace preservation is imposed for certain classes
of CPTP Gaussian processes.

7
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Figure 4. (a)–(c) Regarding the phase-space arrangement (represented by x, p coordinate markers) of the input coherent states,
the actual optimal states that collectively minimize the upper bound of (3.2) are geometrically positioned as far apart from each
other as possible, such that some states are located in the interior of the finite-energy boundaries defined by −L � x, p � L.
(d) The minimum upper bound of (3.2) monotonically decreases with the number of input states J in such geometrical sets, as
expected. A saturated optimality is achieved beyond just L = 2, beyond which increasing the laser intensity further becomes
moot. For low-energy applications, L = 1 is sufficient for precise Gaussian-process tomography.

5. Performance on CPTP Gaussian processes

For a given CPTP Gaussian process, both its Q-function parameters A and B are related to another set of
parameters (refer to appendix C) according to the maps

A = lim
t→∞

1

2
U
[
(1 + X�)Σt(1 + X) + 0 ⊕ Y + 1/2

]−1
U†,

B = 2AUμ0,

(5.1)

where U is the unitary matrix defined in section 2. The matrices X and Y effect the general transformations
μ→ Xμ+ μ0 and ΣW →ΣW

′ = X�ΣWX + Y on the mean (μ) and covariance (ΣW) of the Wigner
function describing an input Gaussian state, and

Σt =
1

2

⎛
⎜⎜⎝

cosh t 0 sinh t 0
0 cosh t 0 − sinh t

sinh t 0 cosh t 0
0 − sinh t 0 cosh t

⎞
⎟⎟⎠ . (5.2)

The matrices X and Y may then alternatively be understood as functions of a complete set of relevant
operations, namely phase shift (φ), displacement (x0, p0), squeezing (r, θ), losses (χ < 1) and amplifications
(χ > 1), and couplings to a Gaussian reservoir (nT, aT, θT):

X = χS(r, θ)R(φ),

Y = |1 − χ|21/2 +
nt

2
R(θt)

�
(

1 + at 0
0 1 − at

)
R(θt),

R(φ) =

(
cosφ sinφ

− sinφ cosφ

)
,

S(r, θ) = R(θ)�
(

er 0
0 e−r

)
R(θ),

μ0 =

(
x0

p0

)
.

(5.3)
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Figure 5. Performances of all five input-state strategies in reconstructing the 9 independent parameters specified in
equation (3.3) for various groups of unknown Gaussian CPTP processes with heterodyne detection. The MSE is properly scaled
for comparison convenience with figure 6. We fixed K = 400, J = 6 and L = 1 to simulate the conditions of minimal and
low-energy input coherent states that are ideal for feasible tomography experiments. An average over all processes within each
group (with additional averaging over 10 random sets of input states for RML) is carried out to construct the respective 1/3-σ
error region for the group, where the fractional σ value is so chosen for proper illustration in the vertical logarithmic scale.

It should be noted that although the decomposition in (5.3) preserves the symplectic character of the
transformed covariance (see appendix C), it is not unique. Different Gaussian operations in various orders
can achieve the same physical effect, which is the reason we are reconstructing the more generally applicable
parameters A and B instead of those in (5.3), even though the latter are directly tied to actual experimental
configurations.

The main role of the decomposition in (5.3) is to ensure that the randomly generated processes used in
our numerical experiments are those that can be found in an experimental setting. The physical parameter
ranges may be fixed in the following way. The phase φ induced by the rotation operation R(φ) can be
completely arbitrary, φ ∈ [0, 2π), and so can the phase of squeezing θ ∈ [0,π/2]. The squeezing strength r
may be reasonably fixed to the range r ∈ [0, 1/3], which is between zero and approximately 6 dB that is
achievable in active research [51, 52]. Displacements in optical experiments are a consequence of interaction
with an external field, and may also be arbitrary. They also stand out from all the other parameters because
they do not transform the covariance matrix of the input state and can be well estimated by vacuum probe
states. For displacements to be comparable with the other operations carried out by the Gaussian process in
strength, we shall consider the ranges x0, p0 ∈ [−2, 2] corresponding to displacement of energy that is
slightly higher than that of squeezing. The gain of the channel χ represents both loss and amplification.
Loss, caused by stray reflections, detector inefficiencies and mode mismatch, is an ever-present
phenomenon in quantum optical experiments, but can often be curtailed leading to transmission rates
above 0.9 [53]. Amplification can be a result of nonlinear processes, but more often, it arises as a
consequence of feed-forward with non-unit gain [54, 55]. Like displacement, it can in principle be arbitrary,
but since strong amplification necessitates noise levels that destroy non-classical features of quantum states
[56], it is usually kept low. As a conservative choice, we pick χ ∈ (0.1, 1.5) to run all numerical
experiments. The last three terms collectively characterize the added noise, which has purely detrimental
effect—adding one unit of vacuum noise to both quadratures is generally sufficient to extinguish any
quantum properties of the state. The asymmetry coefficient aT ∈ [−1, 1] and phase θT ∈ [0,π/2] of the
added noise span the practical ranges. The added-noise coupling nT ∈ [0, 1] was chosen such that it
describes both quantum and classical channels.

Three groups of Gaussian CPTP processes are considered here, whose physical parameters are tabulated
in table 1. Monte Carlo simulations with these groups of processes are performed using heterodyne
measurements, and ML reconstructions are carried out in the original matrix parametrization (A, B) for
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Table 1. Physical parameters characterizing the five different groups of CPTP
processes invoked in the simulations. The wildcard ∗ denotes a randomly
generated value within the corresponding interval for the parameter, as stated in
section 5. Gp. 1 consists of the singular idle process (Φ[ρ] = ρ), Gp. 2 contains 6
random processes that each represents one basic type of Gaussian operation or
noise character (examples 5 and 6 respective coincide with additive symmetric and
asymmetric noise arising from a thermal bath). Finally, Gp. 3 consists of 10
completely arbitrary processes.

No. φ r θ x0 p0 χ nT aT θT Type

Gp. 1 1 0 0 0 0 0 1 0 0 0 Idle

1 ∗ 0 0 0 0 1 0 0 0 Phase shifter
2 0 ∗ ∗ 0 0 1 0 0 0 Squeezer
3 0 0 0 ∗ ∗ 1 0 0 0 Displacer

Gp. 2 4 0 0 0 0 0 ∗ 0 0 0 Gain
5 0 0 0 0 0 1 ∗ 0 0 Symmetric noise
6 0 0 0 0 0 1 ∗ ∗ ∗ Asymmetric noise

Gp. 3 1–10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Arbitrary

Figure 6. Performances of all three non-TP input-state strategies in reconstructing all 14 parameters (see equation (2.4)) for
various groups of unknown Gaussian CPTP processes with heterodyne detection. The MSE is properly scaled for comparison
convenience with figure 5 of the same values chosen for J, K and L. All error regions plotted here represent 1/3-σ standard
deviation.

convenience, the specific structure of which depends on whether the TP constraint is imposed or not. Three
operational input-state strategies, which are the random strategy with (RML (TP)) and without the TP
constraint (RML (non-TP)), and the geometrical strategy (GML (non-TP)), are evaluated by averaging the
MSEs for both the 9 independent CPTP parameters and all 14 Gaussian parameters (normalized with the
respective number of parameters) over all processes in each group. For benchmarking, the non-operational
best strategies that respectively minimize the asymptotic MSEs in (3.2) (BML (TP)) and (3.8) (BML
(non-TP)) are also plotted. Figures 5 and 6 show the performances of all five strategies. For all tested
Gaussian processes within the defined physical ranges (figures 5(a)–(c) and figures 6(a)–(c)), GML is the
optimal choice for efficient process-parameter reconstruction with low-energy coherent states (L = 1).

Interesting dynamics reveal themselves for the completely random CPTP processes in Gp. 3, where we
find that, again, GML beats all strategies when all parameters are arbitrarily chosen with the displacement
ranges −2 � x0, p0 � 2 obeyed. For the tested random processes, figures 5(c) and 6(c) highlight rather
comparable performances between GML and the optimal BML (TP). However, as shown in figure 7, if we
enlarge the displacement ranges, we find that the best TP input-state strategy can outperform the rest. On
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Figure 7. Performances of all input-state strategies for Gp. 3 random Gaussian CPTP processes with heterodyne detection.
(a) and (c) Small process displacements refer to those in the range −0.5 � x0, p0 � 0.5, and (b) and (d) large displacements refer
to those in −4 � x0, p0 � 4. All other figure specifications otherwise conform to those in figures 5 and 6.

the other hand, when these ranges are reduced, GML reconstructs process parameters with much better
accuracies than for default ranges as in figures 5(c) and 6(c). This leads us to conjecture that the additional
reconstruction bias introduced by the TP constraint, on top of that from the CP constraint, apparently has
beneficial merits for more correctly singling out estimators that are near the true CPTP Gaussian processes
that perform large displacing operations; whereas processes with stronger second-moment manipulating
features relative to first-moment displacements are still better characterized with non-TP input-state
strategies as they appear to be more robust against noise, in which case GML is the optimal choice.

6. Conclusion

There have been many studies related to achieving the quantum limits of parameter estimation. More
specifically, the optimal states and measurements corresponding to quantum bounds for process
tomography are generally difficult to implement in practical situations. We have taken a different route
instead and discovered an experimentally feasible and tomographically efficient way to characterize
Gaussian quantum processes. Using heterodyne measurements and input coherent states, we introduced a
simple strategy of constructing geometrical sets of input coherent states that effectively optimizes the
process parameters’ MSE. These geometrical input states are demonstrated to outperform the best
nonadaptive input-state strategy in terms of the MSE for typical CPTP processes that do not carry out large
displacement operations. This permits us to utilize coherent states of low energies as sufficient convenient
resources to achieve very low MSEs in the reconstructed process parameters.

We also observe that if the unknown Gaussian process has large displacing features on input states,
input-state strategies that imposes the TP constraint, on average, give more accurate process estimators than
the geometrical strategy where this constraint is relaxed. In the course of acquiring these results, we also
obtained asymptotic analytical expressions for the process-parameter MSE that were previously not
discussed in the quantum process tomography literature to the authors’ knowledge. These results confirm
that one can obtain highly accurate and analytically-certifiable Gaussian process reconstruction using
measurements that are feasible to realize in the laboratory and geometrically-optimized input states that can
be readily prepared with a well-controlled laser source. Our proposal therefore offers a competitive
advantage over-idealized optimal quantum schemes in terms of implementation and process reconstruction
quality.

The next natural step would be to investigate the extent of accuracy enhancement when the input
coherent states are squeezed. Preliminary studies show that the asymptotic MSE expressions with
heterodyning apparently become exceedingly complicated, such that there is currently no straightforward
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recipe to construct the geometrical sets of input states discussed here. Whether there exist output-state
measurements that are more compatible with squeezed input states in probing Gaussian processes other
than heterodyning is an interesting open question. A pertinent objective with squeezed input states is a
careful comparison of experimental resources with those concerning input coherent states. While the
primary focus in this article is on the phase-controlled laser intensity for input coherent states and total
number of sampling copies, additional resources required for squeezing these coherent states with respect to
a specific pair of observables (such as quadratures or polarization Stokes operators) also have to be
accounted for to conclude matters fairly.
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Appendix A. Trace-preserving Gaussian processes

The TP constraint imposed on a quantum process Φ is defined by the partial-trace relation tr2{ρΦ} = 1 for
its Choi–Jamiołkowski operator ρΦ. Using the overcompleteness property of the coherent states,∫

(dβ) |β〉 〈β| /π = 1, this partial-trace relation is expressed as

∫
(dβ′)

π
: exp

⎛
⎝−(a†,β′†)A

⎛
⎝ a

β′

⎞
⎠+ B†

⎛
⎝ a

β′

⎞
⎠+ c0

⎞
⎠: = 1, (A1)

where a = (a, a†)� is the column of ladder operators. The normal-order expression in (A1) may be
unraveled with two other overcomplete sets of coherent states,

∫
(dα)

π

∫
(dα′)

π
|α〉 e−

1
2 |α|2−

1
2 |α′|2+α∗α′ 〈α′|

∫
(dβ′)

π
exp

(
−( ˜̃α,β′†)A

(
α̃

β′

)
+ B†
(
α̃

β′

)
+ c0

)
= 1,

α̃ = (α′,α∗)�,

˜̃α = α̃�σxσx =̂

(
0 1
1 0

)
.

(A2)

The Gaussian integration in β ′ can be evaluated by using the general formula

∫
(dβ′)

π
e−a|β′|2+b1β

′+b2β
′∗+c1β

′2+c2β
′∗2

=
1√

a2 − 4c1c2
exp

(
ab1b2 + c1b2

2 + c2b2
1

a2 − 4c1c2

)
, (A3)

for Re{a} � |c1 + c∗2 | (see [44, 57]). At times, it is much easier to cope with the matrix form of the
integration: ∫

(dβ′)

π
e−β′†Mβ′+v�β′

=
1

2
√

det{M}
ev

�M−1σxv/4. (A4)
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After an application of (A4) and some reorganization of terms, we have

1 =

∫
(dα)

π

∫
(dα′)

π
|α〉 〈α|α′〉 e−

˜α̃Wα̃+y†α̃+w0 〈α′| ,

W = A1 − A2 A−1
3 A†

2,

y = b1 − A2A−1
3 b2,

w0 = c0 − log(2
√

det{A3}) +
1

4
b†

2A−1
3 b2.

(A5)

It therefore follows that the sufficient conditions for Φ to be TP are W = 0, y = 0 and w0 = 0. To show that
these are necessary conditions, we rewrite (A5) as

: e−a†Wa+y†a+w0 : = 1 (A6)

and make use of equations (1.11)–(1.13) in [58] to convert the normal-order form on the left-hand side of
(A6) into

: e−a†Wa+y†a: =
1

κ
e−a†WR1T−1R1a+y†R1T−1R1a, (A7)

where
κ = det

{
sinc(σyξ)

}−1/2
det{T}1/2 exp(η�(T − 1)ξ−1η),

T =
[
cos(σyξ) − iσz sin(σyξ)

]
[sinc(σyξ)]−1,

ξ = −R�
2 WR1, η� = y†R1,

R1 =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ , R2 =

⎛
⎜⎜⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠ .

(A8)

It is now obvious that the earlier sufficient conditions are also necessary for the Gaussian form on the
right-hand side of (A7) to be the identity operator, as R1T−1

1 R1 is non-singular.

Appendix B. Asymptotic statistics of logarithmic data

From the inversion solution x̂ = V−u, identifying the large-data characteristics concerning −log ν jk is
crucial in deriving the asymptotic behavior of the parameter MSE stated in (3.2). We first realize that in the
absence of systematic errors and under low fluctuation in γj, νjk ≡ γjν̃ jk → γjp̃jk in the regime N  1,
where

∑
k ν̃ jk = 1 constitute the actual (normalized) data collected after performing heterodyning on the

jth output state. Upon denoting Δjk = −log ν jk + log pjk, this invites us to expand ΔjkΔj′k′ that appears in

the MSE (x̂ − x)2 of interest about ν̃ jk − p̃jk to facilitate the statistical averaging.
We begin with the basic Taylor expansion

Δjk ≈ − 1

p̃jk
(ν̃ jk − p̃jk) +

1

2p̃2
jk

(ν̃ jk − p̃jk)2. (B1)

After binning the sampled data over the continuous phase space into an M × M (x, p) grid, the jth output Q
function may be analyzed in terms of an (K = M2)-outcome multinomial distribution defined by the
normalized {p̃jk} to arbitrarily high accuracy if M  1. Under multinomial statistics, we have the
well-known formula

(ν̃ jk − p̃jk)(ν̃ j′k′ − p̃j′k′) =
δj,j′

N
(δk,kp̃jk − p̃jkp̃j′k′), (B2)

for the covariance in view of the fact that data arising from different output states are statistically
independent.

The last detail that we need to pay attention to is the particular step in the inversion procedure for
obtaining the estimator x̂ where outcomes with zero counts are discarded in order for all the logarithms of
û to be well-defined. This implies that there is nonzero contributions to ΔjkΔj′k′ only when ν̃ jk > 0. The
probability for this occurring is 1 − (1 − p̃jk)N , which is found by noting that the probability
p0,jk = prob(njk = 0|{p̃jk}) that the frequency of the kth outcome is zero in a multinomial distribution is

p0,jk =
∑
{nl �=k}

N!∏
l′ �=k

njl′ !

∏
l′′ �=k

p̃
njl′′
jl′′ = (1 − p̃jk)N . (B3)

13



New J. Phys. 23 (2021) 063024 Y S Teo et al

With this,

ΔjkΔj′k′ ≈
(1 − p0,jk)(1 − p0,j′k′)

N
δj,j′

(
δk,k

p̃jk
− 1

)
, (B4)

where regularity is guaranteed, as it should, because of the limit

[1 − (1 − p̃jk)N]2

p̃jk
≈ N2p̃jk → 0, (B5)

as p̃jk → 0. The final expressions stated in (3.2) hence follow suit.
The derivation of the MSE expression for the ML reconstruction scheme is only slightly more technical.

In calculating the increment δ log L , variations in the respective parameter matrices and column lead to

δ log pjk = Tr
{

M†
1,jkδA3

}
+ Tr
{

(M2,jk + M†
2,jk)δA2

}
+ M†

3,jkδb2,

M1,jk = −zkz†k + A−1
3 A†

2αjα
†
j A2A−1

3 +
1

2
A−1

3 − A−1
3 b2α

†
j A2A−1

3 +
1

4
A−1

3 b2b†
2A−1

3 ,

M2,jk = −αjα
†
j A†

2A−1
3 +

1

2
A−1

3 b2α
†
j + σxαjz

†
k ,

M3,jk = zk + A−1
3 A2αj −

1

2
A−1

3 b2,

(B6)

where the gradient components M1,jk, M2,jk and M3,jk can be derived using the simple variational identities
δY−1 = −Y−1δYY−1 and δ det{Y} = det{Y}Tr

{
Y−1δY

}
for any invertible Y . At this stage, we introduce

the vectorization notation |Y〉〉 that refers to the column formed by stacking all columns of Y in the
computational-basis representation, and its dual |Y〉〉† ≡

〈〈
Y †∣∣. These higher-dimensional objects relate to

the trace inner product of two matrices Y1 and Y2 via Tr
{

Y †
1Y2

}
= 〈〈Y †

1|Y2〉〉. Next, we identify the

essential transformations to calculate the 9 × 1 δx:

|δA3>> = E1(δa2, δ(c2)r, δ(c2)i)
�,

|δA2>> = E2(δ(g1)r, δ(g1)i, δ(g2)r, δ(g2)i)
�,

δb2 = E3(δ(b2)r, δ(b2)i)
�,

E1 =

⎛
⎜⎜⎜⎜⎜⎝

1

2
0 0

0 −1 −i
0 −1 i
1

2
0 0

⎞
⎟⎟⎟⎟⎟⎠ , E2 =

1

2

⎛
⎜⎜⎝

0 0 1 i
1 i 0 0
1 −i 0 0
0 0 1 −i

⎞
⎟⎟⎠ ,

E3 =

(
1 i
1 −i

)
.

(B7)

All these auxiliary matrices form the components needed to establish equation (3.8).

Appendix C. Physical features of CPTP Gaussian processes

In phase-space representation, the second-moment matrix A′ of the process Q function exp (−R�A′R +
B′�R + c0) is related to the Q-function covariance ΣQ as A′ = Σ−1

Q /2, by definition. Since the Q function is
a Gaussian convolution of the Wigner function, this Q-function covariance can in turn be obtained from
the Wigner-function covariance ΣW in accordance with ΣQ = ΣW + 1/2. We may equivalently regard ΣW

as the output of a general covariance transformation on the otherwise idle channel covariance Σ0:

Σw = (1 ⊕ X�)Σ0(1 ⊕ X) + 0 ⊕ Y , (C1)

where X and Y precisely effect such a transformation on the covariance matrix Σ defined for the Gaussian
Wigner function of the input state inasmuch as ΣW

′ = X�ΣWX + Y . The matrices X and Y are functions
of the operational parameters defined in section 5. Although their functional forms may not be uniquely
established, the transformed covariance ΣW

′ must satisfy the inequality

Σ
′

w + iΩ/2 � 0 for Ω =

⎛
⎝ 0 1

−1 0

⎞
⎠ , (C2)
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which preserves Heisenberg’s uncertainty relations [11]. To confirm that the decomposition in (5.3) for X
and Y precisely obeys this inequality, recall that X = χSR is proportionally symplectic—X�ΩX = χ2R�

S�ΩSR = χ2 Ω. On the other hand, Y = |1 − χ2|1/2 + Y0 is a linear combination of a symplectic
multiple and a positive matrix Y0. Thus,

Σ
′

w + iΩ/2 = |1 − χ2|1/2 − i(χ2 − 1)Ω/2 + X�(Σ + iΩ/2)X + Y0, (C3)

where the final two matrices are clearly positive. The first two matrices combine to give a projector multiple
for any χ. In terms of the standard Pauli matrix σy, they are (1 − χ2)(1 − σy)/2 and (χ2 − 1)(1 + σy)/2
for the respective ranges χ < 1 and χ > 1.

Next, to derive the relation between the pairs (A, B) and (X, Y), we note that A′ = A′
0 for the idle

process (B′ = 0) is given by

A′
0 =

1

2

⎛
⎜⎜⎝

1 0 −1 0
0 1 0 1
−1 0 1 0
0 1 0 1

⎞
⎟⎟⎠ , (C4)

which is rank-2 due to the CPTP character (recall section 3.2). Moreover, A′
0 is a rank-2

projector—A′2
0 = A′

0.
There is therefore strictly no valid Σ0 for the idle process as A′

0 is not invertible in the usual sense. The
validity of (C1) would demand an understanding that A is truly invertible as soon as the TP constraint is
violated, and that all parameter variations in A should encounter no discontinuities when transiting
between non-TP and TP subspaces. Upon recognizing that the Choi–Jamiołkowski operator for the idle
channel is represented by the superposition

∑∞
n=0 |nn〉, we may consider a more physical realization using a

two-mode squeezed vacuum state of real finite squeezing strength ω  1:

Φidle =̂

∞∑
n,n′=0

|nn〉 〈n′n′| → Φidle
ω =̂

∞∑
n,n′=0

|nn〉 (tanhω)n+n′ 〈n′n′| . (C5)

It follows that the relevant ω-deformed Q function spells

QΦ(ω) = 〈α, z|Φidle
ω |α, z〉 = e−|α|2−|z|2+(αz+α∗z∗) tanhω , (C6)

from whence one reads off the full-rank matrices

A =
1

2

⎛
⎜⎜⎝

1 0 0 − tanhw

0 1 − tanhω 0
0 − tanhω 1 0

− tanhω 0 0 1

⎞
⎟⎟⎠ ,

A′ =
1

2

⎛
⎜⎜⎝

1 0 − tanhω 0
0 1 0 tanhω

− tanhω 0 1 0
0 tanhω 0 1

⎞
⎟⎟⎠ .

(C7)

Obviously, in the limit ω →∞, we revert to A′ → A′
0. Yet, any finite ω leads to a well-defined

Σt = (2A′)−1|t=2ω − 1/2 in equation (5.2) after the substitution t = 2ω. That the inverse of A′
0 for the idle

process is ill-defined should now be even clearer from limt→∞Σt = Σ0. Despite this divergence, the limit
expression in (5.1) must tend to a finite matrix A, as to be expected from the physical point of view.
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[57] Pěrina J 1984 Quantum Statistics of Linear and Nonlinear Optical Phenomena (Berlin: Springer)
[58] Agrawal G P and Mehta C L 1977 J. Math. Phys. 18 408

16

https://doi.org/10.1103/physreva.90.062310
https://doi.org/10.1103/physreva.90.062310
https://doi.org/10.1088/1367-2630/ab5dd3
https://doi.org/10.1088/1367-2630/ab5dd3
https://doi.org/10.1007/s00340-004-1574-7
https://doi.org/10.1007/s00340-004-1574-7
https://doi.org/10.1103/physrevlett.95.180503
https://doi.org/10.1103/physrevlett.95.180503
https://doi.org/10.1103/revmodphys.81.1301
https://doi.org/10.1103/revmodphys.81.1301
https://doi.org/10.1103/revmodphys.84.621
https://doi.org/10.1103/revmodphys.84.621
https://doi.org/10.1103/physrev.40.749
https://doi.org/10.1103/physrev.40.749
https://doi.org/10.1103/physrev.177.1882
https://doi.org/10.1103/physrev.177.1882
https://doi.org/10.1103/physreva.59.1820
https://doi.org/10.1103/physreva.59.1820
https://doi.org/10.1134/s0032946007010012
https://doi.org/10.1134/s0032946007010012
https://doi.org/10.1038/nphoton.2011.203
https://doi.org/10.1038/nphoton.2011.203
https://doi.org/10.1088/0031-8949/2011/t143/014016
https://doi.org/10.1088/0031-8949/2011/t143/014016
https://doi.org/10.1088/0034-4885/75/4/046001
https://doi.org/10.1088/0034-4885/75/4/046001
https://doi.org/10.1103/physreva.100.062308
https://doi.org/10.1103/physreva.100.062308
https://doi.org/10.1103/physrevlett.72.3439
https://doi.org/10.1103/physrevlett.72.3439
https://doi.org/10.1088/1751-8121/abb9ed
https://doi.org/10.1088/1751-8121/abb9ed
https://doi.org/10.1088/1751-8121/ab7f67
https://doi.org/10.1088/1751-8121/ab7f67
https://doi.org/10.1088/1751-8121/ab8ef3
https://doi.org/10.1088/1751-8121/ab8ef3
https://doi.org/10.1103/physreva.94.062313
https://doi.org/10.1103/physreva.94.062313
https://doi.org/10.1103/physreva.98.012114
https://doi.org/10.1103/physreva.98.012114
https://doi.org/10.1103/physrevlett.123.040602
https://doi.org/10.1103/physrevlett.123.040602
https://doi.org/10.1088/1367-2630/13/1/013006
https://doi.org/10.1088/1367-2630/13/1/013006
https://doi.org/10.1002/j.1538-7305.1965.tb01684.x
https://doi.org/10.1002/j.1538-7305.1965.tb01684.x
https://doi.org/10.1016/0375-9601(82)90359-0
https://doi.org/10.1016/0375-9601(82)90359-0
https://doi.org/10.1103/physrevlett.60.2447
https://doi.org/10.1103/physrevlett.60.2447
https://doi.org/10.1007/bf00731707
https://doi.org/10.1007/bf00731707
https://doi.org/10.1016/0375-9601(91)91015-6
https://doi.org/10.1016/0375-9601(91)91015-6
https://doi.org/10.1119/1.17657
https://doi.org/10.1119/1.17657
https://doi.org/10.1103/physrevlett.86.4423
https://doi.org/10.1103/physrevlett.86.4423
https://doi.org/10.26421/qic4.6-7-13
https://doi.org/10.26421/qic4.6-7-13
https://doi.org/10.1038/srep12289
https://doi.org/10.1038/srep12289
https://doi.org/10.1103/physrevlett.117.070801
https://doi.org/10.1103/physrevlett.117.070801
https://doi.org/10.1103/physreva.95.042322
https://doi.org/10.1103/physreva.95.042322
https://doi.org/10.1364/ol.8.000177
https://doi.org/10.1364/ol.8.000177
https://doi.org/10.1364/ol.8.000419
https://doi.org/10.1364/ol.8.000419
https://doi.org/10.1364/ol.9.000189
https://doi.org/10.1364/ol.9.000189
https://doi.org/10.1103/physreva.90.012115
https://doi.org/10.1103/physreva.90.012115
https://doi.org/10.1103/physreva.65.030302
https://doi.org/10.1103/physreva.65.030302
https://doi.org/10.1103/physreva.88.022101
https://doi.org/10.1103/physreva.88.022101
https://doi.org/10.1103/physreva.82.042307
https://doi.org/10.1103/physreva.82.042307
https://doi.org/10.1103/physreva.101.022334
https://doi.org/10.1103/physreva.101.022334
https://arxiv.org/abs/2102.09712
https://doi.org/10.1103/physreva.90.060302
https://doi.org/10.1103/physreva.90.060302
https://doi.org/10.1063/1.5142437
https://doi.org/10.1063/1.5142437
https://doi.org/10.1063/1.5100160
https://doi.org/10.1063/1.5100160
https://doi.org/10.1103/physrevlett.96.163602
https://doi.org/10.1103/physrevlett.96.163602
https://doi.org/10.1109/jstqe.2003.820908
https://doi.org/10.1109/jstqe.2003.820908
https://doi.org/10.1103/physreva.90.010301
https://doi.org/10.1103/physreva.90.010301
https://doi.org/10.1063/1.523283
https://doi.org/10.1063/1.523283

	Highly accurate Gaussian process tomography with geometrical sets of coherent states
	1.  Introduction
	2.  Characterization of Gaussian processes
	3.  Mean squared-error formulas
	3.1.  Relaxation of the TP constraint
	3.2.  Imposition of the TP constraint

	4.  Geometrical set of input coherent states
	5.  Performance on CPTP Gaussian processes
	6.  Conclusion
	Acknowledgments
	Data availability statement
	Appendix A.  Trace-preserving Gaussian processes
	Appendix B.  Asymptotic statistics of logarithmic data
	Appendix C.  Physical features of CPTP Gaussian processes
	ORCID iDs
	References


