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Teleportation of a multiphoton qubit using hybrid entanglement with a loss-tolerant carrier qubit
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It was shown that using multiphoton qubits, a nearly deterministic Bell-state measurement can be performed
with linear optics and on-off photodetectors [Phys. Rev. Lett. 114, 113603 (2015)]. However, multiphoton
qubits are generally more fragile than single-photon qubits under a lossy environment. In this paper, we
propose and analyze a scheme to teleport multiphoton-qubit information using hybrid entanglement with
a loss-tolerant carrier qubit. We consider three candidates for the carrier qubit: a coherent-state qubit, a
single-photon polarization qubit, and a vacuum-and-single-photon qubit. We find that teleportation with the
vacuum-and-single-photon qubit tolerates about 10 times greater photon losses than with the multiphoton qubit
of the photon number N � 4 in the high fidelity regime (F � 90%). The coherent-state qubit encoding may be
even better than the vacuum-and-single-photon qubit as the carrier when its amplitude is as small as α < 0.78.
We further point out that the fidelity of the teleported state by our scheme is determined by loss in the carrier
qubit while the success probability depends on loss only in the multiphoton qubit to be teleported. Our study
implies that the hybrid architecture may complement the weaknesses of each qubit encoding.

DOI: 10.1103/PhysRevA.102.012424

I. INTRODUCTION

Photonic qubits are particularly useful for quantum in-
formation transfer over a long distance. There are several
different ways to encode qubit information in traveling light
fields. Probably the most well-known type uses the horizontal
and vertical polarizations of a single photon (PSP), |H〉 and
|V 〉 [1,2], which is often called “dual-rail encoding.” Another
method is to utilize the vacuum and the single-photon (VSP)
states, |0〉 and |1〉, called “single-rail encoding,” with its own
merit [3,4]. Not only restricted to the discrete qubit encod-
ing, one can alternatively utilize continuous-variable-based
qubit encodings such as one with two coherent states with
opposite phases, | ± α〉, where ±α are coherent amplitudes.
This approach enables one to perform nearly deterministic
Bell-state measurements [5,6] and efficient gate operations
for quantum computing [7–9]. Hybrid architectures of these
qubit encodings have also been explored to combine their
advantages [10–19].

Recently, Lee et al. suggested multiphoton encoding
with the horizontal and vertical polarizations of N photons,
{|H〉⊗N = ⊗N

i=1 |H〉i, |V 〉⊗N = ⊗N
i=1 |V 〉i}, in order to over-

come the limitation of Bell-state measurement using linear
optics [20]. Using linear optics with single-photon qubits,
only two among four Bell states can be discriminated, and
the success probability of Bell measurement is generally
limited to 1/2 [21,22]. This affects the success probabilities
of gate operations for linear optics quantum computing [1]
depending on the gate teleportation scheme [23], which is
an obstacle against the implementation of scalable optical
quantum computation. There are a number of proposals to
circumvent this limitation using ancillary states or operations
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[24–27], coherent-state qubits [5], hybrid qubits [11], and
multiphoton qubits [20]. Among them, the multiphoton en-
coding achieves a nearly deterministic Bell-state measurement
with an average success probability 1 − 2−N , where N is the
number of photons per qubit [20]. Recently, it was shown
that the multiphoton encoding is particularly advantageous for
quantum communication [28].

A multiphoton qubit is generally in the form of
the Greenberger-Horne-Zeilinger (GHZ) state, i.e., |ψ〉 =
a|H〉⊗N + b|V 〉⊗N . The GHZ-type state is fragile under pho-
ton loss [29,30], and this makes it hard to transmit quantum
information over long distance via the multiphoton qubit.
One solution to this problem is to use the parity encoding
with quantum error correction that corrects photon loss errors
[28,31–33]. However, such a qubit encoding has a complex
structure making it generally hard to generate the desired
logical qubit and Bell states (the scheme and its success rate
are discussed in Ref. [33]).

In this paper, we suggest and investigate a teleportation
scheme via hybrid entanglement between a multiphoton qubit
and another type of optical qubit serving as a loss-tolerant
carrier as depicted in Fig. 1. Our strategy is to send the loss-
tolerant carrier qubit through the noisy environment while
storing the multiphoton qubit as intact as one can. A similar
type of approach was used for loss-tolerant quantum relay
for a coherent-state qubit via an asymmetric entangled co-
herent state [34]. We consider three types of carrier qubits:
a coherent-state qubit, a PSP qubit, and a VSP qubit. We
investigate quantum fidelities for the output states and success
probabilities of quantum teleportation under photon loss. The
success probability of the Bell measurement is affected only
by photon loss on the multiphoton qubit but the fidelity is
determined by properties on the carrier qubit. It shall be
shown that any choice among the three candidates can im-
prove the fidelity. We mainly consider the photon number for
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FIG. 1. Schematic of quantum information transmission of a
multiphoton qubit. (a) A multiphoton qubit |ψin〉 is directly trans-
mitted. (b) The qubit encoding is changed to the carrier qubit by
teleportation with a hybrid entangled state. The classical information
from the Bell-state measurement (BSM) is transmitted via a classical
channel.

a multiphoton qubit as N = 4 which was identified as the
optimal number for fault-tolerant quantum computing using
the multiphoton qubits, the seven-qubit Steane code and the
telecorrection protocol [20,35]. Remarkably, the VSP qubit
in hybrid entanglement serves as a highly efficient carrier
showing about 10 times better tolerance to photon loss than
the direct transmission of the multiphoton qubit when the
fidelity is larger than 0.9. The coherent-state qubit encoding
can be even better than the VSP qubit as the carrier when
its amplitude is as small as α < 0.78. Our study may be
useful for designing and building up loss-tolerant quantum
communication networks.

This paper is organized as follows. In Sec. II, we describe
the photon-loss model used in the paper. In Sec. III, we
discuss the direct transmission of a multiphoton qubit over
a lossy environment. In Sec. IV, we drive the dynamics of
hybrid entangled states, compute the entanglement within the
shared state, and analyze the teleportation method with hy-
brid entanglement in terms of quantum fidelities and success
probabilities. In Sec. V, we briefly investigate the generation
schemes for the required hybrid entangled states. We provide
conclusions and remarks in Sec. VI.

II. PHOTON-LOSS MODEL

We describe the environment with the photon-loss model
by the Master equation under the Born-Markov approximation
with the zero temperature [36]:

∂ρ

∂τ
= γ

N∑
i=1

(
âiρâ†

i − 1

2
â†

i âiρ − 1

2
ρâ†

i âi

)
, (1)

where âi(â
†
i ) represents the annihilation (creation) operator of

mode i and γ is the decay constant determined by the coupling
strength of the system and the environment. This evolution
of a density operator is equivalently described by the beam-
splitter model where each input mode is independently mixed
with a vacuum state at a beam splitter with transmittance t =
e−γ τ/2 and reflectance r = √

1 − t2 [37]:(
â
b̂

)
→

(
â′

b̂′

)
=

(
t −r
r t

)(
â
b̂

)
, (2)

where â(b̂) is the annihilation operator on system (ancillary)
mode. The output state is then obtained by tracing out the
ancillary modes. Considering the evolution of single photon
state |1〉〈1| → t2|1〉〈1| + r2|0〉〈0|, we refer to the square of the
reflectance r2 as the photon-loss rate η.

III. DIRECT TRANSMISSION

Suppose that we directly transmit a multiphoton qubit of N
photons |ψin〉 = a|H〉⊗N + b|V 〉⊗N over a lossy environment.
The output qubit of the transmission is obtained using Eq. (2)
as

ρout (t ) = |a|2[t2|H〉〈H | + (1 − t2)|0〉〈0|]⊗N

+ |b|2[t2|V 〉〈V | + (1 − t2)|0〉〈0|]⊗N

+ t2N [ab∗(|H〉〈V |)⊗N + H.c.]

= t2N |ψin〉〈ψin| + (1 − t2N )ρ loss,

where H.c. denotes the Hermitian conjugate and

ρ loss =
N∑

k=1

(t2)N−k (1 − t2)k
∑

P∈Perm(N,k)

× {|a|2P[(|H〉〈H |)⊗N−k ⊗ (|0〉〈0|)⊗k]

+ |b|2P[(|V 〉〈V |)⊗N−k ⊗ (|0〉〈0|)⊗k]} (3)

is the loss term with one or more photons lost. We denote
Perm(N, k) as the set of permutations of tensor products
with the number of elements (N

k ), which represents the cases
that photons in k modes within the total N modes are lost
and photons in N − k modes remain in the polarization
state. It is straightforward to see that ρ loss is orthogonal
to |ψin〉. The quality of the output state is measured by
fidelity F between the input and output states that is
defined as F (t ) = 〈ψin|ρout (t )|ψin〉. The fidelity for the
direct transmission is then obtained as

F dir = t2N = (1 − η)N .

This shows that the multiphoton qubit becomes more fragile
when photon number N per qubit becomes larger. Although
the success probability of the Bell-state measurement using
multiphoton qubits approaches the unity as N gets larger
[20], this fragility may be a weak point of the multiphoton
encoding when it is applied to quantum information transfer.

IV. TELEPORTATION WITH HYBRID ENTANGLEMENT

In our scheme, a hybrid entangled state between a multi-
photon qubit and a carrier qubit is used as the quantum chan-
nel, where the carrier qubit is loss-tolerant compared to the
multiphoton qubit. In what follows, we examine a coherent-
state qubit, a PSP qubit and a VSP qubit as candidates for the
carrier qubit.

A. Loss on hybrid entangled states

For the teleportation between two different types of qubits,
the sender and the receiver need to share a hybrid entan-
gled state between a multiphoton qubit and a carrier qubit.
The entangled state for the quantum channel is expressed as
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|ψhyb〉 = 1√
2
(|H〉⊗N |C0〉 + |V 〉⊗N |C1〉), where |C0〉 and |C1〉

are the basis states for the carrier qubit. We consider the three
types of hybrid entangled states,

|ψmc〉 = 1√
2

(|H〉⊗N |α〉 + |V 〉⊗N | − α〉),

|ψmp〉 = 1√
2

(|H〉⊗N |H〉 + |V 〉⊗N |V 〉),

|ψms〉 = 1√
2

(|H〉⊗N |0〉 + |V 〉⊗N |1〉), (4)

where subscripts m, c, p, and s denote multiphoton qubit,
coherent-state qubit, PSP qubit, and VSP qubit, respectively.

We assume an asymmetric environment such that the trans-
mittance (reflectance) of every mode of the multiphoton qubit
is tM (rM) and that of the carrier qubit is tC (rC). Using Eq. (2),
the shared hybrid entangled states are obtained as

ρmc(tM, tC ) = t2N
M

2
{(|H〉〈H |)⊗N ⊗ |tCα〉〈tCα|

+ (|V 〉〈V |)⊗N ⊗ | − tCα〉〈−tCα|
+ e−2α2r2

C [(|H〉〈V |)⊗N ⊗ |tCα〉〈−tCα| + H.c.]}
+ (

1 − t2N
M

)
ρ loss

mc , (5)

ρmp(tM, tC ) = t2N
M

{
t2
C |ψmp〉〈ψmp| + r2

C[(|H〉〈H |)⊗N

+ (|V 〉〈V |)⊗N ] ⊗ |0〉〈0|} + (
1 − t2N

M

)
ρ loss

mp ,

(6)

and

ρms(tM, tC ) = t2N
M

2

{
(|H〉〈H |)⊗N ⊗ |0〉〈0|

+ (|V 〉〈V |)⊗N ⊗ (
t2
C |1〉〈1| + r2

C |0〉〈0|)
+ tC[(|H〉〈V |)⊗N ⊗ |0〉〈1| + H.c.]

}
+ (

1 − t2N
M

)
ρ loss

ms , (7)

where the loss terms ρ loss represent the events where one or
more photons are lost from the multiphoton qubit. Explicit
expressions of the loss terms are

ρ loss
mc = 1

2

N∑
k=1

(
t2
M

)N−k(
1 − t2

M

)k ∑
P∈Perm(N,k)

× {P[(|H〉〈H |)⊗N−k ⊗ (|0〉〈0|)⊗k]

× ⊗|tCα〉〈tCα|
+ P[(|V 〉〈V |)⊗N−k ⊗ (|0〉〈0|)⊗k]

⊗ | − tCα〉〈−tCα|},

ρ loss
mp = 1

2

N∑
k=1

(
t2
M

)N−k(
1 − t2

M

)k ∑
P∈Perm(N,k)

× {
P[(|H〉〈H |)⊗N−k ⊗ (|0〉〈0|)⊗k]

× ⊗(
t2
C |H〉〈H | + r2

C |0〉〈0|)
+ P[(|V 〉〈V |)⊗N−k ⊗ (|0〉〈0|)⊗k]

× ⊗(
t2
C |V 〉〈V | + r2

C |0〉〈0|)},

and

ρ loss
ms = 1

2

N∑
k=1

(
t2
M

)N−k(
1 − t2

M

)k ∑
P∈Perm(N,k)

× {
P[(|H〉〈H |)⊗N−k ⊗ (|0〉〈0|)⊗k]

× ⊗(
t2
C |1〉〈1| + r2

C |0〉〈0|)
+ P[(|V 〉〈V |)⊗N−k ⊗ (|0〉〈0|)⊗k] ⊗ |0〉〈0|}.

All these terms do not contain entanglement. This is attributed
to the fact that when a photon from the multiphoton qubit
is lost, the resulting multiphoton qubit effectively becomes
completely dephased.

B. Amount of entanglement in hybrid entangled states

In this subsection, we investigate the amount of entangle-
ment contained in the hybrid entangled states. Entanglement
in any bipartite mixed state can be measured by the negativity
N (ρ) [38], which is defined as

N (ρ) ≡ ‖ρTA‖ − 1

2
=

∑
λi<0

|λi|, (8)

where ρTA is the partial transpose of ρ with respect to subsys-
tem A, ‖ · ‖ is the trace norm, and {λi} is the set of eigenvalues
of ρTA . The negativity is an entanglement measure, i.e., it
does not increase under any local operations and classical
communications.

Using Eq. (8), analytical expressions of the negativity of
the hybrid entangled states can be obtained from Eqs. (5),
(6), and (7). Although |tCα〉 and | − tCα〉 in Eq. (5) are not
orthogonal, they are two linear independent state vectors that
can be treated in a two-dimensional Hilbert space as done
in Ref. [5]. Further, since the loss terms ρ loss are orthogonal
to the remaining terms and contain no entanglement, we can
consider only the remaining terms in a 2 ⊗ 2 dimensional
Hilbert space. The degrees of negativity are then obtained as

N (ρmc) = t2N
M

4
√

1 − e−4t2
Cα2

× [√
1 − 2

(
2e−4t2

Cα2 − 1
)
e−2r2

Cα2 + e−4r2
Cα2

+ e−2r2
Cα2 − 1

]
,

N (ρmp) =N (ρms) = 1

2
t2N
M t2

C .

Here, the negativities of ρmp and ρms are the same, because
entanglement disappears when at least one photon is definitely
lost in both cases.

Figure 2 shows the dependence of the negativity on the
photon loss rates of both the sides, ηM = 1 − t2

M and ηC =
1 − t2

C . It is generally shown that the dependence is sharper
for the loss rate ηM of the multiphoton qubit than that of the
carrier qubit ηC . This implies the desirable property that en-
tanglement in the hybrid entangled state is more robust to the
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FIG. 2. Degrees of entanglement (negativity) against the photon-
loss rate for the multiphoton qubit ηM = 1 − t2

M and for the carrier
qubit ηC = 1 − t2

C of hybrid entanglement between (a) the multipho-
ton qubit and the coherent-state qubit ρmc, (b) the multiphoton qubit
and the PSP qubit ρmp, and the multiphoton qubit and the VSP qubit
ρms. The number of photons N for the multiphoton qubit is set to
be N = 4. The amplitude of the coherent-state qubit is chosen to be
α = 1.2.

photon loss on the carrier qubit than that on the multiphoton
qubit.

C. Teleportation fidelities

We now consider quantum teleportation with the hybrid
entangled states ρmc, ρmp, and ρms as the quantum channel.
We employ the Bell-state measurement scheme for the multi-
photon qubits proposed in Ref. [20]. We present its schematic
diagram in Fig. 3. In the multiphoton qubit encoding, the Bell
states are defined as

∣∣BN
1,2

〉 = 1√
2

(|H〉⊗N |H〉⊗N ± |V 〉⊗N |V 〉⊗N ),

∣∣BN
3,4

〉 = 1√
2

(|H〉⊗N |V 〉⊗N ± |V 〉⊗N |H〉⊗N ), (9)

where ± is chosen in the same order of the two number
labels of |BN

i 〉 in each line. Using only linear optics and on-off

FIG. 3. Schematic of the Bell-state measurement for
multiphoton-qubit encoding using beam splitters (BSs), Half-wave
plates (HWPs), and on-off photodetectors (PDs). Two on-off
photodetectors and one polarizing beam splitter (PBS) are used
to measure the polarization of a single photon. The mode labels
1, 2, ..., N (1′, 2′, ..., N ′) represent the corresponding modes of the
first (second) multiphoton qubit.

photodetectors, |BN
2 〉 and |BN

4 〉 are identified unambiguously
while |BN

1 〉 and |BN
3 〉 with probability 1 − 1/2N−1 [20].

When one or more photons are lost from the muliphoton
qubit in hybrid entangled states, there is a chance that |BK

i 〉
with K < N is detected. However, although we accept these
events as success, the fidelity is not improved. We pointed
out earlier that ρ loss does not contain entanglement due to the
dephasing induced by photon loss. The teleportation fidelity
between the input and output qubits cannot then exceed the
classical limit, which we will discuss further at the end of
this section. We thus take only the detection of N-photon Bell
states as the successful events.

Similarly to the standard teleportation scheme, a sender
jointly measures the input state of a multiphoton qubit |ψin〉 =
a|H〉⊗N + b|V 〉⊗N and the multiphoton-qubit part of the hy-
brid entangled state on the multiphoton Bell-state basis in
Eq. (9). After the Bell-state measurement with outcome i, the
input state |ψin〉 and the hybird entangled state under photon
loss, ρhyb(tM, tC ), are projected to

ρout,i(tM, tC ) =
〈
BN

i

∣∣(|ψin〉〈ψin| ⊗ ρhyb(tM, tC ))
∣∣BN

i

〉
tr
[∣∣BN

i

〉〈
BN

i

∣∣(ψin ⊗ ρhyb(tM, tC ))
] . (10)

With the heralded measurement outcome i, the receiver may
recover the state ρout = ρout,1 by a proper local unitary based
on the outcome i.

Before proceeding further, we point out that the out-
put state does not depend on loss ηM on the multiphoton-
qubit part. The hybrid entangled state can be represented as
ρhyb(tM, tC ) = t2N

M σhyb(tC ) + ρ loss, where σhyb(tC ) corresponds
to the state when no photon is lost from the multiphoton
qubit. The facter t2N

M indicates that this event happens with
a probability of t2N

M = (1 − ηM )N . Since the loss term ρ loss is
orthogonal to the qubit basis {|H〉⊗N , |V 〉⊗N }, only σhyb(tC )
remains after the projection on |Bi

N 〉. The factor t2N
M in both

the numerator and the denominator of Eq. (10) then cancels
out. Thus, ρout (tM, tC ) is independent of tM so that it can be
represented as ρout (tC ).

We set the target state of the teleportation to be |ψt〉 =
a|C0〉 + b|C1〉. The quantum fidelity between the output state
ρout and the target state |ψt〉 is defined as

F (tC ) = 〈ψt|ρout (tC )|ψt〉.

Now, we examine the candidates of the carrier qubit. First,
we consider quantum teleportation from a multiphoton qubit
to a coherent-state qubit. When |BN

1 〉 is detected, we can
express the output qubits after Bell-state measurement by

ρm→c
out,1 = M+

[|a|2|tCα〉〈tCα| + |b|2| − tCα〉〈−tCα|
+ e−2α2r2

C (ab∗|tCα〉〈−tCα| + H.c.)
]
,

where M+ = [1 + e−2α2
(ab∗ + a∗b)]−1. When |BN

3 〉 is de-
tected, the output qubit undergoes a bit flip as ρm→c

out,3 =
Xcρ

m→c
out,1 X †

c with Xc : | ± tCα〉 → | ∓ tCα〉. This effect can be
corrected by applying a π -phase shifter. However, when |BN

2 〉
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is detected, the output qubit becomes

ρm→c
out,2 = M−

[|a|2|tCα〉〈tCα| + |b|2| − tCα〉〈−tCα|
− e−2α2r2

C (ab∗|tCα〉〈−tCα〉 + H.c.)
]
,

which cannot be corrected to ρm→c
out,1 by applying a unitary

operation because of the nonorthogonality of the coherent-
state qubit basis. In other words, the required operation
Zc : | ± tCα〉 → ±| ± tCα〉 cannot be performed in a fully
deterministic way. There are, however, approximate meth-
ods to perform the required Zc operation using the dis-
placement operation [5,7] or the gate teleportation protocol
[8].

We also note that the transformation of ρm→c
out,4 → ρm→c

out,2 can
be carried out by the Xc gate. Therefore, the output qubit is
one of the nonexchangable states, ρm→c

out,1 or ρm→c
out,2 . We denote

these two states as ρm→c
out,±. Nevertheless, the measurement out-

come i heralds the transformation of the output states. Thus,
the output qubit has the quantum information of the initial
qubit.

Given the transmittance tC , we take the dynamical qubit
basis {|tCα〉, | − tCα〉} as the output qubit basis. As an analogy
of the input state, we set the two target states as∣∣ψm→c

t,±
〉 = N±(a|tCα〉 ± b| − tCα〉),

where N± = {1 ± (ab∗ + a∗b) exp(−2t2α2)}−1/2 are the nor-
malization constants. Then, we obtain the fidelity between
ρm→c

out,± and |ψm→c
t,± 〉, respectively:

F m→c
± (tC ; a, b) = 〈

ψm→c
t,±

∣∣ρm→c
out,±

∣∣ψm→c
t,±

〉
= M±N2

±
[|a|2|a ± bS|2 + |b|2|aS ± b|2

± 2e−2α2r2
C Re[ab∗(a∗ ± b∗S)(aS ± b)]

]
,

where S = 〈tCα| − tCα〉 = e−2t2
Cα2

is the overlap between the
output coherent-state qubit basis states. We now compute the
average fidelity over all input states. We use a parametrization
a = cos(θ/2) exp(iφ/2) and b = sin(θ/2) exp(−iφ/2) with
uniformly random sampling on the Bloch sphere. Note that
F m→c

+ (tC ; a, b) = F m→c
− (tC ; a,−b), so the average fidelities of

both cases are equal. Finally, we get the following integration:

F m→c
ave (tC ) = 〈F m→c

± (tC ; a, b)〉θ,φ

= 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφF m→c

± (tC ; θ, φ). (11)

The analytic expression of this integration is given in
Ref. [10] but is too lengthy to present here. We show the aver-
age fidelity varying amplitude α of the coherent-state qubit in
Fig. 4(a). The plot shows that as the mean photon number α2

is smaller, the average fidelity approaches the unity. However,
a small value of α makes the overlap between | ± α〉 large
so that its ability for quantum information processing (for
example, the probability to perform Zc gate) becomes low.

In the case of the quantum teleportation from multiphoton
qubit to PSP qubit, we use the hybrid entangled state in Eq.
(6). Since all single-qubit operations can be implemented in
linear optics [1,2], we set the unique target state: |ψm→p

t 〉 =
a|H〉 + b|V 〉. When a Bell state |BN

1 〉 is detected, the output

FIG. 4. Average fidelities of direct transmission with N = 4
(black solid) and hybrid architectures with different carrier qubits:
coherent state qubits (denoted by c) for α = 1.2 (yellow dot-dashed)
and α = 1.6 (red dot-dot-dashed), a PSP qubit (p, green dashed),
and a VSP qubit (s, blue dotted) against the photon-loss rate for the
carrier-qubit part ηC = 1 − t2

C . The gray horizontal dotted line is the
classical limit Fcl = 2/3.

state is

ρ
m→p
out,1 = t2

C

(|a|2|H〉〈H | + |b|2|V 〉〈V |
+ ab∗|H〉〈V | + a∗b|V 〉〈H |) + r2

C |0〉〈0|
= t2

C |ψm→p
t 〉〈ψm→p

t | + r2
C |0〉〈0|.

When the other Bell states are detected, after receiving the
measurement outcome, the receiver can recover the target
state by a proper single-qubit unitary operation. The fidelity
is then readily obtained as

F m→p(tC ) = t2
C .

The last case is teleportation from a multiphoton qubit to a
VSP qubit with the entangled state in Eq. (7). In the case of the
VSP qubit, the situation is similar to the case of the coherent-
state qubit. While the Z operation is deterministic in linear
optics, the X operation, X : |0〉 → |1〉, is probabilistic [4].
Therefore, we distinguish the output qubit of |BN

1 〉 detection,
denoting ρm→s

out,+, from |BN
2 〉, denoting ρm→s

out,−. The output qubit
when |BN

1 〉 is detected is obtained similarly as

ρm→s
out,+ = (|a|2 + |b|2r2

C

)|0〉〈0| + |b|2t2
C |1〉〈1|

+ (ab∗tC |0〉〈1| + H.c.).

We then obtain the input-dependent fidelity as

F m→s(tC ) = |a|4 + |a|2|b|2(1 + tC ) + |b|4t2
C .

In this case, the average fidelity has a simple analytic expres-
sion:

F m→s
ave (tC ) = 1

3 t2
C + 1

6 tC + 1
2 .

We need to consider the classical fidelity Fcl that is defined
as the maximum average fidelity obtained by teleportation
protocol without entanglement. It is well known that Fcl =
2/3 for a qubit with an orthonormal basis [39]. If we use the
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TABLE I. Maximum photon-loss rates for the carrier qubit ηC ,
required to reach the fidelity of 99.9%, 99%, and 90% with the
coherent-state (CS) qubit, the PSP qubit, and the VSP qubit. The
direct transmission (DT) of the multiphoton qubit with the photon
number N = 4 is given for comparison under the same photon-loss
rate.

CS

F DT 1.2 1.6 PSP VSP

99.9% 0.025 0.10 0.059 0.10 0.24
99% 0.25 1.1 0.59 1.0 2.4 (×10−2)
90% 2.6 12 7.0 10 24

coherent-state qubit of | ± α〉 as the carrier qubit, however,
F m→c

cl is

F m→c
cl (tC ) = S + 3S2 − (S4 − 1)

4S3
sinh−1

[
S√

1 − S2

]
,

where S = 〈−tCα|tCα〉 = e−2t2
Cα2

[10]. In this case, the clas-
sical limit becomes larger 2/3 due to the nonorthogonality S.
Of course, F m→c

cl converges to 2/3 as S → 0. In Fig. 4, the
average fidelity F m→c

cl is approximately 2/3 for the area of
α � 1.2 and η � 0.5.

In Fig. 4, we present the average fidelities between the
output qubit and the target state against the photon-loss rate
ηC for the different types of the carrier qubit. For the coherent-
state qubit, we choose amplitudes of α = 1.2 and 1.6, which
are approximately the minimum and optimal amplitudes, re-
spectively, for the fault-tolerant quantum computing using the
seven-qubit Steane code [9]. Obvious, better fidelities over
the direct transmission can be obtained using the teleportation
protocol. Among the carrier qubits, the VSP qubit is better
than the PSP qubit. The reason for this can be understood
as follows. When photon loss occurs, the PSP qubit gets out
of the original qubit space because of the vacuum portion.
However, the VSP qubit remains in the original qubit space
even under the photon loss.

The comparison between the coherent-state qubit and the
other types of qubits depends on amplitude α. With small
values of α, the coherent-state qubit shows higher average
fidelity than the others. We numerically obtain that, when α <

1.23 (α < 0.78), the average fidelity of the corresponding
coherent-state qubit is higher than that of the PSP qubit (the
VSP qubit) for any rates of photon loss. However, one should
note that the overlap between two coherent states | ± α〉 is
〈α|−α〉 = exp(−2α2) ≈ 0.0485 (0.296) for α = 1.23 (0.78),
which could be a negative factor depending on the task to
perform.

All-optical quantum computing schemes have tolerable
limits of photon loss rates for fault tolerance [9,11,40–43].
In Table I, we summarize the maximum photon-loss rates for
the carrier qubit ηC , which can be tolerated while preserving
the fidelity to be 99.9%, 99%, and 90% within our hybrid
architectures. In this high fidelity regime, the VSP qubit
tolerates approximately 10 times larger photon loss than the
direct transmission.

D. Success probabilities

Only when the input qubits are in the logical qubit basis
and the identification between |BN

1 〉 and |BN
3 〉 is successful,

the Bell-state measurement is successful. Let us denote qi

as the probability of the successful identification of |BN
i 〉

when |BN
i 〉 is given. This qi varies according to the Bell-state

measurement scheme, and we follow the Bell-state measure-
ment scheme of multiphoton qubit that qi = 1 − 1/2N−1 for
i = odd and qi = 1 for i = even [20]. The success probability
of the teleportation with the hybrid entangled state ρhyb is then
given as

P =
∑

i

qitr
[∣∣BN

i

〉
SS′

〈
BN

i

∣∣(|ψin〉S〈ψin| ⊗ (ρhyb)S′R)
]
, (12)

where S and S’ represents the sender’s modes and R does the
receiver’s mode. Note that the success probability P does not
depend on tC since

tr
[∣∣BN

i

〉
SS′

〈
BN

i

∣∣(|ψin〉S〈ψin| ⊗ (ρhyb)S′R)
]

= trSS′
[∣∣BN

i

〉
SS′

〈
BN

i

∣∣(|ψin〉S〈ψin| ⊗ (trRρhyb)S′ )
]
,

and trRρhyb(tM, tC ) = trR(�tM ⊗ I )(|ψhyb〉〈ψhyb|) from the
trace-preserving property of �t where R represents the re-
ceiver’s mode and �tM is the quantum channel of photon loss
with transmittance tM .

Now, we examine the success probability for each carrier
qubit. For the case of teleportation to a coherent-state qubit
with ρmc in Eq. (5), the success probability of the teleporta-
tion, Pm→c, is obtained using Eq. (12) as

Pm→c(tM, N ; a, b)

= t2N
M

[(
1 − 1

2N

)
− e−2α2

2N
(ab∗ + a∗b)

]
.

The last term is from the nonorthogonality of the coherent
state qubit. We also obtain the averaged success probability
Pm→c

ave by averaging Pm→c(tM, N ; a, b) on all possible input
states with the same parametrization of Eq. (11) as

Pm→c
ave (tM, N ) = t2N

M

(
1 − 1

2N

)
.

For the discrete variable qubits, we have trR(�tM ⊗
I )|ψhyb〉〈ψhyb| = �tM (I/2). Therefore, without dependence on
the carrier qubit, we obtain

P(tM, N ) = t2N
M

(
1 − 1

2N

)
. (13)

In Fig. 5, we plot the success probability P(tM, N ) as a
function of the photon loss rate for the multiphoton qubit ηM

by changing the photon number N of the multiphoton qubit.
The success probability in Eq. (13) shows an interesting fea-
ture: While the success probability of Bell-state measurement
increases with N for tM = 1, if tM is less than 1, larger N rather
makes the success probability lower. This supports the general
belief that a “macroscopic object” is fragile under loss if we
assume the larger N means the qubit is more “macroscopic”
[44]. It is straightforward to obtain the optimal number of
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FIG. 5. Success probability Psuccess of the multiphoton Bell-state
measurement against the photon-loss rate for the multiphoton qubit
ηM = 1 − t2

M for photon numbers of N = 1, 2, 3, and 4.

photons per a multiphoton qubit, Nopt = �log2(1 + 1/ηM )�,
that maximizes the success probability P(tM , N ).

V. GENERATION OF MULTIPHOTON HYBRID
ENTANGLED STATES

In this section, we discuss how to generate the re-
quired hybrid entangled states |ψmc〉, |ψmp〉, and |ψms〉 in
Eq. (4). We may start with a GHZ state of PSP qubits:
|GHZ(N )〉 = (|H〉⊗N + |V 〉⊗N )/

√
2. It is then clear that

|ψmp〉 = (|H〉⊗N |H〉 + |V 〉⊗N |V 〉)/
√

2 is simply a GHZ state
with N + 1 modes |GHZ(N + 1)〉. In addition to a GHZ state
of N + 1 photons |GHZ(N + 1)〉, we need to find out methods
to convert one of the polarization qubits in the GHZ state to
the desired carrier qubit by a conversion gate V = |C0〉〈H | +
|C1〉〈V |. In this way, desired hybrid entangled states may be
obtained.

There are a number of proposals for the generation of the
GHZ state. A linear optical setup, called the type-I fusion
gate, is designed to fuse |GHZ(N )〉 and |GHZ(2)〉 to generate
|GHZ(N + 1)〉 with a probability of 50% [45]. In a similar
method (Supplemental Material of Ref. [46]), six single pho-
tons are fused by the fusion gate followed by a Bell-state pro-
jection to generate |GHZ(3)〉. The Bell-state measurements
on copies of |GHZ(3)〉 also provide a probabilistic method to
generate a GHZ state with an arbitrary high photon number
[42,46]. Using the Bell-state measurements, this method is
made robust to photon loss [46]. Alternatively, a method based
on a nonlinear interaction, called coherent photon conversion,
was proposed to implement a deterministic photon-doubling
gate |HH〉〈H | + |VV 〉〈V | [47]. So far, the multiphoton GHZ-
type entanglement has been experimentally observed with
post-selection in most experiments (for example, [48–52]),
which cannot be used as a teleportation channel. Nevertheless,
a direct generation of a three-photon GHZ state was experi-
mentally performed [53].

There are several methods to convert one PSP qubit to
the VSP qubit [54–56]. The conversion gate Vp→s = |0〉〈H | +
|1〉〈V | was experimentally demonstrated using the teleporta-
tion protocol and post-selection [56].

In Ref. [57], the authors suggested a method for con-
version operation Vp→c = |α〉〈H | + |−α〉〈V | using passive
linear elements, single-photon detectors, and a superposi-
tion of coherent states. This scheme allows the conversion
Vp→c = |α〉〈H | + |−α〉〈V | using a superposition of coher-
ent states with an amplitude slightly larger than α. We
note that a superposition of coherent states with ampli-
tude α ≈ 1.85 in a traveling field was recently generated
[58].

Experimental attempts to perform aforementioned propos-
als to generate multiphoton hybrid entangled states with high
fidelities would be challenging due to effects of inefficient
detectors, photon loss, and other noisy effects. It is, however,
beyond the scope of this work to investigate and analyze those
details under realistic conditions.

VI. REMARKS

It is important to identify efficient qubit encoding for a
given quantum information task such as quantum communi-
cation and computation. The multiphoton encoding enables
one to perform a nearly deterministic Bell-state measurement,
which is a remarkable advantage for quantum communication
and computation. However, a multiphoton qubit is vulnerable
to photon loss and this is a formidable obstacle particularly
against long-distance quantum communication. In order to
overcome this problem, we have suggested a teleportation
scheme via hybrid entanglement between a multiphoton qubit
and another type of optical qubit serving as a loss-tolerant
carrier. In our scheme, only the loss-tolerant carrier qubit is
sent through a lossy environment, where the coherent-state
qubit, the PSP qubit, and the VSP qubit are considered as the
loss-tolerant carrier qubit.

We have found that the average fidelities of the teleporta-
tion with the considered hybrid entangled states are better than
the direct transmission. The VSP qubit in hybrid entanglement
serves as the best carrier showing about 10 times better
tolerance on the photon-loss rate than the direct transmission
of the multiphoton qubit for the fidelity larger than 0.9. Our
numerical analysis further shows that the coherent-state qubit
shows higher average fidelity than the others with small values
of α. When α < 1.23 (α < 0.78), the average fidelity of the
corresponding coherent-state qubit is higher than that of the
PSP qubit (the VSP qubit) for any rates of photon loss.
These results would be useful information when choosing the
proper carrier qubit depending on the quantum tasks under
consideration. We have also investigated the average success
probability of the teleportation. It was shown that the success
probability depends only on the loss of the multiphoton-qubit
part. Although the Bell-state measurement scheme of the mul-
tiphoton qubit is nearly deterministic without loss, the photon
loss limits the maximum success probability. Our work may
be useful for the optical realization of long-distance quantum
information processing by exploring hybrid architectures of
optical networks.

It would be an interesting future work to construct a full
quantum repeater with hybrid entanglement based on our
scheme and entanglement purification protocols. For example,
Sheng et al. [13] proposed an optical scheme for entangle-
ment purification of hybrid entanglement that enables one to
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purify the bit and phase flip errors, as well as photon losses
from the coherent states. Since Bell-state measurements and
entanglement purification are two key elements in a quantum
repeater, our work may be combined with this scheme [13]
to develop a hybrid quantum repeater. Other purification
schemes for carrier qubits [6,59–65] used in our paper may
be needed to construct a quantum repeater, which deserves
further investigations.
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