
PHYSICAL REVIEW A 100, 052303 (2019)
Editors’ Suggestion

Fundamental building block for all-optical scalable quantum networks

Seung-Woo Lee ,1,* Timothy C. Ralph,2 and Hyunseok Jeong3

1Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
2Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics,

University of Queensland, St Lucia, Queensland 4072, Australia
3Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

(Received 28 May 2018; revised manuscript received 3 July 2019; published 4 November 2019)

Major obstacles against efficient long-distance quantum communication are photon losses during transmission
and the probabilistic nature of Bell measurement causing exponential scaling in time and resource with distance.
To overcome these difficulties, while conventional quantum repeaters require matter-based operations with long-
lived quantum memories, recent proposals have employed encoded multiple photons in entanglement, providing
an alternative way for scalability. In pursuing scalable quantum communications, naturally arising questions are
thus whether any ultimate limit exists in all-optical scalability and whether and how it can be achieved. Motivated
by these questions, we derive the fundamental limits of the efficiency and loss tolerance of the Bell measurement
with multiple photons, restricted not by protocols but by the laws of physics, i.e., linear optics and no-cloning
theorem. We then propose a Bell measurement scheme with linear optics, which enables one to reach both the
fundamental limits: one by linear optics and the other by the no-cloning theorem. The quantum repeater based
on our scheme allows one to achieve fast and efficient quantum communication over arbitrary long distances,
outperforming previous all-photonic and matter-based protocols. Our work provides a fundamental building
block for quantum networks within but toward the ultimate limits of all-optical scalability.
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I. INTRODUCTION

Quantum communication offers fundamentally secure data
transmissions [1,2] and faithful transfers of quantum states
[3]. These are the key elements in building quantum networks
as a backbone for promising quantum information proto-
cols [4] such as quantum cryptography [5,6] and distributed
quantum computation [7]. Developing reliable and efficient
quantum communications from within metropolitan areas to
over continental scales has been thus one of the important sci-
entific and technological challenges [8–10]. Photons are ideal
carriers for quantum communication. However, there have
been two major obstacles to scalability in photonic quantum
communication. One is photon loss during transmission. The
survival rate of traveling photons decays exponentially with
distance. Even very high repetition rate sources (e.g., 10 GHz)
yield only very low transmission rates at remote places
(about 1.8×10−10 Hz at 1 000 km via optical fibers, i.e., only
1 photon arrives every 175 years). In contrast to classical
communications, the quantum state of photons cannot be
amplified due to the no-cloning theorem [11]. The other is
non-deterministic Bell measurement with single photons. The
Bell measurement is an essential requirement to extend the
communication range of photons by quantum teleportation
[12] or entanglement swapping [13,14]. However, its success
probability with single-photon encoding cannot exceed 50%
with linear optics [15,16]. As a result, all-optical approaches
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to quantum communication have suffered from exponential
scaling in time and resources with distance [17,18].

To overcome these obstacles, a quantum repeater—a de-
vice to extend the communication range with polynomial
scaling—has been developed [19–32]. It works as a building
block at intermediate nodes, constituting an entire commu-
nication network. In the standard quantum repeater model
[19–24], transmission losses are circumvented through her-
alded entanglement generation between nodes with the help of
long-lived quantum memories. Instead, some recent proposals
employ quantum error correction schemes with multiple pho-
tons [25–32]. In this approach, encoded multiple photons are
transmitted between nodes, and losses (as well as other errors)
are corrected in the repeater. Quantum repeater protocols
developed in this direction could enhance the performance
further without use of long-lived quantum memories [28–32].

A multiphoton encoding approach hence opens the pos-
sibility of all-optical scalability. Both photon loss and the
probabilistic nature of Bell measurement can be circumvented
to some extent through entanglement of photons. The Knill-
Laflamme-Milburn protocol [33] showed that the failure prob-
ability of Bell measurements can be reduced to 1/(N + 1)
with linear optics and N entangled photons. Advanced Bell
measurement schemes using additional entangled photons or
alternative encoding strategies have been proposed to reach
even further beyond the 50% limit [31,32,34–40]. All-optical
quantum repeaters, categorized also as third generation, have
been recently developed [31,32] and demonstrated [41,42]: A
repeater protocol proposed by Azuma et al. [31], employing
photonic cluster-states to overcome probabilistic Bell mea-
surements and an additional code for loss tolerance [43],
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could achieve a comparable performance with the fastest
matter-based repeater [28]. A proposal by Ewert et al. [32]
based on the parity state error-correction encoding [44], in
principle, enables an ultrafast communication without feed-
forward, assuming instant generations of entangled photons.
These repeater protocols based on optical systems provide
some advantages as discussed in Refs. [31,32], as they can
be performed by photon sources, linear optical elements, and
photon detectors. Since a deterministic conversion between
photon and matter qubits is demanding, an all-optical ap-
proach with entangled photonic qubits at room temperature
may be quite an attractive alternative route toward scalable
quantum communications, along with the progress of photon
source and detector technologies [45–47].

Therefore, in pursuing scalable quantum networks, the
question that comes to mind is whether any fundamental
limits exist in the realization of quantum communication with
optical components and many photons. One may also wonder
whether and how the limits can be reached (if they exist). In
this article, we address these questions. We derive, for the
first time, the fundamental limits of all-optical scalability in
quantum communication. These limits are determined not by
protocols but by the laws of physics, i.e., linear optics and
the no-cloning theorem. We then propose a Bell measurement
scheme with linear optics and multiphoton encoding, which
surpasses all the previous schemes and allows us to reach both
the fundamental limits. We finally show that the quantum re-
peater based on our scheme enables fast and efficient quantum
communication over arbitrary long distances, outperforming
all the previous quantum repeater protocols. Our work thus
provides a fundamental building block for quantum networks
toward reaching the ultimate limits of all-optical scalability.
The main achievements of our work are described below:

(i) We first derive the fundamental upper bounds of the
efficiency and loss tolerance of Bell measurement in Sec. II.
The 50% limit of Bell measurement with linear optics [15,16]
is not true anymore when using multiple photons. We thus
prove that the maximum success probability of Bell measure-
ment is 1–2−N with linear optics and N-photon encoding,
as the generalization of the limit for the Bell measurement
with single photons (N = 1) [16]. We also show that the loss
tolerance of Bell measurement process (Bell measurement
with any error correction scheme) is fundamentally limited
by ηη′ > 0.5 due to the no-cloning theorem, when photon
loss occurs generally at both qubits with different rates η and
η′. This is another but general manifestation (in the context
of Bell measurement) of the no-cloning limit shown within
some error correction protocols [43,48]. These two limits not
only determine the ultimate limit of all-optical scalability in
quantum communication but also are valid for any quantum
information protocols using the Bell measurement on photons.

(ii) We then propose a Bell measurement scheme with
linear optics and multiphoton encoding in a concatenated
manner in Sec. III, which will be referred to as concatenated
Bell measurement (CBM). It enables one to discriminate Bell
states near deterministically and loss tolerantly, outperform-
ing all other proposals [32,33,36–40] with respect to the
attained success probability with given number of photons
and loss rate. Note that CBM is the first and so far the
only Bell measurement saturating both fundamental limits by

optimization. The scheme is highly compatible with current
optical technologies, as it can be performed by the standard
Bell measurement [15,16] and feedforward controls.

(iii) We then construct a building block of quantum net-
works (either for transmitting information along the network
or for distributing entanglement across the network) based
on CBM in Sec. IV. It does not require long-lived quantum
memories, photon-matter interactions, or complicated circuit
operations. The communication protocol is optimized by nu-
merical searches, taking into account errors and losses not
only during transmission but also during stationary process
such as resource generation and measurement in the repeater.
It exhibits exponential superiority over conventional quantum
relays [17,18] and several (at least five or six) order of mag-
nitude better performance than standard quantum repeaters
[19]. Remarkably, it also outperforms all the recent advanced
matter-based [28] and all-optical [31] protocols; it costs an
order of magnitude less (≈18%) photons to achieve near the
best performance of those protocols, or yields almost unit
transmission probability with similar cost.

Finally, we conclude with remarks on the potential impacts
of our work in developments toward scalable quantum net-
works in Sec. V. The ongoing development of the entangled
photon sources [49–53] and quantum technologies with inte-
grated optics [54–59] are expected to enhance the feasibility
and performance of our protocol. We will also discuss future
studies and proof-of-principle tests based on our work in
Sec. V.

II. FUNDAMENTAL LIMITS

We start with the derivation of the fundamental limits of
all-optical scalability. The Bell measurement plays a key role
in building scalable architecture as long as photon sources are
prepared. Note that the effects of imperfections and errors
that photons undergo propagate before being measured and
are emerged in detection events. We can thus evaluate the
limits by assessing the performance of Bell measurements
in each building block. We address the upper bounds of the
success probability and the loss tolerance of Bell measure-
ment restricted by linear optics and the no-cloning theorem,
respectively, as follows.

A. Linear optics

We consider a general Bell measurement setup illustrated
in Fig. 1(a). Two qubits, each containing N photons, are pre-
pared equiprobably in a logical Bell state out of four. The logi-
cal basis are assumed to be encoded without redundancy such
that they are generally written by |0L〉 = Ua†

i1
. . . a†

iN
|0〉 and

|1L〉 = Ua†
j1

. . . a†
jN

|0〉 in the dual-rail representation, where
i1, . . . , iN , j1, . . . , jN denote the mode numbers given by a
permutation of 1 to 2N , and U is an arbitrary unitary oper-
ation. Total 2N photons occupying 4N modes enter the linear-
optical device and are detected at each output modes. The
creation operator of the output modes {ĉ†

k} is then represented
by the linear combination of the creation operators of the
input modes {â†

i }, i.e., ĉ†
k = ∑4N

i Ukia
†
i , where U is the unitary

matrix for the linear-optical device. The detectors are assumed
to resolve up to 2 photons (i.e., 0, 1, and � 2) to meet
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FIG. 1. Fundamental limits of Bell measurement. (a) General
Bell measurement setup with linear optics and N-photon encoding.
Two qubits (containing total 2N photons) enter 4N input modes of a
linear optical device in the dual-rail representation and are detected
at 4N output modes (by detectors resolving up to two photons). The
transmission probabilities of photons in two qubits are η and η′.
Then, the maximum success probability of the Bell measurement is
obtained as 1–2−N . (b) If any Bell measurement were able to tolerate
50% (or more) loss of photons, i.e., ηη′ � 0.5, it would violate the
no-cloning theorem.

the minimum requirement of the standard Bell measurement
with single photons [15,16]. This is a necessary assumption
for the proper generalization of the linear optical limit (see
Appendix A).

Our aim is to find the maximum success probability of the
Bell measurement for arbitrary N . For evaluating the success
probability of a given Bell measurement setup, we investigate
the detection events at single output mode ĉ†

k and define their
corresponding conditional states. In general, if the conditional
state yielded from one Bell state is linearly independent to the
conditional states from the others, the corresponding detection
event allows us to unambiguously discriminate the Bell state.
Therefore, the maximum number of linearly independent con-
ditional states of all the possible detection events determines
the maximum success probability of the Bell measurement.
For example, the maximum success probability of the Bell
measurement with single photons (N = 1) was proved as 1/2
in this manner in Ref. [16].

For the proof of the cases with N > 1 as detailed in
Appendix B, we can use the following:

(A1) The detection events that more than two photons
arrive at any single output mode reduce the success probability
of the Bell measurement. This is because such an event cannot
be distinguished from the loss of the surplus photon(s) with
detectors resolving up to two photons. We can thus restrict
the linear-optical map of the setup to a certain class {U } by
which only less than two photons arrive at each output mode
to find the maximum of the success probability of the Bell
measurement.

(A2) The success probability to discriminate the Bell
states defined with the logical basis |0L〉 = Ua†

i1
. . . a†

iN
|0〉 and

|1L〉 = Ua†
j1

. . . a†
jN

|0〉 for arbitrary U is upper bounded by the
maximum success probability to discriminate the Bell states
defined with the basis for U = I .

Proof. The Bell states defined with arbitrary U can be
represented as a superposition of the Bell states with U = I
(see Appendix B). So, any conditional state |�〉 corresponding
to a detection event yielded from the input Bell state with

arbitrary U is in a linear combination of the conditional
states |φ〉 yielded from the Bell states with U = I . Since all
the element of {|�〉} is a linear combination of the element
of {|φ〉}, the number of linearly independent |�〉 is upper
bounded with the number of linearly independent |φ〉. The
probability to unambiguously discriminate the Bell states with
any U is thus, at best, the maximum success probability to
discriminate the Bell states with U = I .

We can prove Ps � 1 − 2−N with arbitrary N as detailed
in Appendix B. This is, to our knowledge, the first proof of
the maximum success probability of the Bell measurement
with linear optics and multiple photons, and the generalization
of the limit 1/2 proved for N = 1 in Ref. [16]. The bound
might seem to be achieved by multiplexing (i.e., when any
single success out of N trials with single photons is regarded
as the overall success), but this is not the case because the
encoded Bell state is random in every trial. Notably, it was
observed in Ref. [39] that 1–2−N is reachable with photons
in the Greenberger-Horne-Zeilinger (GHZ) entanglement, and
any ancillary usage of photons yields lower probabilities than
this.

B. No-cloning theorem

Let us now derive the fundamental limit of the loss tol-
erance of the Bell measurement. The two input qubits are
subject to losses respectively with transmission probability
η and η′ as illustrated in Fig. 1(a). Assume that a quantum
error correction is performed prior to or during the Bell
measurement process. The success probability of the Bell
measurement is then given by Ps(η, η′), by which we can
prove the limit as follows:

(B1) Ps(η, η′) = Ps(ηη′), ∀η, and η′.
Proof. Ps(η, η′) can be evaluated by summing all the con-

tribution of events at the detectors to identifying the input Bell
state. First, any success event is conditioned on the survival of
photons from both qubits with probability ηη′. Second, some
loss events can also contribute to discriminate Bell states by
error correction: From the fact that photons from two qubits
are indistinguishable, any loss detection event does not tell
us which qubit the loss occurs in. This corresponds to the
symmetry condition, Ps(η, η′) = Ps(η′, η). Another necessary
condition is a failure with null input, Ps(η, 0) = 0. Therefore,
the loss tolerance is not individually dependent on the rate
of each different loss events, i.e., η(1 − η′) or (1 − η)η′ or
(1 − η)(1 − η′), but is given with the overall loss rate 1 − ηη′.
As a result, Ps(η, η′) is a function of ηη′.

(B2) The loss tolerance of Bell measurement is limited by
ηη′ > 0.5 due to the no-cloning theorem.

Proof. Assume a loss-tolerant Bell measurement which can
correct losses up to Ps(ηη′) = 1 for certain ηη′ < 1. We can
apply it to quantum teleportation of an unknown qubit |ψ〉
containing multiple photons. If such a Bell measurement were
available for ηη′ � 0.5, the teleportation would succeed as
long as 50% photons of |ψ〉 survive (in the assumption that
the channel states are prepared with η′ = 1). Then, it would
become possible to copy |ψ〉 deterministically, by dividing the
photons of |ψ〉 into halves to teleport as illustrated in Fig. 1(b),
which violates the no-cloning theorem.
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TABLE I. Bell state decomposition.

Level Bell state Decomposed into

Second Even (odd) number of |φ−
(m)〉,|�+(−)〉(logical) and |φ+

(m)〉 for others
Even (odd) number of |ψ−

(m)〉,|�+(−)〉 and |ψ+
(m)〉 for others

First Even number of |ψ+(−)〉,|φ+(−)
(m) 〉

(block) and |φ+(−)〉 for others
Odd number of |ψ+(−)〉,|ψ+(−)

(m) 〉
and |φ+(−)〉 for others

The loss-tolerance limit ηη′ > 0.5 is fundamental so that
any Bell measurement with the help of error correction
technique can never exceed. While the 50% no-cloning limit
has been discussed in other contexts [30,43,48], our result is
generally valid for any model containing joint measurements
under photon losses.

III. CONCATENATED BELL MEASUREMENT

We here propose a Bell measurement scheme with linear
optics in a concatenated manner (referred to as concatenated
Bell measurement, CBM). In our approach, the parity state
encoding [44] is employed with the logical basis |0L〉 =
|+(m)〉⊗n and |1L〉 = |−(m)〉⊗n, where |±(m)〉=|H〉⊗m±|V 〉⊗m

(the coefficient will be omitted unless necessary). Each log-
ical qubit contains n blocks of m (total N = nm) photons.
Following the decomposition procedure in Ref. [39], the
logical Bell states, |�±〉 = |0L〉|0L〉 ± |1L〉|1L〉 and |�±〉 =
|0L〉|1L〉 ± |1L〉|0L〉, can be completely decomposed into the
block size Bell states, |φ±

(m)〉 = |+(m)〉|+(m)〉 ± |−(m)〉|−(m)〉
and |ψ±

(m)〉 = |+(m)〉|−(m)〉 ± |−(m)〉|+(m)〉, which are also
completely decomposed into the Bell states with photon pair,
|φ±〉 = |+〉|+〉 ± |−〉|−〉 and |ψ±〉 = |+〉|−〉 ± |−〉|+〉 (see
Appendix C). We denote the logical, block size, photon pair
Bell states as the second-, first-, and zeroth-level Bell states,
respectively. The Bell states in higher levels can be fully
characterized by the type and number of lower level Bell states
that appear in the decomposition (see Table I).

A. Scheme

Let us describe the CBM scheme (see Appendix D for
details). This is composed of three concatenated levels as
illustrated in Fig. 2, i.e., the zeroth level is for photon size,
first level is for block size, and second level is for the logical
encoding size:

1. Zeroth level

For the zeroth-level Bell measurement (referred as B(0)),
we employ the standard scheme of Bell measurement using
linear optics elements such as polarizing beam splitter, wave
plates, and photon detectors [12,16]. It enables to unambigu-
ously discriminate two zeroth-level Bell states out of the four,
|φ±〉 and |ψ±〉. The two identified Bell states can be chosen
by changing the wave plates at the input modes. We define
three different types B(0) = {Bψ, B+, B−} that respectively

FIG. 2. Bell measurement scheme in a concatenated manner with
linear optics. The (logical) second-level Bell measurement B(2) is
composed of n independent B(1) measurements, each of which is
performed with m times of zeroth-level Bell measurements B(0) =
{Bψ, B+, B−} with feedforwards. Three types of B(0) are the varia-
tions of the standard Bell measurement scheme with linear optics. If
we remove all the wave plates at two input modes of the first PBS
in Bψ , it becomes B+, while if we remove only the two 45◦ wave
plates, it becomes B−. Bottom: The maximum success probability
Ps of optimized CBM is plotted (left) against the number of photons
N = nm in a qubit for different loss rates ηη′ and (right) against ηη′

for different nm. The solid line is the success probability of the Bell
measurement on single photons, ηη′/2.

discriminate {(|ψ+〉, |ψ−〉), (|φ+〉, |ψ+〉), (|φ−〉, |ψ−〉)} with
the success probability 1/2 in an ideal case.

2. First level

In the first level, B(1), total m times of B(0) are performed.
First, Bψ is applied to arbitrary photon pair (one from the
first qubit and the other from the second) repeatedly until
it succeeds or detects a loss or consecutively fails j times
(0 � j � m − 1). Then, either B+ or B− is applied on the
remaining photon pairs; B± is selected if Bψ succeeded with
|ψ±〉, while arbitrary one is chosen for loss detection or j
times failures. Note that j can be selected to optimize the
scheme for a given number of photons nm and loss rate η.

The result of B(1) is determined as follows: (Success) Full
discrimination of the first-level Bell states is possible unless
loss occurs. For example, if any Bψ succeeds with |ψ+〉,
subsequently performed all B+ should yield either |φ+〉 or
|ψ+〉. From Table I, if even (odd) number of |ψ+〉 appear, one
can find that the first-level Bell state is |φ+

(m)〉(|ψ+
(m)〉. (Sign

± discrimination) As long as any single Bψ succeeds or any
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B± is performed without loss, the ± sign can be identified.
(Failure) B(1) fails when no Bψ succeeds and all B± detect
losses.

We denote the success and failure probability of B(1)

respectively as ps and p f , and thus the probability of sign ±
discrimination only is given by 1 − p f − ps.

3. Second level

The second (logical) level, B(2), is composed of n inde-
pendent B(1). It is constructed such that loss in any B(1) does
not affect the other B(1). The Bell states, |�±〉 and |�±〉, can
be unambiguously discriminated as long as any single B(1)

succeeds and no B(1) fails, so that the success probability
is Ps = (1 − p f )n − (1 − ps − p f )n. The result is given as
|{�,�}(−)s〉. Here, the symbol � and � is discriminated
by any success of B(1). The sign (−)s is then identified if
s (either even or odd) number of minus (−) signs appear
among all B(1) results. For example, given the results of B(1) as
{|φ−

(m)〉,+,−}, |�+〉 can be identified by φ and even number
of minus (−) signs.

B. Reaching the fundamental limits

If all the photons in two qubits survive (η = η′ = 1), no
B(1) would fail (at least sign discrimination is possible), i.e.,
p f = 0. It would succeed unless all performed Bψ fail and the
subsequent choice, either B+ or B−, is wrong with probability
1/2, such that ps = 1 − 2− j−1. The overall success probabil-
ity is then obtained as Ps = 1 − 2−( j+1)n. If we set j = m − 1,
it attains Ps = 1 − 2−N , the fundamental upper bound limited
by linear optics with N = nm.

For arbitrary η and η′, the success and failure proba-
bility of B(1) are obtained as ps = (1 − 2−( j+1))ηmη′m and
p f = ∑m

l=m− j (ηη′/2)m−l (1 − ηη′)l , respectively (details in
Appendix E). The overall success probability of CBM is then
obtained by Ps(η, η′) = (1 − p f )n − (1 − ps − p f )n. Note
that, as expected from (B1) in Sec. II B, the Bell measurement
succeeds with the same probability as long as ηη′ is the same,
i.e., Ps(η, η′) = Ps(ηη′). The maximum success probabilities
are plotted in Fig. 2 by optimization over {n, m, j}. We can
observe that arbitrary high success probabilities up to unit is
reachable, as long as ηη′ > 0.5, by increasing N = nm within
the linear optics bound.

Therefore, it turns out that CBM reaches both fundamen-
tal limits by linear optics and no-cloning theorem. From a
practical point of view, it outperforms all the previous Bell
measurement schemes [32,39], with respect to the success
probability obtained by the same number of photons per qubit
with a given loss rate as presented in Appendix G 1. Note
that the linear optics bound can be saturated when no photon
loss occurs in our scheme. Note also that, in contrast to other
schemes consuming more redundant photons under losses
[32,39], all photons in CBM effectively contribute either for
success events or loss tolerance.

C. General error correction

Logical errors (bit or/and sign flips) can be produced due
to depolarization and imperfect operations. These emerge as
either sign (+ ↔ −) or symbol (φ ↔ ψ) flips in the result

of CBM. Some sign flip errors that occur in any B(0) can be
corrected by majority vote in the first level, based on the fact
that the signs in all B(0) results should be the same within an
ideal B(1). Symbol flips (although an odd number of symbol
flips in B(0) cause a symbol flip in B(1)) can be eventually
corrected in the second level, from the fact the symbols of
all B(1) in any ideal B(2) result should be the same. This is
because the parity state encoding is a generalized form of the
Shor error correcting code [60]. As a result, logical errors can
be reduced in the result of CBM as long as n, m � 3 without
any additional process (see Appendix E 3). We also observed
that the effect of dark counts, caused by detector imperfection,
can be reduced (and negligible) in CBM as described in
Appendix E 4.

IV. BUILDING BLOCKS FOR QUANTUM NETWORK

In this section, we propose a protocol for all-optical scal-
able quantum communications as the main result of this
article. We intend to use CBM for developing building blocks
of scalable quantum networks. Our approach is based on the
following concepts: A logical photonic qubit in parity state
encoding [44] is employed as the carrier of information. It
enables us to achieve higher transmission rates under losses
than single photons. This is, however, limited to a certain
distance range depending on the encoding size. To extend the
range further, quantum repeaters are needed to be placed at
appropriate intervals. In our protocol, we employ CBM. We
note that CBM is able to extend both the communication rate
and range over direct transmissions with a given number of
photons (see Appendix F 1).

In each building block, loss occurs not only during trans-
mission but also during other processes such as resource
generation and measurement. We thus consider the effective
survival rate of individual photons in whole stationary pro-
cess as η0. In general, a photon survives with probability
ηL = η0e−L/Latt in one cycle of the generation, transmission
(over distance L), and measurement process, where Latt is the
attenuation length.

FIG. 3. Two designs of quantum networks. One way: a qubit
travels L0 between nodes along the network. Symmetric: two qubits
travel L0/2 to meet in the middle where CBM is performed for
entanglement distribution across the network.
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FIG. 4. Schematic of building blocks for quantum network. (a) Two designs of building blocks for quantum networks: (Top) For one-way
communication to transmit quantum information along the network, in which the qubit carrying information travels L0 between repeater
nodes. The other qubit is staying in the repeater. Then, CBM is performed on the transmitted and stationary qubits. (Bottom) For entanglement
distribution between remote places, in which CBM is performed to link the entangled pairs |�+〉 from adjacent nodes. Each qubit travels L0/2
to meet in the middle before CBM. Note that both designs of building blocks yield the same success probabilities, Ps(ηL0 , η0 ) = Ps(ηL0/2, ηL0/2)
and cost the same number of photons on average. (b) A quantum repeater for one-way communication is composed of two parts: the preparation
of entangled pair |�+〉 and CBM on two qubits (one is received from the previous node and the other from |�+〉). The other qubit of |�+〉 is
transmitted to the next node. The result of CBM is directly sent to Bob via classical communication based on which the transmitted information
can be recovered at the final step. Losses during preparation and measurement process also affect the performance. The effective loss rate of
photons inside of the repeater is referred as η0, estimated with source efficiency εs, detector efficiency εd , and the loss during the generation
time of |�+〉.

A. Quantum network designs

Two different designs of quantum networks can be con-
sidered: (i) One way: This is for transmitting quantum
information along the network as illustrated at the top of
Fig. 3. In each building block of this design, CBM is per-
formed on two qubits; one qubit travels between repeater
nodes (say L0), while the other remains stationary in the
repeater. Its success probability is given by Ps(ηL0 , η0). (ii)
Symmetric: this is for the entanglement distribution by en-
tanglement swapping across the network as illustrated at the
bottom of Fig. 3. In each building block, CBM is performed to
link the entangled pairs between adjacent nodes. Two qubits
from different nodes travel over L0/2 to meet in the middle
before CBM, so its success probability is Ps(ηL0/2, ηL0/2). The
success probabilities of these two designs are exactly the same
Ps(ηL0 , η0) = Ps(ηL0/2, ηL0/2) as ηL0η0 = η2

L0/2 = η2
0e−L0/Latt .

Therefore, any of these two (or their combination) can be
chosen as a building block to construct a quantum network de-
pending on the application purpose, as illustrated in Fig. 4(a).

B. Quantum repeater

Let us describe the details of our protocol with a realistic
repeater model. We will focus on the one way type of commu-
nication for transmitting quantum information from Alice to
Bob (but the estimated performance will be the same with the
symmetric type). The total distance L between Alice and Bob
is divided into L0 by equally spaced nodes.

Our repeater model is illustrated in Fig. 4(b), which is
composed of two parts, one for the preparation of a logical
Bell pair |�+〉 and the other for CBM. Notably, it does not
require long-lived quantum memories, photon-matter interac-
tions, or complicated circuit operations. In a realistic system,
the losses and imperfections during the process in the repeater
(in addition to the attenuation during transmission), which
both qubits experience before CBM, can strongly influence
the performance of the repeater. In each repeater, CBM is
applied between the incoming qubit and one qubit from |�+〉

so that the success probability of each building block is
Ps(ηL0 , η0).

Here, η0 is the effective survival rate of photons during the
stationary process in the repeater, which can be estimated by

η0(n, m) = εsεd exp

[
−c(τp(n, m) + τ )

Latt

]
, (1)

where εs and εd are the source and detector efficiency, re-
spectively, exp[−c(τp + τ )/Latt] denotes the rate that individ-
ual photon survives during the preparation and measurement
process, and c is the speed of light. Here τ is the time
taken for single- or two-photon measurement with appropriate
feedforward, and τp(n, m) is the estimated average time for the
preparation of the logical Bell pair |�+〉. The rate η0(n, m)
is given as a function of the encoding size (n, m) because
the more photons are contained in a logical qubit the longer
time τp will be taken to generate the state |�+〉, as detailed in
Appendix F 2.

C. Performance analysis

The total success probability of transmission can be ob-
tained by Ps(ηL0 , η0)L/L0 ≡ Rt0, where R is the transmission
rate and t0 is the time taken in the repeater. The maximum
transmission probabilities over 1 000 and 10 000 km are
plotted in Fig. 5. It shows that arbitrarily high success proba-
bility approaching to unit (≈1) can be attained by increasing
the encoding size N = nm. We optimize our protocol for the
total cost of photons Q = 2nmL/Rt0L0 to be minimized (see
details in Appendix F 3). The optimized results by numerical
searches over {n, m, j, L0} with exemplary parameters are
presented in Table II. For example, for the transmission over
1 000 km (when η0 = 0.93), the best choice of encoding
parameters and the repeater spacing are (n, m, j) = (58, 8, 1)
and L0 = 1.8 km, by which Rt0 ∼ 0.7 can be achieved with
total Qmin = 7.38×105 photons. The overall transmission fi-
delity is estimated as F = 0.96 by assuming depolarizing
errors as detailed in Appendix F 4. Note that the optimized
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FIG. 5. Maximum transition probability Rt0 over 1 000 and
10 000 km with repeater spacing L0 = 1.7 km and 1.2 km, respec-
tively, and 1% inefficiency in each repeater (η0 = 0.99). The red
circle indicates the optimal choice for minimum cost Qmin: (n, m) =
(13, 6) for 1 000, and (16,7) for 10 000 km.

results is the same for the entanglement distribution scenario
in which L0 is divided into half L0/2 as both qubits travel to
meet in the middle.

The transmission rate R is determined by the processing
time t0 in the repeater. We first assume that the slowest
component in the repeater is the measurement process, and
it takes t0 = 10 μs (1 μs) (for fair comparison with other pro-
posals [28,29,31]). Our protocol then achieves R ∼ 70 KHz
(0.7 MHz) for 1 000-km transmission (almost the same for
10 000 km). It shows the exponential superiority over the
conventional all-optical approaches such as single-photon
transmission (≈10−10 Hz for 1 000 km even with a high-
repetition 10-GHz photon source) or quantum relays [17,18].
Compared to the standard repeater protocols [19–24], it is
several (at least 5 to 6) orders of magnitude faster. Remark-
ably, it also outperforms recent advanced matter-based [28]
and all-optical based schemes [31]; it costs only an order of
magnitude less (≈18%) photons to reach comparable speeds
with their maximum performance [28,31] and achieves nearly
unit transmission probability (Rt0 ∼ 1) if the same amounts
of photons are used. (Details of the comparison with other
proposals are in Appendix G 2.)

In addition, ultrafast communications with rates up to or
beyond GHz may also be expected. Note that the operations
required in CBM are linear optics and photon detections, and
the necessary feedforward is two or three steps (as j = 1 or 2

TABLE II. Optimal strategies for the transmission over 1 000,
5 000, and 10 000 km to minimize the total cost of photons Qmin.
Here, η0 denotes the loss rate in the repeater, Rt0 and F are the
overall transmission probability and fidelity, and (n, m, j) and L0 are
the optimal encoding and repeater spacing, respectively.

L (km) η0 Qmin Rt0 F (n, m, j) L0 (km)

1 000 0.99 1.3×105 0.70 0.98 (13, 6, 2) 1.7
0.93 7.4×105 0.70 0.96 (58, 8, 1) 1.8

5 000 0.99 1.0×106 0.78 0.97 (16, 7, 2) 1.4
0.93 7.4×106 0.67 0.93 (83, 9, 1) 1.5

10 000 0.99 2.4×106 0.77 0.97 (16, 7, 2) 1.2
0.93 1.9×107 0.70 0.92 (92, 10, 2) 1.4

in the Table II) of wave plate operations. It may be thus suit-
able to be structured by integrated optics, possibly enabling
(sub)nanosecond operation time [54–59]. In our analysis, we
also considered the effects of losses and imperfections on both
qubits during the time for producing |�+〉 from photon pairs,
but more efficient and faster generation may be expected with
on-demand entangled photon sources [49–53].

V. CONCLUSION

We have derived the fundamental limits of the Bell mea-
surement with linear optics and arbitrary N-photon encoding.
First, we have proved that the success probability of the Bell
measurement has the upper bound 1–2−N by linear optics,
which is the generalization of the 50% limit of the Bell
measurement with single photons (N = 1) [16]. We have also
shown that the loss tolerance of Bell measurement (with any
error correction scheme) is fundamentally limited by ηη′>0.5
due to the no-cloning theorem, when two input qubits ex-
perience losses with rate η and η′. These two limits of the
Bell measurement determine the ultimate limit of all-optical
scalability in quantum communication.

Multiple-photon encoding in a single mode and/or Bell
measurement with number resolving detection might be con-
sidered for further extension. However, we note that additional
resources in Bell measurement enable us to exceed the 50%
limit [34,35,61–63]. Moreover, a resource enabling photon-
number-resolving detection (e.g. nonlinearity) [61] would,
in principle, allow us to fully discriminate the Bell states
[62,63]. In this sense, no fundamental limit exists on the Bell
measurement with arbitrary general detectors with unlimited
resources. In order to properly generalize the 50% limit by
linear optics, the detector should thus meet the requirement
of the standard Bell measurement setup (see Appendix A)
[15,16]. Therefore, 1–2−N is the proper upper bound that
is generally valid for any linear optical Bell measurements
with arbitrary N number of photons (note that 50% limit is
recovered when N = 1).

We have then proposed a Bell measurement scheme with
linear optics in a concatenated manner, referred to as CBM,
which enables us to reach both fundamental limits by op-
timization. Remarkably, it outperforms all the existing Bell
measurement schemes [35–40] regarding the efficiency and
the loss tolerance. Finally, we have constructed a building
block for quantum networks based on CBM, overcoming the
major obstacles of all-optical scalability. Notably, the quan-
tum repeater based on CBM does not require long-lived quan-
tum memories, photon-matter interactions, or complicated
circuit operations. Our protocol exhibits superiority over not
only the standard quantum repeater model [19–24] but also
the recent advanced repeater protocols without necessitating
long-lived quantum memories [28,31] with respect to the
communication rate and resource cost.

Our work addresses both the limits and potentials of all-
optical scalability as an alternative route toward long-distance
quantum communication. While the conventional route based
on the standard quantum repeater model [19–24] relies more
on the development of the platforms for light-matter inter-
action and long-lived quantum memories [64–66], our pro-
tocol, by removing the necessity of all the other demanding
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technologies, puts more weight on the photon sources. The
major challenge for implementing our protocol is thus the
preparation of large, multiphoton entangled encoded states.
The recent progress of the technologies of on-demand photon
sources [49–53] and platforms with integrated optics [54–59]
may enhance the feasibility of our protocol; conversely, our
protocol, outperforming all the existing protocols (in both
routes), may provide further motivations for the ongoing
developments of these technologies. We expect experimental
demonstrations of CBM in the near future since CBM requires
only passive linear optics and photon detectors once entangled
photons are prepared [67,68]. Proof-of-principle tests of our
repeater model are also expected in small-scale network along
with the progress of the abovementioned technologies.

We emphasize that our result is not limited to all-optical
quantum communication but generally applicable and valid
for any quantum information protocols using Bell measure-
ment on photons [8–10]. Our scheme may be useful for
designing complicated quantum networks having many par-
ticipants or different applications, because it yields the same
performance in two different designs for one-way commu-
nication and entanglement distribution. Moreover, it can be
interchangeable or hybridizable with matter-based repeaters
using the same flying qubits [28,29] in a single network
design. Further studies on repeater architectures [69–71] and
other applications such as fault-tolerant quantum computation
are expected.
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APPENDIX A: DETECTION RESOLUTION FOR
THE PROOF OF THE LINEAR OPTICAL LIMIT

In our derivation of the maximal success probability of Bell
measurement with linear optics, we assume that the detectors
can resolve 0, 1, and � 2, to meet the minimum requirement
of the standard Bell measurement technique with linear optics
[15] as illustrated as in Fig. 6(a). One might consider arbitrary
general detectors such as photon-number-resolving detectors
for further extension of the limit. However, from the fact that
such a detector generally requires additional resources, the
detection part can be decomposed again into a device with
additional resources and detectors resolving 0, 1, and � 2.
This is, in turn, equivalent with the general Bell measure-
ment setup of a device consuming additional resources plus
detectors as illustrated in Fig. 6(b). In fact, a resource enabling
photon-number-resolving detection such as nonlinearity [61]
can, in principle, also allow us to fully discriminate Bell
states [62,63]. As a result, no fundamental limit would exist
on the Bell measurement with arbitrary general detectors
with unlimited resources. Therefore, in order to properly and
fairly generalize the 50% limit, the detection resolution should

FIG. 6. (a) Bell measurement setup with a linear optical device
and detectors resolving up to two photons. (b) Bell measurement
setup with a linear optical device and general detectors (e.g., photon-
number-resolving detector) with additional resources (e.g., nonlin-
earity). This is generally equivalent with a setup using arbitrary
nonlinear device.

meet the requirement of the standard Bell measurement setup,
i.e., (0, 1, �2) discrimination.

APPENDIX B: LIMIT OF THE SUCCESS PROBABILITY
OF BM WITH N PHOTONS AND LINEAR OPTICS

Let us prove the maximum success probability of lin-
ear optical Bell measurements performed on logical qubits
each encoded with N photons. Equiprobable four logical
Bell states, including total 2N photons in the polarization
degree of freedom, are prepared to enter the input modes of
the linear optical devices. They are detected at the output
modes as illustrated in Fig. 1(a). We can write the creation
operator of the output modes {ĉ†

j } as the linear combination

of the creation operators of the input modes {â†
i }, i.e., ĉ†

j =∑4N
i Ujia

†
i , where U is the unitary matrix for the linear optical

devices. The input and output mode vectors can be defined
respectively as �a = (a†

1, . . . , a†
4N )T and �c = (c†

1, . . . , c†
4N )T ,

and �αi = (Ui1, . . . ,Ui4N )T as the ith column vector of U . In
the dual-rail representation, each photon occupies two modes.
Like the standard Bell measurement scheme with single pho-
tons [15,72,73], we assume here that the detectors can resolve
up to two photons. This is the minimum requirement to distin-
guish all possible outcomes in the standard Bell measurement
scheme [15,72,73] and detect losses.

For single-photon encoding (N = 1), we can follow the
proof in Ref. [16]. The input state can be written in gen-
eral by |�〉 = ∑4

i, j Ni j â
†
i â†

j |0〉 = �aT · N · �a|0〉, where N is a
4×4 symmetric matrix. This can be rewritten in terms of
the output modes by |�〉 = �aT · N · �a|0〉 = �cT · M · �c|0〉 =∑4

k,l Mkl ĉ
†
k ĉ†

l |0〉, where M = U T NU . For the Bell states,

|�μ=1,2〉 = a†
1a†

3 ± a†
2a†

4|0〉 and |�μ=3,4〉 = a†
1a†

4 ± a†
2a†

3|0〉
(coefficient omitted hereafter), Mμ = U T NμU where

Nμ = 1

2
√

2

⎡
⎢⎣

0 0 δμ1 + δμ2 δμ3 + δμ4

0 0 δμ3 − δμ4 δμ1 − δμ2

δμ1 + δμ2 δμ3 − δμ4 0 0
δμ3 + δμ4 δμ1 − δμ2 0 0

⎤
⎥⎦.

The contribution of the different Bell states to particular
detection events can be investigated by the form of Mμ:

If we consider two-photon detection events, the probability
that two photons are detected at mode ck for the input state
|�μ〉 is Pμ

k [2] = 〈0|c2
kMμ∗

kk Mμ

kkc†2
k |0〉 = 2|�αT

k · Nμ · �αk|. In or-
der to identify a Bell state (e.g., when μ = 1) by this event, the
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probabilities for all three other Bell states μ = 2, 3, 4 should
be vanished. However, this is impossible because Pμ

k [2] = 0
for all μ with any �αk .

For single-photon detection at mode ck , we can write
the conditional state as |�μ

k 〉=2
∑4

l �=k Mμ

kl c
†
l |0〉=2( �mμT

k · �c −
Mμ

kkc†
k ), where �mμT

k = U T Nμ�αk = U T �vμ

k is the sth col-
umn vector of M with �vμ

k = Nμ�αk . Here, the vectors
{�v1

k , �v2
k , �v3

k , �v4
k } correspond to four input Bell states so that

they are linearly dependent and have the same norm |�vμ

k |2 =
|�αk|2, i.e.,

∑4
μ=1 bμ|�μ

k 〉 = 0 with at least two bμ �= 0. This
implies that the maximum number of linearly independent
(i.e., unambiguously discriminated) |�μ

k 〉 is two. With the
probability of single-photon detection at mode ck , Pμ

k [1] =
〈�μ

k |�μ

k 〉 = (|�αk|2 − |�αk · �vμ

k |2), the upper bound of success
probability that the detection in mode ck contributes to the un-
ambiguous discrimination of a Bell state is obtained by pk �
1
4 (Pμ=a

k [1] + Pμ=b
k [1]) = 1

4 |�αk|2. Therefore, the upper bound
of the total success probability of the Bell measurement with
N = 1 can be obtained by Ps � 1

2

∑4
k=1 pi = 1

8

∑4
k=1 |�αk|2 =

1
8

∑4
k=1

∑4
l=1 |Ukl |2 = 1

2 . The upper bound of the success
probability is the same for the case when including ancillary
modes in vacuum states [16].

We now consider the encoding with arbitrary N > 1 pho-
tons. The logical basis |0L〉 and |1L〉 are assumed to be
defined without redundancy. For example, |0L〉 = |H〉|V 〉 and
|1L〉 = |V 〉|V 〉, or |0L〉 = |H〉|+〉 and |1L〉 = |V 〉|V 〉, are re-
dundantly encoded with the second polarization mode. There-
fore, the logical basis can be generally represented by |0L〉 =
Ua†

i1
. . . a†

iN
|0〉 and |1L〉 = Ua†

j1
. . . a†

jN
|0〉, where U is an arbi-

trary unitary operation and i1, . . . , iN , j1, . . . , jN are the mode
numbers given by a permutation of 1 to 2N .

For two-photon encoding (N = 2), the logical bases
are generally |0L〉 = Ua†

i1
a†

i2
|0〉 and |1L〉 = Ua†

j1
a†

j2
|0〉,

with a permutation (i1, i2, j1, j2) of 1 to 4. For example,
one may choose |0L〉 = cos θ |H〉|H〉 − sin θ |V 〉|V 〉 and
|1L〉 = sin θ |H〉|H〉 + cos θ |V 〉|V 〉 with θ ∈ [0, π/2], or their
variations with local unitary operations. The logical Bell
states can be then written by |�μ=1,2〉 = UU ′(a†

i1
a†

i2
a†

i′1
a†

i′2
±

a†
j1

a†
j2

a†
j′1

a†
j′2

)|0〉 and |�μ=3,4〉 = UU ′(a†
i1

a†
i2

a†
j′1

a†
j′2

±
a†

j1
a†

j2
a†

i′1
a†

i′2
)|0〉. Without loss of the generality, these can be

rearranged as |�μ=1,2〉 = UU ′(a†
i1

a†
i′1

a†
i2

a†
i′2

± a†
j1

a†
j′1

a†
j2

a†
j′2

)|0〉
and |�μ=3,4〉 = UU ′(a†

i1
a†

j′1
a†

i2
a†

j′2
± a†

j1
a†

i′1
a†

j2
a†

i′2
)|0〉, and then

rewritten by

|�1〉 = UU ′[(a†
i1

a†
i′1

+ a†
j1

a†
j′1

)(
a†

i2
a†

i′2
+ a†

j2
a†

j′2

)
+ (

a†
i1

a†
i′1

− a†
j1

a†
j′1

)(
a†

i2
a†

i′2
− a†

j2
a†

j′2

)]|0〉,
|�2〉 = UU ′[(a†

i1
a†

i′1
+ a†

j1
a†

j′1

)(
a†

i2
a†

i′2
− a†

j2
a†

j′2

)
+ (

a†
i1

a†
i′1

− a†
j1

a†
j′1

)(
a†

i2
a†

i′2
+ a†

j2
a†

j′2

)]|0〉,
|�3〉 = UU ′[(a†

i1
a†

j′1
+ a†

j1
a†

i′1

)(
a†

i2
a†

j′2
+ a†

j2
a†

i′2

)
+ (

a†
i1

a†
j′1

− a†
j1

a†
i′1

)(
a†

i2
a†

j′2
− a†

j2
a†

i′2

)]|0〉,
|�4〉 = UU ′[(a†

i1
a†

j′1
+ a†

j1
a†

i′1

)(
a†

i2
a†

j′2
− a†

j2
a†

i′2

)
+ (

a†
i1

a†
j′1

− a†
j1

a†
i′1

)(
a†

i2
a†

j′2
+ a†

j2
a†

i′2

)]|0〉.

Therefore, all the input states are generally represented as
|�μ〉 = ∑

ν Cμ
ν |ψν〉, where

∑
ν |Cν |2 = 1, i.e., a linear com-

binations of

|ψν〉 =
2∑

p=1

⎛
⎝ 4∑

i, j=1

Nν,p
i j â†

i â†
j

⎞
⎠

1

⎛
⎝ 8∑

i′, j′=5

N ′ν,p
i′ j′ â†

i′ â
†
j′

⎞
⎠

2

|0〉

=
2∑

p=1

(�aT · Nν,p · �a)1( �a′T · N′ν,p · �a′)2|0〉. (B1)

Let us first consider the case when the Bell states are en-
coded exactly in the form of |�μ〉 = |ψμ〉 given in (B1) with
Cν=μ = 1, i.e., U = U ′ = I . If we consider the unitary linear-
optical map on the first block of |ψμ〉, the output modes ĉ†

k =∑4
i=1 Ukia

†
i can be arranged to be labeled as k = 1, 2, 3, 4.

In this configuration only, the possible detection event at the
output modes ck are either two-photon detection or single-
photon detection by which the input state of the first block can
be read out. However, if the unitary linear-optical map on the
second block ĉ†

l = ∑8
i=5 Ulia

†
i shares any output mode with

the map on the first block (i.e., ck = cl ), the discrimination
of the input states becomes obviously harder as the detectors
can resolve up to two photons. This is equivalent effectively
with the loss of the surplus photons. We can thus restrict the
unitary matrix for the linear optical device to be decomposed
into two 4×4 unitary matrices applying separately to the first
and second blocks, U = U1 ⊗ U2, in order to evaluate the
maximum success probability.

For the events that a photon from the first block is
detected at mode ck and a photon from the second block
is detected at mode cl , we can write the conditional
state as |�μ

kl〉 = 〈0|ckcl |ψμ〉 = ∑2
p=1 |φμ,p

k 〉|φμ,p
l 〉, where

|φμ,p
k 〉 = 2

∑4
i=1 Mμ,p

ki c†
i |0〉 = 2 �mμ,pT

k · �ck|0〉 with �mμ,pT
k =

U T
1 Nμ,p�αk = U T

1 �vμ,p
k , and |φμ,p

l 〉 = 2
∑8

j=5 M ′μ,p
l j c†

j |0〉 =
2 �mμ,pT

l · �cl |0〉 with �mμ,pT
l = U T

2 N′μ,p�αl = U T
1 �vμ,p

l . The
vectors {�v1,p

k , �v2,p
k , �v3,p

k , �v4,p
k } have the same norm |�vμ,p

k |2 =
|�αk|2 and are linearly dependent so that

∑4
μ=1 bμ,p

k |φμ,p
k 〉 = 0

with at least two bμ,p
k �= 0. Likewise, for the vectors

{�v1,p
l , �v2,p

l , �v3,p
l , �v4,p

l }, ∑4
μ=1 bμ,p

l |φμ,p
l 〉 = 0 with at least

two bμ,p
l �= 0. Thus, the conditional states |�μ

kl〉 for different
μ are linearly dependent

∑4
μ=1 bμ|�μ

kl〉 = 0 with bμ �= 0
only when both bμ,p

k �= 0 and bμ,p
l �= 0 for p = 1, 2. In other

words, |�μ=a
kl 〉 is linearly independent to others as long as

either bμ,p
k = 0 or bμ,p

l = 0 for any p so that the input Bell
state can be unambiguously discriminated. The maximum
probability that the detection at mode ck (cl ) contributes
to the unambiguous discrimination in first (second) block
is pk = 1

4 |�αk|2(pl = 1
4 |�αl |2). The maximum total success

probability to distinguish the input states can be then
obtained by Ps � 1 − (1 − 1

2

∑4
k=1 pk )(1 − 1

2

∑8
l=5 pl ) =

1
2 (
∑4

k=1 pk +∑8
l=5 pl ) − 1

4

∑4
k=1 pk

∑8
l=5 pl = 1 − 1

4 = 3
4 .

This upper bound is generally valid for arbitrary input Bell
states |�μ〉 = ∑

ν Cμ
ν |ψν〉, i.e., arbitrary U and U ′. In this

case, the conditional state, for the events that a photon from
the first (second) block is detected at mode ck (cl ), is written by
|�μ

kl〉 = 〈0|ckcl |�μ〉 = ∑
ν Cμ

ν

∑2
p=1 |φν,p

k 〉|φν,p
l 〉. Since |�μ

kl〉
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is a linear combination of
∑2

p=1 |φν,p
k 〉|φν,p

l 〉, the number of
linearly independent |�μ

kl〉 is at best the same with the number
of linearly independent

∑2
p=1 |φν,p

k 〉|φν,p
l 〉. Therefore, the suc-

cess probability to unambiguously discriminate |�μ=1,2,3,4〉 is
upper bounded by the success probability to unambiguously
discriminate |ψμ=1,2,3,4〉, i.e., Ps(|�μ〉) � Ps(|ψμ〉) � 3

4 .
It is straightforward to extend the proof to arbitrary

N , as the input Bell states can be written by |�μ〉 =∑
ν Cμ

ν

∑2
p=1

⊗N
q=1 (

∑4q
iq, jq=4q−3 Nν,p

iq jq
â†

iq
â†

jq
)|0〉, and the ma-

trix of linear-optical unitary map can be restricted to the
form of U = ⊗N

q=1 Uq to evaluate the maximum success
probability. Finally, the upper bound of the success probability
is obtained by Ps(|�μ〉) � 1 −∏N

q=1(1 − 1
2

∑4q
iq=4q−3 piq ) =

1 −∏N
q=1

1
2 = 1 − 2−N .

APPENDIX C: DECOMPOSITION
OF THE ENCODED BELL STATES

In the parity state encoding, the logical basis are defined as
|0L〉 = |+(m)〉1 · · · |+(m)〉n and |1L〉 = |−(m)〉1 · · · |−(m)〉n with
|±(m)〉 = (|H〉1 · · · |H〉m ± |V 〉1 · · · |V 〉m)/

√
2, and the Bell

states are written by

|�±〉 = 1√
2

(|+(m)〉1 · · · |+(m)〉n|+(m)〉1′ · · · |+(m)〉n′

± |−(m)〉1 · · · |−(m)〉n|−(m)〉1′ · · · |−(m)〉n′
)
,

|�±〉 = 1√
2

(|+(m)〉1 · · · |+(m)〉n|−(m)〉1′ · · · |−(m)〉n′

± |−(m)〉1 · · · |−(m)〉n|+(m)〉1′ · · · |+(m)〉n′
)
,

where the first n blocks (from 1 to n) are from the first qubit
and the following n blocks (from 1′ to n′) are from the second
qubit. By rearranging the order of blocks (1, . . . , n, 1′, . . . , n′)
to (1, 1′, 2, 2′, . . . , n, n′), these can be completely decom-
posed into the first (block) level Bell states. For example,

|�+〉 = 1√
2

(|+(m)〉1 · · · |+(m)〉n|+(m)〉1′ · · · |+(m)〉n′

+ |−(m)〉1 · · · |−(m)〉n|−(m)〉1′ · · · |−(m)〉n′
)

= 1√
2

(|+(m)〉1|+(m)〉1′ · · · |+(m)〉n|+(m)〉n′

+ |−(m)〉1|−(m)〉1′ · · · |−(m)〉n|−(m)〉n′
)

= 1√
2n−1

(|φ+
(m)〉11′ |φ+

(m)〉22′ · · · |φ+
(m)〉nn′

+ |φ−
(m)〉11′ |φ−

(m)〉22′ |φ+
(m)〉33′ · · · |φ+

(m)〉nn′

+ |φ−
(m)〉11′ |φ+

(m)〉22′ |φ−
(m)〉33′ · · · |φ+

(m)〉nn′

...

+ |φ+
(m)〉11′ · · ·|φ+

(m)〉n−2,n−2′ |φ−
(m)〉n−1,n−1′

× |φ−
(m)〉nn′+ · · · )

= 1√
2n−1

∑
j=even�n

P[|φ−
(m)〉⊗ j |φ+

(m)〉⊗n− j],

which is the equally weighted superposition of all possible
n-fold tensor products of even number j of |φ−

(m)〉 and n − j
of |φ+

(m)〉. Likewise for others, all the (logical) second-level
Bell states can be represented by

|�+(−)〉 = 1√
2n−1

∑
j=even(odd)�n

P[|φ−
(m)〉⊗ j |φ+

(m)〉⊗n− j],

|�+(−)〉 = 1√
2n−1

∑
j=even(odd)�n

P[|ψ−
(m)〉⊗ j |ψ+

(m)〉⊗n− j],

where P[·] is defined as a permutation function, e.g.,
P [|φ−〉 |φ+〉 |φ+〉] = |φ−〉 |φ+〉 |φ+〉 + |φ+〉 |φ−〉 |φ+〉 +
|φ+〉|φ+〉|φ−〉. Note that |�+(−)〉 includes even (odd) number
of |φ−

(m)〉, while |�+(−)〉 includes even (odd) number of |ψ−
(m)〉.

The first-level Bell states, |φ±
(m)〉 = (|+(m)〉|+(m)〉 ±

|−(m)〉|−(m)〉)/
√

2 and |φ±
(m)〉= (|+(m)〉|+(m)〉±|−(m)〉|−(m)〉)/√

2, can be written again as

|φ+
(m)〉 = (|H〉1 · · · |H〉m|H〉1′ · · · |H〉m′

+ |V 〉1 · · · |V 〉m|V 〉1′ · · · |V 〉m′ )/
√

2,

|φ−
(m)〉 = (|H〉1 · · · |H〉m|V 〉1′ · · · |V 〉m′

+ |V 〉1 · · · |V 〉m|H〉1′ · · · |H〉m′ )/
√

2,

|ψ+
(m)〉 = (|H〉1 · · · |H〉m|H〉1′ · · · |H〉m′

− |V 〉1 · · · |V 〉m|V 〉1′ · · · |V 〉m′ )/
√

2,

|ψ−
(m)〉 = (|H〉1 · · · |H〉m|V 〉1′ · · · |V 〉m′

− |V 〉1 · · · |V 〉m|H〉1′ · · · |H〉m′ )/
√

2,

by |±(m)〉 = (|H〉1 · · · |H〉m ± |V 〉1 · · · |V 〉m)/
√

2. By rear-
ranging the order of modes (1, . . . , m, 1′, . . . , m′) to
(1, 1′, 2, 2′, . . . , m, m′), these are similarly decomposed into
the zeroth-level Bell states, |φ±〉 = (|+〉|+〉 ± |−〉|−〉)/

√
2

and |ψ±〉=(|+〉|−〉±|−〉|+〉)/
√

2, where |±〉=(|H〉 ± |V 〉)/√
2. For example,

|φ+
(m)〉 = (|H〉1 · · · |H〉m|H〉1′ · · · |H〉m′

+ |V 〉1 · · · |V 〉m|V 〉1′ · · · |V 〉m′ )/
√

2

= (|H〉1|H〉1′ · · · |H〉m|H〉m′

+ |V 〉1|V 〉1′ · · · |V 〉m|V 〉m′ )/
√

2

= 1√
2m−1

(|φ+〉11′ |φ+〉22′ · · · |φ+〉mm′

+ |ψ+〉11′ |ψ+〉22′ |φ+〉33′ · · · |φ+〉mm′

+ |φ+〉11′ |ψ+〉22′ |ψ+〉33′ · · · |φ+〉mm′

...

+ |φ+〉11′ · · · |φ+〉m−2,m−2′ |ψ+〉m−1,m−1′

× |ψ+〉mm′ + · · · )

= 1√
2m−1

∑
k=even�m

P[|ψ+〉⊗k|φ+〉⊗m−k],
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in the form of the equally weighted superposition of all
possible m-fold tensor products of even number k of |ψ+〉
and m − k of |φ+〉. Likewise for others, we can rewrite all
the first-level Bell states as

|φ±
(m)〉 = 1√

2m−1

∑
k=even�m

P[|ψ±〉⊗k|φ±〉⊗m−k],

|ψ±
(m)〉 = 1√

2m−1

∑
k=odd�m

P[|ψ±〉⊗k|φ±〉⊗m−k]. (C1)

Note that |φ±
(m)〉 includes even number of |ψ±〉, while |ψ±

(m)〉
includes odd number of |ψ±〉.

APPENDIX D: CBM SCHEME

1. Zeroth level

For the Bell measurement on photon pairs (denoted as
zeroth-level Bell measurement B(0)), we basically employ
the standard technique using linear optical elements such
as polarizing beam splitter (PBS), wave plates, and pho-
ton detection, unambiguously discriminating two of the four
Bell states |φ±〉 and |ψ±〉. We use three different types
(Bψ , B+, B−), which respectively discriminate (|ψ+〉, |ψ−〉,
|φ+〉, |ψ+〉, |φ−〉, |ψ−〉) as illustrated in Fig. 7. The two
identified Bell states out of four can be chosen by changing the
wave plates at the input modes of the first PBS. For example,
Bψ yields the following outcomes: (Success) If |ψ+〉 and
|ψ−〉 state enter into Bψ , at the first PBS two photons are
separated into different modes resulting in one click from the
upper two detectors and another from lower two. From all
possible events of separated clicks, |ψ+〉 and |ψ−〉 can be
deterministically identified: (H,H) or (V,V) click for |ψ+〉,
and (H,V) or (V,H) for |ψ−〉. (Failure) It is impossible to
discriminate |φ+〉 or |φ−〉 because all possible events of clicks
from one can be also obtained from the other (double clicks
at either upper or lower two detectors). (Loss) Less than two
clicks in all detectors indicates that photon loss occurs. Each
detector is assumed to resolve up to two photons.

2. First level

In the first-level Bell measurement B(1), m times of B(0)

are performed on photon pairs, by following a simple rule
illustrated in Fig. 8: First, Bψ is applied to arbitrary photon
pair (one from the first qubit and the other from the second

Bψ
H

V

H

V

PBS

45°
90°

B
H

V

H

V

PBS

45°

+ B
H

V

H

V

PBS

45°90°

-

FIG. 7. Three types of zeroth-level Bell measurements on
photon pairs as B(0) = {Bψ, B+, B−}, discriminating (|ψ+〉, |ψ−〉,
|φ+〉, |ψ+〉, |φ−〉, |ψ−〉) respectively, and convertible by changing
the wave plates at the input modes of the first PBS.

k
Bψ

Bψ

k+1

Failure

m
B±

B±

k

k+1

Bψ
Sucess
or Loss

eruliaF fo semit j )c(eruliaF )a(

1
Bψ

Bψ

j

Failure

m
B±

B±
j+1

Failure

(b) Success or Loss

FIG. 8. In the first-level Bell-state measurements B(1), (a) if
failure occurs at kth Bψ (k = 1, . . . , m), we apply Bψ again on next
photon pair [(k + 1)-th]. (b) If kth Bψ succeeds with |ψ±〉, apply B±
on all the remaining pairs [from (k + 1)-th to mth] together. If loss is
detected at kth Bψ , apply either B+ or B− on all the remaining pairs
together. (c) If Bψ fail total j times (from first to jth), apply either
B+ or B− on all the remaining pairs together.

qubit). If kth Bψ (k = 1, . . . , m) fails, Bψ is applied again
to (k + 1)-th pair. If kth Bψ succeeds with |ψ±〉, we apply
B± on all the remaining photon pairs [from (k + 1)-th to mth]
together. If photon loss is detected at kth Bψ , either B+ or B−
is selected arbitrarily and applied to all the remaining photon
pairs [from (k + 1)-th to mth]. If Bψ fails consecutively j
times ( j is determined by optimization, 0 � j < m), either B+
or B− is arbitrarily selected and applied to all the remaining
photon pairs [from ( j + 1)-th to mth]. By collecting all the re-
sults of m times of B(0), the result of B(1) can be determined as
follows: (i) suceess (full discrimination of |φ±

(m)〉 and |ψ±
(m)〉),

(ii) sign ± discrimination, or (iii) failure.

3. Second level

In the (logical) second-level Bell measurement B(2), we
perform n independent B(1). By collecting all their results, it
is possible to identify the logical Bell states, |�±〉 and |�±〉.

APPENDIX E: SUCCESS PROBABILITIES OF CBM

We can calculate the success probabilities of CBM under
the effects of photon losses, logical errors, and dark counts.

1. Without loss

We first assume that all the encoded photons are used in
CBM without loss. In every B(1), Bψ is applied first total
j times. In this case, any single success of Bψ can lead to
unambiguous discrimination of |φ±

(m)〉 and |ψ±
(m)〉: If any Bψ

succeeds with |ψ+〉 (|ψ−〉), one can find that the first-level
Bell state of this block is either |φ+

(m)〉 or |ψ+
(m)〉 (|φ−

(m)〉 or
|ψ−

(m)〉) as shown in Eq. (C1). Then, by performing B+ (B−)
on all the remaining photon pairs, it is possible to count the
number of |ψ+〉 (|ψ−〉) contained in this block so that one
can identify the result of B(1) as

even number of |ψ±〉 → |φ±
(m)〉,

odd number of |ψ±〉 → |ψ±
(m)〉.

If all the j times of Bψ fail, we arbitrarily select and perform
either B+ or B− on the remaining photon pairs: If the selection
is correct (with probability 1/2), their results also lead to
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full discrimination of |φ±
(m)〉 and |ψ±

(m)〉. Otherwise, only ±
sign can be identified from the fact that a failure of B+ (B−)
indicates that its sign is − (+). Therefore, B(1) discriminates
|φ±

(m)〉 and |ψ±
(m)〉 fully with probability 1 − 2− j−1 or identifies

only the ± sign with probability 2− j−1.
In the logical (second) level B(2), total n independent B(1)

are performed, whose result is either full or sign ± discrimi-
nation. Once any B(1) yields success (full discrimination) with
|φ±

(m)〉 or |ψ±
(m)〉, one can discriminate between � and �. Then,

the sign ± can be identified by counting the total number of
minus (−) signs among the outcomes of n times of B(1) (see
Table I): If even (odd) numbers of minus (−) signs appear,
the sign of logical Bell state is + (−). For example, when
n = 3 and the outcomes of three B(1) are {|φ−

(m)〉,+,−}, the
result of B(2) is |�+〉 as φ and an even number of minus
(−) signs appears in the results. It fails only when all the
n independent B(1) yield ± sign discriminations only with
probability 2−( j+1)n. Therefore, if we set the protocol by
j = m − 1, the overall success probability of the logical Bell
measurement is obtained as Ps = 1 − 2−nm.

2. Under losses

Let us now consider CBM under photon losses. Assume
that the photons in the first and second qubits survive with
rates η and η′, respectively. The success and failure probabili-
ties of B(1) can be calculated as below:

In the assumption that any of the 2m photons (contained
in two qubits) is not lost in each B(1) with probability (ηη′)m,
full discrimination is possible as long as either any single Bψ

succeeds or B± is chosen correctly (with 1/2 probability) after
j times of failure of Bψ , so that the success probability can be
written by

ps(η, η′) =
(

1 − 1

2 j+1

)
(ηη′)m. (E1)

Note that photon loss in any B(0) (Bψ or B±) does not
change the ± sign of the overall result of B(1). Therefore,
it turns out that the ± sign can be discriminated by either
any single success of Bψ or any single success or failure of
B± without loss. The failure of B(1) occurs only in the case
that all the performed Bψ fail until loss is first detected and
subsequently loss occurs in all B± performed on the remaining
photon pairs, so the failure probability can be directly written
by

p f (η, η′) =
m∑

l=m− j

(
1

2

)m−l

(ηη′)m−l (1 − ηη′)l , (E2)

where l indicates the number of B(0) where photon loss occurs.
An alternative way to calculate the failure probability is

p f (η, η′) =
m∑ m∑

l1+l2=m− j

p(l1, l2)

(
m

l1

)
ηm−l1 (1 − η)l1

×
(

m

l2

)
η′m−l2 (1 − η′)l2 , (E3)

where l1 and l2 are the numbers of lost photons at first and
second qubits, respectively. Note that there is no failure event

for l1 + l2 � m − j − 1 and
(a

b

) = 0 for a < b. Here, p(l1, l2)
can be calculated by counting all possible failure events as

p(l1, l2) =
min[l1+l2,m]∑

l=m− j

(
1

2

)m−l( l

ld , l1 − ld

)
/

(
m

l1

)(
m

l2

)

=
min[l1+l2,m]∑

l=m− j

(
1

2

)m−l( l

ld

)(
l − ld
l1 − ld

)
/

(
m

l1

)(
m

l2

)

where ld is the number of B(0) where both photons are lost.
One can easily verify that Eq. (E3) is the same with the
simple form in Eq. (E2). The probability of only sign (±)
discrimination can be obtained by 1 − ps(η, η′) − p f (η, η′).

In the logical (second) level, it is possible to discriminate
|�±〉 and |�±〉 even under photon losses. Note that photon
losses in any B(1) do not affect the result of the other B(1).
Thus, by collecting the outcomes of the n independent B(1),
one can fully discriminate |�±〉 and |�±〉 unless any B(1)

fails, or all the n independent B(1) yield ± sign discrimination
only. Based on these, the overall success probability of CBM
can be obtained by

Ps(η, η′) = (1 − p f )n − (1 − ps − p f )n, (E4)

for given encoding parameters (n, m, j) and transmission
probabilities η and η′. We can see that for η = η′ = 1 it
becomes Ps = 1 − 2−nm with j = m − 1.

3. Effect of logical errors

General logical errors, bit or/and sign flips, may be pro-
duced in CBM due to experimental imperfections, depolariza-
tion, or operation errors. Any bit and sign flip errors in each
physical (polarization) mode can induce also bit (symbol)
flip (φ ↔ ψ) or/and sign (+ ↔ −) flip in the result of Bell
measurement. Therefore, we need to carefully check and
analyze the effects of general logical errors in CBM. We first
assume that the bit and sign flip errors occur independently
with rate ex and ez respectively in each photon mode. As an
exemplary model, we can consider the depolarizing channel
as ρ → (1 − ed )ρ + ed

4

∑3
k=0 σkρσk , where σk ∈ {1, X,Y, Z}

are Pauli operators. The independent bit and sign flip error
rates in each photon mode can be then written by ex = ed/2
and ez = ed/2, respectively.

In the zeroth-level Bell measurement (i.e., Bell measure-
ment performed on photon pair, B(0)), both input photon
modes may contain bit or/and sign flip errors, so that the errors
are correlated in the result of Bell measurement. For example,
if the first and second input photon modes experience X ⊗ Y
(Z ⊗ Y ), logically sign (bit) flip would occur in the result of
the Bell measurement. By taking into account all possible
different error correlation of two input modes, we can obtain
the logical error rates in B(0) as e(0)

x = 2ex(1 − ex ) and e(0)
z =

2ez(1 − ez ).
In the first-level B(1), the bit flip error would propagate only

through its success events, while in the case of sign ± discrim-
ination and failure of B(1) any bit flip of B(0) does not affect the
performance. The bit flip error occurs in B(1) if odd numbers
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of B(0) contain bit flip errors, so that the rate is given by

e(1)
x,s =

m∑
p=odd

(
m

p

)(
e(0)

x

)p(
1 − e(0)

x

)m−p
.

On the other hand, any sign ± flip errors in any B(0) can be ef-
fectively corrected by majority vote among the success results
of all B(0) from the fact that the sign of all B(0) should be the
same in an ideal case due to our encoding strategy. The sign
flip error propagates through success and sign discrimination
results of B(1) with different rates. The sign flip error rate,
when B(1) succeeds, can be obtained by counting all possible
events that are not heralded by majority vote, as

e(1)
z,s = 1

1 − 2−( j+1)

j∑
q=0

1

2q+1

×
m−q∑

p=�(m−q)/2�

(
m − q

p

)(
e(0)

z

)p(
1 − e(0)

z

)m−q−p
.

When the result of B(1) is sign discrimination, the effect of
sign flip of B(0) can be reduced by majority vote among the
success outcomes of m times of B(0). The sign flip error rate
in this case can be calculated by counting all possible events
containing the unheralded errors as

e(1)
z,± =

⎧⎨
⎩

j−1∑
q=0

(
ηη′

2

)q[
1 − ηη′

2
− (ηη′)m−q

2
− (1 − ηη′)m−q

]

×
m−1−q∑

p=� m−1−q
2 �

(
m − 1 − q

p

)(
e(0)

z

)p(
1 − e(0)

z

)m−1−q−p

+
(

ηη′

2

) j[
1 − (ηη′)m− j

2
− (1 − ηη′)m− j

]

×
m− j∑

p=� m− j
2 �

(
m − j

p

)(
e(0)

z

)p(
1−e(0)

z

)m− j−p

⎫⎬
⎭
/

(1−ps−p f ).

In the second (logical) level, bit flip errors in the results
of B(1) can be heralded by majority vote among the success
outcomes due to the fact that the symbol either � or � of all
B(1) should be the same in our encoding strategy. The sign flip
errors of B(1) would induce also sign flip in the result of CBM
if odd number of B(1) contain sign flip errors. Two error rates
can be then calculated by

e(2)
s,x = 1

Ps(η, η′)

n∑
k=1

(
n

k

)
pk

s (1 − ps − p f )n−kXr(k),

e(2)
s,z = 1

Ps(η, η′)

n∑
k=1

(
n

k

)
pk

s (1 − ps − p f )n−kZr(k),

where

Xr(k) =
k∑

l=�k/2�

(
k

l

)(
e(1)

x,s

)l(
1 − e(1)

x,s

)k−l
,

Zr(n, k) =
k∑

p=odd�1

(
k

p

)(
e(1)

z,s

)p(
1 − e(1)

z,s

)k−p

×
n−k∑

q=even�2

(
n − k

q

)(
e(1)

z,±
)q(

1 − e(1)
z,±
)n−k−q

+
k∑

p=even�2

(
k

p

)(
e(1)

z,s

)p(
1 − e(1)

z,s

)k−p

×
n−k∑

q=odd�1

(
n − k

q

)(
e(1)

z,±
)q(

1 − e(1)
z,±
)n−k−q

.

The overall success probability of CBM can be divided
into the probabilities that contain each Pauli logical error as
Ps(η, η′) = Ps,i + Ps,x + Ps,y + Ps,z, where

Ps,x =
n∑

k=1

(
n

k

)
pk

s (1 − ps − p f )n−kXr(k)[1 − Zr(n, k)],

Ps,y =
n∑

k=1

(
n

k

)
pk

s (1 − ps − p f )n−k[1 − Xr(k)]Zr(n, k),

Ps,z =
n∑

k=1

(
n

k

)
pk

s (1 − ps − p f )n−kXr(k)Zr(n, k)

Ps,i =
n∑

k=1

(
n

k

)
pk

s (1−ps−p f )n−k[1−Xr(k)][1−Zr(n, k)].

(E5)
As a result, in principle, any possible flip and sign errors in
lower level (zeroth or first) can be reduced in the (logical)
second level by majority vote among the results of lower
level Bell measurements (as long as n � 3). The errors can
be corrected more effectively if increasing the encoding size
(n, m). It shows a tendency that bit flip errors are reduced
further when j parameter increases for a given m, as it yields
more success events of B(1) in the logical level. The perfor-
mance would depend on the given error rates, ed in polarizing
channels, and η and η′ of two qubits under losses. The optimal
strategy with (n, m, j) would thus differ according to the
purpose of the applications.

4. Effect of dark counts

Dark count is the click when no photon is present, a
possible imperfection of photodetectors. Note that there is no
additional input of photons (no ancillary input) during the pro-
cess in which the number of photons is restricted. Moreover,
if the logical Bell states are generated with photon pairs from
a typical down-conversion, the probability to contain more
than two photons in a single mode is negligible and can be
heralded in the generation process. Dark count is typically of
thermal origin. We assume that the dark count rate at each
photodetector λ is enough small so that the probability that
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dark counts occur at more than two detectors simultaneously
among four detectors in each B(0) is negligible, i.e., 6λ2(1 −
λ)2 + 4λ3(1 − λ) + λ4 ∼ 0. We thus define again the overall
dark count rate of each B(0) as γ ≡ 4λ(1 − λ)3.

In B(0), any separated clicks of two photons, i.e., (H,V),
(V,H), (H,H), (V,V)—one click from the upper two detectors
and another from the lower two—are the success events,
while double clicks at either upper or lower detectors, e.g.,
(HV,0) or (0,2V) are failure. If an additional click occurs at
one of the detectors, the results can be changed: Half of the
original success events are changed to failure by an additional
click, e.g., (HV,H), (HV,V), (H,HV), (V,HV), while the other
half events remain as success, e.g., (2H,V), (H,2V) regarded
as (H,V) success. Original failure events plus a dark count
yield 75% failure, e.g. (HV,V), (0,H2V), and 25% success,
e.g., (2H,V), (H,2V). In this case, the success event would
produce either sign or bit flip errors with probability 1/2.
A dark count compensating a photon loss yields normal two
clicks, 50% success and 50% failure. In this case, the success
would produce also logical errors (either sign or bit flip) with
probability 1/2 (we will handle such a logical error correction
in the following subsection). As a result, the original success
and failure probabilities of B(0), 1/2, are changed respectively
to [

1

2
(1 − γ ) +

(
1

2
× 1

4
+ 1

2
× 1

2

)
γ

]
ηη′

+1

2
γ [η(1 − η′) + (1 − η)η′] ∼

(
1

2
− γ

8

)
ηη′,

[
1

2
(1 − γ ) +

(
1

2
× 3

4
+ 1

2
× 1

2

)
γ

]
ηη′

+1

2
γ [η(1 − η′) + (1 − η)η′] ∼

(
1

2
+ γ

8

)
ηη′,

with transmission rates η and η′ of two qubits, where the
events of compensation by losses, γ (1 − η) and γ (1 − η′),
are negligible. Now, we can calculate the success probability
of B(1) as

ps(η, η′; γ ) ∼
{

1 −
(

1

2
+ γ

8

) j[1

2
+ 1

2

m− j∑
k=1

(
1

2

)k(m − j

k

)

× γ k (1 − γ )m− j−k

]}
ηmη′m,

where the second term in [·] is due to the additional failure
induced by dark counts in each B±. It becomes equivalent with
Eq. (E1) when γ = 0. Similarly we can calculate the failure
probability of B(1) as

p f (η, η′) =
m∑

l=m− j

(
1

2
+ γ

8

)m−l

(ηη′)m−l (1 − ηη′)l .

The overall success probability of CBM under dark counts
and losses is plotted in Fig. 9. It shows that the effect of dark
counts on the performance of CBM is small and diminished
further as the encoding size increases.

1 10 100 1000

0.5

1.0

Number of photons

P
s

ΗΗ' 1.0, 0.0
ΗΗ' 1.0, 0.2
ΗΗ' 0.9, 0.0
ΗΗ' 0.9, 0.2

FIG. 9. Effect of dark counts on the success probability Ps under
loss ηη′.

APPENDIX F: BUILDING BLOCKS
FOR QUANTUM NETWORK

1. Extending communication range by CBM

Let us check if CBM is useful to extend the communication
range over the direct transmission. A single photon can travel
to distance L with probability e−L/Latt , which decays expo-
nentially over distance. A parity encoded photonic qubit can
travel to distance L if two requirements are met: (i) at least one
photon arrives in each block and (ii) at least one block arrives
without loss, so that the transmission probability is Pdirect =
[1 − (1 − η)m]n − [1 − (1 − η)m − ηm]n, where η = e−L/Latt .
A significantly higher transmission probability than single-
photon transmission can be achieved within some limited
distance range as compared in Fig. 10. If CBM is applied at in-
termediate nodes (also at the final location), the transmission
probability is changed to Ps(ηL0 , η0)d+1 where d = L/L0 − 1
is the number of nodes. In Fig. 11, we compare the direct
transmission and the transmission assisted by CBM at inter-
mediate nodes (d = 1, 2), regarding the maximal transmission
distances and probabilities with a fixed number of available

FIG. 10. Direct transmission of parity encoded qubits. The parity
encoded qubits can travel with higher transmission probabilities
(rates) than single photon transmission within some limited distance
range depending on the encoding size.

052303-14



FUNDAMENTAL BUILDING BLOCK FOR ALL-OPTICAL … PHYSICAL REVIEW A 100, 052303 (2019)

Transmission Probability
0.9

2 Nodes
1 Node
Direct

1 10 100 1000
0

5

10

15

20

25

Total number of photons used

T
ra

ns
m

is
si

on
D

is
ta

nc
e

km

Transmission Distance
22km

2 Nodes
1 Node
Direct

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Total number of photons used

T
ra

ns
m

is
st

io
n

P
ro

ba
bi

lit
y

FIG. 11. Enhancement of the transmission probability and dis-
tance by CBM. The performances between the direct transmission
of parity encoded qubits and the transmission assisted by CBM with
equally separated nodes. Left: The maximal transmission distances
with probability 0.9 is plotted against the total number of photons
used in the process. Right: The maximal transmission probabilities
to transmit to 22 km is plotted. We here assumed η0 = 1.

photons in total. It clearly shows that the scheme assisted by
CBM can enhance the communication range and rate over
direct transmissions.

2. Estimated time (τp) to generate |�+〉
Assuming that |�+〉 is generated from photon pairs, we can

estimate the taken time τp:
(i) Suppose that entangled photon pairs in the polarization

degree of freedom are prepared through a typical down-
conversion scheme. By applying a type-I fusion gate based on
linear optics (defined in Ref. [74]) on photon pairs, GHZ states
with m + 1 photons (the coefficient 1/

√
2 will be omitted

hereafter), |GHZm+1〉 = |H〉⊗m|+〉 + |V 〉⊗m|−〉, can be gen-
erated, in which a single redundant mode is prepared in basis
|±〉 = |H〉 + |V 〉. Note that total m − 1 times of fusion gate
operations are applied on photon pairs to generate |GHZm+1〉.

(ii) Then, two |GHZm+1〉 states can be merged by applying
the type-I gate on their redundant modes, resulting in

(|H〉⊗m + |V 〉⊗m)(|H〉⊗m + |V 〉⊗m)|H〉
+ (|H〉⊗m − |V 〉⊗m)(|H〉⊗m − |V 〉⊗m)|V 〉, (F1)

composed of two blocks of m-photon GHZ states and a
redundant mode.

(iii) Likewise, by applying type-I gates on redundant
modes of states prepared in (F1), one can produce

(|H〉⊗m + |V 〉⊗m)⊗2n|H〉 + (|H〉⊗m − |V 〉⊗m)⊗2n|V 〉, (F2)

with total n − 1 times of gate operations.
(iv) Finally, by removing the redundant mode with a single-

photon measurement, the logical Bell pair |�+〉 is obtained. In
the assumption that we perform the fusion gate operations in
parallel based on the knock-down tournament-type procedure
[75], the average total time taken to generate |�+〉 can be
estimated as

τp(n, m) � (�log2 m� + 1 + �log2 n� + 1)τ

= (�log2 m� + �log2 n� + 2)τ, (F3)

where each term in the first equation indicates the time cost
for each step from (i) to (iv), respectively.

3. Numerical optimization

The total cost of photons for transmitting a logical qubit
over L can be estimated on average [28,31] as

Q = 2nm

Rt0

L

L0
. (F4)

where 2 nm is the number of photons in a logical Bell pair,
L/L0 is the number of intermediate nodes plus a sender node,
and Rt0 is the overall success probability. Note that it does not
contain the photons consumed to prepare the Bell pairs in each
nodes.

We perform numerical searches to optimize our protocol to
transmit a qubit over distance L. The optimized parameters
{n, m, j, L0} are determined to minimize the total cost of
photons Q, by taking into account possible losses and errors
on both qubits during transmission and operations in the
repeater. The minimized Q is evaluated by

Qmin ≡ min
n,m, j,L0

Q(n, m, j, L0) (F5)

by numerical searches over {n, m, j, L0}. For the general logi-
cal errors, we model the error in each photon mode by a typ-
ical depolarizing channel ρ → (1 − ed )ρ + ed

4

∑3
k=0 σkρσk ,

where σk are Pauli operators. The error rates are ex = ed/2
and ez = ed/2 in each physical photon mode, and e(0)

x =
ed (1 − ed/2) and e(0)

x = ed (1 − ed/2) in the zeroth level of
CBM (B(0)). Given depolarizing error rate ed , we can obtain
the average fidelity F of the transmission over distance L
(following the analyses in Appendixes E 3 and F 4).

In numerical searches, we set some parameters as below:
source and detector inefficiencies εsεd = 1 or 0.95, depolariz-
ing error rate ed = 5.6×10−5, the time taken in measurements
τ = 150 ns, the attenuation length Latt = 22 km, and the speed
of light in optical fiber c = 2×108 ms−1. We consider differ-
ent examples of transmission distances and obtain the results
as follows:

(i) For 1 000 km,

Qmin = 1.3×105, Rt0 = 0.702, F = 0.98, L0 = 1.7 km,

n = 13, m = 6, j = 2, τp = 1.35 μs, εsεd = 1.0,

η0 = 0.986,

Qmin = 7.4×105, Rt0 = 0.700, F = 0.96, L0 = 1.8 km,

n = 58, m = 8, j = 1, τp = 1.65 μs, εsεd = 0.95,

η0 = 0.934.

(ii) For 5 000 km,

Qmin = 1.0×106, Rt0 = 0.798, F = 0.97, L0 = 1.4 km,

n = 16, m = 7, j = 2, τp = 1.35 μs, εsεd = 1.0,

η0 = 0.986,
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Qmin = 7.4×106, Rt0 = 0.669, F = 0.93, L0 = 1.5 km,

n = 83, m = 9, j = 1, τp = 1.95 μs, εsεd = 0.95,

η0 = 0.932.

(iii) For 10 000 km,

Qmin = 2.4×106, Rt0 = 0.773, F = 0.97, L0 = 1.2 km,

n = 16, m = 7, j = 2, τp = 1.35 μs, εsεd = 1.0,

η0 = 0.986,

Qmin = 1.9×107, Rt0 = 0.698, F = 0.92, L0 = 1.4 km,

n = 92, m = 10, j = 2, τp = 1.95 μs, εsεd = 0.95,

η0 = 0.932.

4. Transmission fidelity

We also need to take into account the effects of logical
errors on the performance. The errors in each repeater nodes
propagate along the network to Bob, so the total success
probability can be divided into the transmission probabilities
with each Pauli errors by Ptot

s = Ptot
s,i + Ptot

s,x + Ptot
s,y + Ptot

s,z =
(Ps,i + Ps,x + Ps,y + Ps,z )L/L0 , where we use Ps(ηL0 , η0) =
Ps,i + Ps,x + Ps,y + Ps,z obtained in Appendix E 3. From the
fact that each logical error at receiver (Bob) occurs when
total odd number of repeater nodes produce the logical errors,
one can calculate the effective rate of bit and sign flip errors
divided by the overall transmission probability as

QX/Z = 1

2

[
1 − (Ps,i ∓ Ps,x ± Ps,z − Ps,y )L/L0

(Ps,i + Ps,x + Ps,y + Ps,z )L/L0

]
. (F6)

The overall transmission process with logical errors can
be then modeled by E (ρ) = PIρ + PX XρX + PY Y ρY +
PZZρZ with probabilities PI = Ptot

s,i /Ptot
s = (1 − QX )(1 −

QZ ), PX = Ptot
s,x/Ptot

s = QX (1 − QZ ), PY = Ptot
s,y/Ptot

s = (1 −
QX )QZ , PZ = Ptot

s,z /Ptot
s = QX QZ . The average fidelity of the

transmission is then given as F = PI . For the applica-
tion to quantum key distribution in our protocol, the key
generation rate can be asymptotically obtained by R =
max[Ptot

s {1 − 2h(Q)}/t0, 0] with the binary entropy function
h(Q) = −Q log2(Q) − (1 − Q) log2(1 − Q) and Q = (QX +
QZ )/2.

APPENDIX G: COMPARISON WITH OTHER
RECENT PROPOSALS

1. Loss-tolerant Bell measurements

Advanced Bell measurement schemes have been proposed
recently to achieve high success probabilities beyond 50%
limit based on linear optics. The highest probability achieved
so far is 1–2−N , with N-photon entanglement [39]. In fact (as
we proved in this article), the success probability 1–2−N is
the fundamental upper bound limited by linear optics with
N-photon encoding. However, when photon loss occurs, the
scheme in [39] requires an additional encoding for error
correction. A scheme proposed by Ewert et al. [32] similarly
employs a multiphoton entanglement based on the fact that
a parity encoded qubit is robust to losses [44]. It achieves
the success probability up to 1–2−n with N = nm photons
per qubit and tolerates some losses by means of redundantly
encoded photons. In this scheme, however, among total N =
nm photons in a logical qubit, at best n photons (one from each
n blocks) can contribute to enhance the success probability,
while the others are consumed redundantly.

CBM allows us to reach the upper bound of the success
probability by linear optics, 1–2−N , when total N = nm pho-
tons are used per qubit. Arbitrary high success probabilities up
to unit can be achieved even under photon losses by increasing
N without additional error correction, as long as it satisfies the
no-cloning theorem, i.e., ηη′ > 0.5. To our knowledge, CBM
is so far the only Bell measurement that enables us to satu-
rate both fundamental limits by linear optics and no-cloning
theorem. From a practical point of view, CBM outperforms
all the other proposals with respect to the achieved success
probability using the same number of photons in total and
under the same loss rate. In Table III, the success probabilities
of optimized CBM and the scheme in Ref. [32] are compared
for the same encoding size (n, m) and loss rate η. We note that
in CBM photons effectively contribute to either increase the
success probability or protect the qubit from losses, in contrast
to the scheme in Ref. [32], which consumes at least n(m − 1)
photons redundantly.

2. Third-generation quantum repeaters

Various quantum repeater protocols [28,29,31,32] have
been proposed recently based on quantum error corrections
and multiphoton encoding that can be used, in principle, to
correct losses and errors at each repeater stations. In contrast
to the standard quantum repeater protocols [19–21], quantum

TABLE III. The success probabilities achieved with encoding (n, m) under photon losses.

η = 1 η = 0.99 η = 0.95 η = 0.9 η = 0.75

(n, m) CBM [32]a CBM [32] CBM [32] CBM [32] CBM [32]

(1,1) 50 (50) 49.5 (49.5) 47.5 (47.5) 45 (45) 37.5 (37.5)
(2,2) 93.75 (75) 92.24 (73.99) 86.01 (69.66) 77.91 (63.79) 53.39 (44.82)
(3,10) 100.00 (87.5) 99.91 (83.56) 93.49 (65.61) 72.31 (43.71) 15.94 (8.21)
(6,5) 100.00 (98.44) 100.00 (97.91) 99.87 (94.69) 98.57 (87.74) 74.56 (52.86)
(10,3) 100.00 (99.90) 99.95 (99.87) 99.51 (99.51) 97.95 (97.95) 77.77 (77.77)
(23,5) 100.00 (100.00) 100.00 (100.00) 100.00 (100.00) 99.95 (99.95) 93.50 (92.44)

aA scheme proposed by Ewert et al. in Ref. [32].
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repeaters developed in this direction, sometimes referred to as
third-generation quantum repeaters [30], do not necessitate
round-trip heralding signals between nodes and long-lived
quantum memories. It may be thus expected that such a re-
peater, as the speed of communication is (in principle) limited
by only the local operation time, will be able to considerably
enhance the performance of quantum communication within
polynomial scaling over distances.

All-optical quantum repeaters, categorized also as third
generation, have been proposed recently [31,32] and some
preliminary models are experimentally demonstrated [41,42].
A repeater protocol based on optical systems provides some
advantages as discussed in Refs. [31,32]: It can be performed
by photon sources, linear optical elements, and photon de-
tectors. Since a deterministic conversion between photon and
matter qubits are demanding, all-optical operations with only
photonic qubits at room temperature may be quite an attractive
route to quantum repeaters compared to matter-based ap-
proaches. However, besides the requirement of efficient gen-
eration of photon resources, there exist two major difficulties
to overcome in all-optical approaches: (i) at best 50% success
probability of the Bell measurement on single photons and (ii)
photon losses not only during transmissions between repeaters
but also during the stationary process in the repeater. The
protocol proposed by Azuma et al. [31] takes a time-reversal
approach with the help of photonic cluster states to avoid
the probabilistic nature of Bell measurement. Against photon
losses, additional loss-tolerant encoding and feedforward tac-
tics proposed by Vernava et al. [75] are employed. It could
achieve comparable communication rates and resource costs
with the speediest matter-based protocol by Munro et al. [28].
The proposal by Ewert et al. [32] is based on an advanced
scheme of Bell measurement and the parity state encoding
(similar to ours, as we showed in the previous section). The
repeater is designed for one-way quantum communication
along the network, in which quantum teleportation is per-
formed with the Bell measurement on the arriving encoded
qubit and one qubit from the prepared entangled encoded pair.
It is claimed that, in principle, an ultrafast communication is
possible without feedforward, assuming instant generations
of entangled photons. Although the abovementioned propos-
als provide advanced protocols to achieve considerably fast
and resource-efficient communications over the conventional
quantum repeaters, neither of them address the ultimate limits
of the performance in designing quantum network following
this route.

Our Bell measurement scheme (CBM) can be directly used
as a building block for all-optical quantum network, either
for the entanglement distribution between Alice and Bob
or for one-way transmission of a qubit across the network.
Either designs have exactly the same success probabilities
and performances in our protocol, so that any type can be
chosen depending on the purpose of the applications. This is in
contrast to other proposals; the protocol by Azuma et al. seems
to be more suitable for entanglement distribution, and the
protocol by Ewert et al. is designed for one-way transmission.
Moreover, since CBM could reach both fundamental upper
bounds (efficiency and loss-tolerance), its performance in the
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FIG. 12. Maximum transmission probabilities Rt0 over 1 000 km
using quantum repeater (L0 = 1.7) based on (a) CBM and (b) the
scheme proposed in Ref. [32]. We set η0 = 0.99 on both qubits,
by taking into account the losses and imperfections during the
preparation and measurement processes in each repeater.

application to quantum repeaters would exceed other propos-
als. For analyzing the performance, in contrast to the analysis
based other protocols [76], we take into account all possible
errors, imperfections, and losses on both qubits, not only
during the transmission but also during the process in the re-
peaters. This may be reasonable that, in all-optical implemen-
tations, losses may be quite detrimental even to the qubit stay-
ing in the repeater (i.e., stationary qubit) for the entanglement
generation and measurement process. In this circumstance, we
first compare the maximum transmission probabilities over
1 000 km between ours and the proposal in Ref. [32], obtained
by numerical searches for a given encoding size (n, m) and
with 1% overall loss and imperfection on both qubits in the
repeater (η0 = 0.99), as shown in Fig. 12. It shows that ours
could achieve almost near-deterministic communication prob-
abilities within moderate encoding sizes, while the protocol
by Ref. [32] reaches around 50% probability with the same
encoding size. This indicates that our protocol performs better
in more realistic models. We then fully analyze and compare
the performance for arbitrary long-distance quantum commu-
nications in terms of the optimal strategy to minimize the pho-
ton cost overall. For fair comparison, we take the parameters
which are the same as or properly selected from the proposals
in Ref. [31]. Our optimal protocol for the communication
length L = 5 000 (1 000) km yields Rt0 = 0.70 (0.70) with
total Qmin = 7.4×106 (7.4×105) number of photons. If we
compare these with the results in Ref. [31], Qmin = 4.0×107

(4.1×106) with Rt0 = 0.69 (0.58), our protocol costs only one
order of magnitude less photons (≈18% photons) to achieve
comparable transmission probabilities with the optimal proto-
col in Ref. [31]. If the same order of photon are used, much
higher (up to unit) transmission probability can be attained
with our scheme. The transmission rate R is dependent on the
local operation time as ≈1/t0 in the repeater. The required
components in our repeater is photon source, linear optics, and
photon detection (with one or two-step feedforward of wave-
plate modulation). As CBM plays a role both for the logical
Bell measurement and error corrections, neither additional
gate operations nor quantum memories are necessary in our
protocol.
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