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Interdimensional universality of dynamic interfaces
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Despite the complexity and diversity of nature, there exists univer-
sality in the form of critical scaling laws among various dissimilar
systems and processes such as stock markets1, earthquakes2, crackling
noise3, lung inflation4 and vortices in superconductors5. This univer-
sality is mainly independent of the microscopic details, depending
only on the symmetry and dimension of the system. Exploring how
universality is affected by the system dimensions is an important
unresolved problem. Here we demonstrate experimentally that
universality persists even at a dimensionality crossover in ferromag-
netic nanowires. As the wire width decreases, the magnetic domain
wall dynamics changes from elastic creep6–9 in two dimensions to a
particle-like stochastic behaviour10 in one dimension. Applying
finite-size scaling, we find that all our experimental data in one
and two dimensions (including the crossover regime) collapse onto
a single curve, signalling universality at the criticality transition.
The crossover to the one-dimensional regime occurs at a few
hundred nanometres, corresponding to the integration scale for
modern nanodevices.

The universality manifests in the self-organized scale-invariant
scaling behaviour of metastable states with huge degrees of freedom.
This scaling behaviour is inevitably related to the system dimensions
and so we wished to explore the scaling criticality for different dimen-
sions and to clarify the interlinking between them. Much theoretical
work has been devoted to clarifying universality classes in various
dimensions11–15 but experimental evidence has been lacking for low-
dimensional systems because signals from small specimens become
harder to detect as the dimension reduces. Recently, however, two-
dimensional (2D) systems have been successfully studied using
magneto-optical Kerr effect (MOKE) microscopy on ferromagnetic
thin films, manifesting the Barkhausen criticality16 and its tunability
with temperature17. Another experimental test in two dimensions
involves scaling criticality in the creep motion of a magnetic domain
wall (DW) driven by a weak magnetic field6–9. Excellent agreement is
found with the theoretical formula6,7 predicting the collective DW
motion. Starting from this well-established 2D creep criticality, here
we demonstrate that the criticality in ferromagnetic nanowires exhibits
universal transition behaviour from two dimensions to one as the wire
width decreases. The transition threshold is revealed to be determined
solely by the ratio between the wire width and the length of the DWs
that move together. Below the transition threshold, the nanowires
exhibit another distinct scaling behaviour of one-dimensional (1D)
DW hopping criticality10.

Nanowires of various widths ranging from 4mm to 150 nm were
patterned by electron-beam lithography and ion milling onto a
5.0-nm Ta/2.5-nm Pt/0.3-nm Co90Fe10 /1.0-nm Pt film with perpendic-
ular magnetic anisotropy. The dynamic DW criticality was investigated
by monitoring the DW propagation speed generated by a magnetic field.
The nanowires were initially saturated under a sufficiently large mag-
netic field and then a reversed domain was formed by thermomagnetic

writing on the nanowires under a small reversed field. The DW arrival
time after applying a magnetic field was then measured at a position
40mm away from the initial DW position by means of MOKE detec-
tion. The arrival times observed spanned more than four orders of
magnitude (10 ms to 1,000 s) while we varied the strength of the mag-
netic field.

We observed a distinct transition from the 2D creep criticality with
decreasing wire width w. In two dimensions, the DW propagation
speed V follows the form of the creep scaling criticality7 with respect
to the applied magnetic field H according to V(H) 5 V0exp(2aH2m).
Here, V0 is the characteristic speed and a (5 UCH

m
crit/kBT) is a con-

stant related to the scaling energy constant UC, the critical magnetic
field Hcrit, and the thermal fluctuation energy kBT. The scaling expo-
nent m is solely determined by the dimensionality of the system and
the DW roughness. In 2D systems, it has been theoretically predicted7

and experimentally verified6 that m equals 1/4. Figure 1 shows the plot
of ln(V) versus H2m for nanowires of various widths. The linear
dependence in Fig. 1a–c clearly demonstrates that wide wires
(w $ 600 nm) exhibit typical 2D creep behaviour. However, for wires
narrower than 500 nm, the data begin to deviate from the 2D linear
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Figure 1 | Nonequilibrium criticality of DW speed along ferromagnetic
nanowires. Data are shown for different wire widths: 4.2mm (a), 1.4mm
(b), 756 nm (c), 499 nm (d), 392 nm (e), 270 nm (f), 199 nm (g) and 159 nm
(h). The symbols show averaged values of ten repeated measurements for
each H. The error bar (ordinate) is the standard deviation of the time
measurements plus the maximum inaccuracy of initial DW positions. The
error bar (abscissa) is 60.15 Oe corresponding to the inaccuracy of the H
measurement. The scale bar beneath panel h shows the values of H. The red
lines are the best fit to the 2D criticality (m 5 1/4 is used) and the green lines
are the best fit to the 1D criticality given by equation (1).
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behaviour and finally, completely distinct behaviour appears in
Fig. 1f–h for w # 300 nm.

A standard scaling treatment is adopted to examine the crossover
between these distinct scaling behaviours. All the data shown in Fig. 1
are replotted onto a single plot in Fig. 2a with scaling axes where the
abscissa is aH2m and the ordinate is ln(V/V0). The values of a and V0

are experimentally determined from the best fit for each wire (the red
lines in Fig. 1). In Fig. 2a, all the data are collapsed onto a straight line
with different thresholds for the upward deviations. The threshold
values turn out to depend primarily on the ratio of the wire width to
the collective DW length Lcol. Here, Lcol is the length of a DW segment
that thermally jumps over the quenched disorder potential collectively
and gives rise to the creep motion. According to ref. 6, Lcol 5 LC[uCm/
2j(m11)](21m)/3(Hcrit/H)(21m)/3 (Supplementary Information V),
where the Larkin length LC 5 (sj/MSHcrit)

1/2 is the DW segment
length (,Lcol) above which effects of the disorder potential become
dominant over the DW elasticity. Here s is the DW energy density per
unit area, MS is the saturation magnetization, j is the correlation length
of the disorder potential, and uC is the roughness of the DW segment
with length LC. We note that Lcol is proportional to a negative power of
H and thus, for a sufficiently small field Lcol becomes larger than the

wire width. When Lcol . w, it is reasonable to expect that the collective
DW segment length becomes w instead of Lcol and the 2D criticality
breaks down. Shorter collective segments experience a smaller energy
barrier6, so this replacement of Lcol by w boosts the DW speed and the
scaling curve is consequently bent upward. The regime of the 2D
criticality is therefore bounded by the ratio w/Lcol, explaining why
narrower wires exhibit larger deviation from the 2D criticality.

Strikingly, all the data collapse onto a universal crossover curve when
w/Lcol is chosen as the abscissa and ln(V0/V)/aH2m as the ordinate
(Fig. 2b). The values of Lcol used in the plot are estimated by assuming6

uC < j < 10 nm and s < 10 mJ m22 and using the experimental values
MS 5 1.7 T and Hcrit < Hp. The Bloch wall energy density s is estimated
using the typical values of the magnetic anisotropy 5 3 105 J m23 and
the exchange constant 1.3 3 10211 J m21. Here, Hp is the DW propaga-
tion field, as discussed below. The collapse onto a single curve is
good evidence for the universality of the criticality transition and the
existence of a finite-size scaling function with w/Lcol as a single govern-
ing parameter. The criticality transition exhibits gradual, rather than
abrupt, crossover behaviour from the 2D criticality to another universal
criticality. We verify that a simple change of m cannot explain this new
criticality (Supplementary Information IV).

One-dimensional criticality successfully explains the new criticality.
In a true 1D structure, the DW has zero dimension and should behave
as a particle. In addition, there is no way of detouring around pinning
sites and so the DW can propagate only by hopping over the pinning
sites. Therefore, we adopt a 1D model10 that treats the DW as a particle
stochastically hopping back-and-forth over a quenched disorder
potential. The average DW speed at steady state under an applied field
H is then given by V(H) 5 (,Dxn./,1/W z

n .)(1 2 ,W {
nz1/

W z
n .), where W+

n is the rate of jumping from a pinning site n to a
neighbouring pinning site n 6 1 per unit time and Dxn is the distance
between the sites n and n11. The equation is generalized from the
original theory10 by allowing the random distribution of not only W+

n

but also Dxn. We verify that V involves only the decoupled separate
averages of the two quantities. Here, , . denotes the average over
all the sites n, because in general pinning sites are not identical. For the
simplest case with all sites identical, the equation is simplified to
V 5Dx(W1 2 W2). We note that even when the DW is driven
in one particular direction (say, W1 . W2), there exists a finite
probability for a DW to hop in the reverse direction. Although this
reverse motion is not important in the 2D regime, it turns out that it
cannot be ignored in the 1D regime. In the thermally activated process,
W6(H) becomes f0exp(2E+

B (H)/kBT) according to the Arrhenius
law, where f0 is the attempt frequency and E+

B is the energy barrier.
For small H, we use the Taylor expansion to obtain

E+
B (H) 5 a+

0 1 a+
1 H 1

1

2
a+

2 H
2

, where a+
m ~LmE+

B =LHm
��
H~0

.

(Incidentally, the Taylor expansion is not allowed in the 2D regime
because the energy barrier is singular at H 5 0.) The inversion sym-
metry of the wire and magnetic field provides the symmetry relations
az

n 5 (21)na{
n between the Taylor coefficients. The DW speed is then

finally given to be:
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The green lines in Figs 1 and 2 show the best fit to equation (1).
This absolute theoretical conformity with all the experimental data
provides strong evidence of the 1D criticality.

The Taylor coefficients in equation (1) have clear physical meanings
in view of the conventional theory of thermally activated magnetiza-
tion process18–20. The zeroth-order coefficient a+

0 is closely related to
the thermal stability of data storage with the retention time
t 5 f {1

0 exp(a+
0 /kBT). The first-order coefficient a+

1 corresponds to
7VAMS. The activation volume VA is the characteristic volume
acting as a single particle during the magnetization process, which is
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Figure 2 | Finite-size scaling and universal crossover behaviour of DW
criticality. Scaled plots with ln(V/V0) versus aH–m (a) and ln(V0/V)/aH–m

versus w/Lcol (b). In both panels, the symbols with different colours
correspond to different wire widths as shown. The error bars are the same as
those in Fig. 1. The red and green lines are the best fit to the 2D and 1D
criticalities, respectively.
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also related to the hopping distance Dx. The second-order coefficient
a+

2 is seen in the uniaxial magnetic anisotropy model19 as a+
2 5 (a+

1 )2/
2a+

0 . In this instance, the DW propagation field Hp can be defined as
Hp 5 ja+

1 /a+
2 j, which is conceptually equivalent to the minimum field

Hcrit required to remove the energy barrier. Our experimental analysis
reveals that the propagation field Hp exhibits 1/w dependence, which
we ascribe to the influence of the wire edge roughness8, with a
proportionality coefficient of 4.6 Oemm and an intercept of 25.2 Oe
(Supplementary Information VI).

The activation volume VA provides a bound on the regime of the 1D
criticality. Figure 3 shows the diameter dA of the activation volume,
that is, VA 5pd2

Atf/4, determined by the best fit to equation (1). Here,
tf denotes the film thickness. The figure clearly shows that there exist
two distinct regimes of the wire width. For narrow wires, the activa-
tion diameter dA equals the wire width w, as indicated by the blue line
in Fig. 3, because the activation volume is extrinsically confined by the
geometrical constriction21. A single activation volume then occupies
the whole width of the wire and there remains only one possible DW
motion: hopping over the activation volume along the wire as a 1D
particle. On the other hand, for wide wires, the activation diameter is
smaller than the wire width. For this case, the wire cross-section con-
tains multiple activation volumes and the 1D particle picture breaks
down. The crossover between the two regimes occurs at around
300 nm, in agreement with the transition between one and two dimen-
sions as seen in Fig. 1. We therefore conclude that the activation
volume in comparison with the wire width is another governing factor
for dimensionality from the viewpoint of 1D criticality.

We report the experimental verification of new statistical scaling
criticality in one dimension as well as the transitional behaviour from
two dimensions to one. Universality exists at the criticality transition,
manifesting gradual crossover behaviour between dimensions at
about a few hundred nanometres. These results provide a step forward
to a new scaling criticality for nanometre-sized physical structures, as
yet much less examined, which are fundamental building blocks of
emerging nanoscience and nanotechnologies.

METHODS SUMMARY
The scanning MOKE microscope is equipped with an objective lens (numerical

aperture 5 0.9) and a pulsed laser (l 5 658 nm), which provides a 440-nm laser

spot. The out-of-plane component of the magnetization state is monitored by

detecting the polar MOKE signal. The laser intensity at the sample is kept lower

than 45 mW to avoid possible heating damage. The temperature rise at the laser

spot is estimated to be less than 1 K. The phase modulation technique is adopted

with a lock-in amplifier, a photo-elastic modulator, and a low-noise photodiode

with 2 3 106 V A21 signal gain. The signal voltage is collected by a data acquisi-

tion board at 250 kHz. A home-built electromagnet is used to generate a mag-

netic field of up to 200 Oe with the rising time less than 1 ms. A large magnetic

field (,200 Oe) is first applied to saturate the nanowire and then a magnetic
domain is initiated by thermomagnetic writing with a magnetic field pulse

(25 Oe and 3 ms) and a laser pulse (5.6 mW and 1 s) focused on a local area of

the nanowires. The DW is reproducibly formed with an accuracy of 61mm

(62 mm for w , 200 nm). Both the MOKE signal and the magnetic field trigger

signal are simultaneously detected to precisely determine the DW arrival time.

All the measurements are repeated ten times. The magnetic field H is swept from

0 to 200 Oe with increments of 0.1–0.5 Oe depending on the measurable DW

speed range.
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14. Perković, O., Dahmen, K. & Sethna, J. P. Avalanches, Barkhausen noise, and plain
old criticality. Phys. Rev. Lett. 75, 4528–4531 (1995).

15. Le Doussal, P. & Vinokur, V. M. Creep in one dimension and phenomenological
theory of glass dynamics. Physica C 254, 63–68 (1995).

16. Kim, D.-H., Choe, S.-B. & Shin, S.-C. Direct observation of Barkhausen avalanche in
Co thin films. Phys. Rev. Lett. 90, 087203 (2003).

17. Ryu, K.-S., Akinaga, H. & Shin, S.-C. Tunable scaling behaviour observed in
Barkhausen criticality of a ferromagnetic film. Nature Phys. 3, 547–550 (2007).

18. Pommier, J. et al. Magnetic reversal in ultrathin ferromagnetic films with
perpendicular anisotropy: domain observations. Phys. Rev. Lett. 65, 2054–2057
(1990).

19. Kirby, R. D., Shen, J. X., Hardy, R. J. & Sellmyer, D. J. Magnetization reversal in
nanoscale magnetic films with perpendicular anisotropy. Phys. Rev. B 49,
10810–10813 (1994).

20. Choe, S.-B. & Shin, S.-C. Phase diagram of three contrasting magnetization
reversal phases in uniaxial ferromagnetic thin films. Appl. Phys. Lett. 80,
1791–1793 (2002).

21. Skomski, R., Zeng, H., Zheng, M. & Sellmyer, D. J. Magnetic localization in
transition-metal nanowires. Phys. Rev. B 62, 3900–3904 (2000).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements This study was supported by KOSEF through the NRL
programme (R0A-2007-000-20032-0). H.-W.L. was supported by KOSEF
(R01-2007-000-20281-0, R11-2000-071). K.-J.K. was supported by the Seoul
Science Fellowship and the Seoul R&BD programme. J.-C.L. was supported by
KOSEF (R11-2008-095-01000-0). K.-H.S. was supported by the KIST Institutional
Program and by the TND Frontier Project funded by MEST.

Author Contributions S.-B.C. planned and supervised the project; K.-J.K. designed
and performed the experiments; C.-W.L., Y.J.C., and. S.S. prepared sample films;
J.-C.L. and K.-H.S. carried out patterning process; S.-M.A. and K.-S.L. characterized
the films and nanostructures; K.-J.K., S.-B.C. and H.-W.L. performed theoretical
analysis and wrote the manuscript.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. Correspondence and requests for materials should be
addressed to S.-B.C. (sugbong@snu.ac.kr) or H.-W.L. (hwl@postech.ac.kr).

400 dA=w

100

200

300

d
A
 (n

m
)

200
w (nm)

800600400

Figure 3 | Variation of activation diameter with respect to wire width. The
symbols show the activation diameters dA from the best fit to 1D criticality.
The error bars correspond to the standard error in the x-square fitting
(ordinate) and the wire width variation (abscissa), respectively. The blue line
guides the eye for dA 5 w.
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