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a b s t r a c t

We present an analytic theory of the domain wall depinning in magnetic nanostructure with

perpendicular magnetic anisotropy. The variational principle reveals that the wall is bent in the form of

a circular arc which intersects the structure boundaries perpendicularly. The radius is inversely

proportional to the magnetic field. With increasing the field the radius shrinks, followed by depinning

from the constriction when the arc is not geometrically allowed. The depinning field is proportional to

the sine of the constriction angle and the inverse of the constriction width. The validity of the theory is

confirmed by comparison with the micromagnetic simulation.

& 2009 Elsevier B.V. All rights reserved.
Ferromagnetic nanostructures have drawn great technological
attention for various prospective applications of the next genera-
tion memory and logic devices [1,2]. In these devices, the data are
stored in the form of the magnetic domains and the domain walls.
The domain walls in nanostructures propagate via the successive
pinning and depinning processes from the structural constrictions
[3–5]. Consequently, the threshold field for wall motion is largely
determined by the nanoscale structural configuration. To precisely
control the domain wall movement, it is thus crucial to under-
stand the influence of the structural roughness on the domain
wall dynamics. In this letter, we present a rigorous analytic
solution of the domain wall profile in magnetic nanostructure
with perpendicular magnetic anisotropy. The evolution of the wall
profile with respect to an applied magnetic field is then discussed
and finally, a rigorous analytic formula of the depinning magnetic
field is presented.

The planar view of the typical nanowire structure with edge
roughness is depicted in Fig. 1(a). Here, the right edge has the
roughness with x ¼ w(y) and the left edge is assumed to be flat
with x ¼ 0. The flat structure of the left edge is considered only for
the mathematical convenience and the theory can be easily
extended for the case of both rough edges. When there exist two
magnetic domains, one can intuitively imagine that the domain
wall is placed at the narrowest channel under zero magnetic field.
It is ascribed to the minimization of the domain wall energy with
minimum domain wall length. We put y ¼ 0 for minimum w(y)
and the two intersection points to the wire edges are denoted
by A(0,0) and B(x0,0) as shown in Fig. 1(b). Applying an external
magnetic field H to the perpendicular direction along ẑ, the
ll rights reserved.
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domain wall is pushed to a side to reduce the Zeeman energy. The
intersection points thus move to different places as denoted by A0

and B0(x1,y1) in Fig. 1(c). The domain wall is also bent to a curve
and we adopt an arbitrary function y ¼ f(x) as the wall profile.

The minimization condition of the magnetic energy is then
considered to determine the domain wall profile f(x). The energy
difference between the two domain states shown in Fig. 1(b and c)
is mainly ascribed to the change in the domain wall energy EW and
the Zeeman energy EZ. The deviation of the other energies such as
the dipolar interaction across the smoothly bent domain wall and
the imperfect wall formation at rough edges is at least one order
smaller than the change in EW and EZ, as confirmed by
micromagnetic calculation [6].

The domain wall energy is simply proportional to the length of
the domain wall and thus, the difference in the domain wall
energy between the two configurations is given by

DEW ¼ EW ðHÞ � EW ð0Þ ¼ sW t
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where sW is the domain wall energy density per unit area and t is
the thickness of the nanostructure. On the other hand, the
difference in the Zeeman energy is

DEZ ¼ � 2MSHt
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where MS is the saturation magnetization and lW is the domain
wall width. The first term corresponds to the area swept by the
domain wall and the second term corresponds to the area
occupied by the domain wall with the finite domain-wall width.
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Fig. 2. (a) The edge profile w(y) for a triangular notch (left) and a sinusoidal

roughness (right). (b) The magnetic energy landscape DE for pinned case (solid

line) and unpinned case (dashed line). (c) The magnetic pinning field Hp (solid

line). The dashed lines show the energy maximum condition provided by Eq. (6).

Table 1
Values of the parameters for micromagnetic simulation.

Simulation parameter Value

Perpendicular magnetic anisotropy KU 1.0�105 J/m3

Saturation magnetization MS 2.3�105 A/m

Exchange stiffness AX 1.3�10–11 J/m

Domain wall energy density sW ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AX ðKU � 1=2m0M2

S Þ

q
3.7�10–3 J/m2

Domain wall width lW ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AX= KU � 1=2m0M2

S

	 
r
43.8 nm

Film thickness 5 nm

Cell size 2.5 nm

Fig. 1. (a) The planar view of the nanowire structure with edge roughness. (b) The

domain structure under zero magnetic field. (c) The domain structure under an

applied magnetic field H.

K.-J. Kim, S.-B. Choe / Journal of Magnetism and Magnetic Materials 321 (2009) 2197–21992198
The total energy difference DE ¼ DEW+DEZ is then given by

DE ¼ 2MSHt

Z x1

0
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdf=dxÞ2
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,

(3)

with a ¼ sW/2MSH�lW/2. The first term inside the parenthesis
corresponds to the energy determined by the domain wall profile
y ¼ f(x) between two end points A0 and B0. The minimization
condition of the first term is obtained by the calculus of variations
and the corresponding Euler differential equation is

d

dx

aðdf=dxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdf=dxÞ2

q
0
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The solution is readily obtained as y ¼ f ðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðx� xcÞ

2
q

þ yc , where xc and yc are originally introduced as

the integration constants. This equation is equivalent to (x�xc)
2+

(y�yc)
2
¼ a2 and thus, it proofs that the domain wall forms a

circular arc of the radius a with the center (xc,yc).
One integration constant yc is removed by replacing with

yc ¼ y1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðx1 � xcÞ

2
q

, since the circular arc passes through

the point B0. The other integration constant xc is determined by

the energy minimization condition i.e. q(DE)/qxc ¼ 0. It can
be then shown that xc ¼ 0 after some algebra. It implies that
the center of the circular arc always lies on the left edge of the
nanowire and consequently, the domain wall intersects the left
edge perpendicularly, in accordance with the general observation
in micromagnetic prediction [7]. It also explains the origin of the
decalcomania domain patterns between the nanowires with
the single and double notches, recently discussed elsewhere [7].
The energy difference in Eq. (3) is then consequently rewritten to
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after replacing the integration constants and carrying out the
integration of the first term.

Fig. 2 illustrates the energy landscapes for some typical edge
profiles. Here, we test a triangular notch (left) and a sinusoidal
roughness (right) as plotted in Fig. 2(a). For a large a, the energy
landscape exhibits the local minimum as shown by the solid lines
in Fig. 2(b). The domain wall is thus pinned at the position of the
local minimum. For a given ap, the pinning position (xp,yp) is
determined to be

xp ¼ wðypÞ ¼ ap sin yp ¼
sW

2MSHp
�

1

2
lW

� �
sin yp, (6)
from the condition dðDEÞ=dx1jxp
¼ 0, where the yp is the angle of

the tangential line at the position, i.e. yp ¼ cot�1ðdy1=dx1Þjxp
as

depicted in Fig. 1(c). For the case of the finite domain-wall width,
yp is replaced by the average angle /ypS over the domain wall
width. Eq. (6) corresponds to the geometrical situation that the
center of the circular arc is placed at the intersection point
between the left edge and the tangential line. It implies that the
domain walls at equilibrium always intersect both the edges
perpendicularly.

Finally, the domain wall evolution with respect to an external
field and the depinning mechanism from the local structural
constriction are considered. Fig. 2(c) shows the local pinning field
Hp with respect to the pinning position yp obtained from Eq. (6)
with the average angle over the finite domain wall width. Note
that Eq. (6) provides both the energy minimum (solid line) and
energy maximum (dashed line). It is seen from the figure that the
pinning field exists only over a finite range. It is because the
energy minimum disappears outside the range, where the circular
arc with perpendicular intersection to both the edges is
geometrically forbidden. Typical energy landscapes for this case
are depicted by the dashed lines in Fig. 2(b). The depinning field is
thus given by the maximum value of the local pinning field as

Hdp ¼
sW

2MS
MAX

sin yp

� �
xp þ 1=2lW sin yp

� �
" #

, (7)

where MAX[] returns the maximum value inside the parenthesis.
For the case of a triangular notch, the depinning field is written
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Fig. 3. (a) The depinning field Hdp with respect to the notch slope angle y for

several wire width as denoted in the figure. The notch depth is set to a half of the

wire width. The symbols show the micromagnetic simulation results and the lines

show the analytic predictions by Eq. (8). (b) Snapshot of the simulated domain

configuration just before depinning. The center of the bent domain wall and the

residual circular arc are drawn as guides to the eyes.
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to be

Hdp ¼
sW

2MS

sin y
hþ 1=2lW sin y

, (8)

where h is the minimum gap distance. The present result is
consistent with the previous theory [4] for the special case of
y ¼ p/2 and lW ¼ 0.

To confirm the validity of the theory, micromagnetic simula-
tion is carried out for triangular notches with varying the notch
angle for several different wire widths. The simulation is
performed using OOMMF [8]. The detailed simulation scheme is
described elsewhere [7,9,10]. Values of the magnetic properties
used in the simulation are as listed in Table 1. Fig. 3 summarizes
the results. The symbols are the simulation results and the
lines are the analytic predictions from Eq. (8). The quantitative
coincidence between two results verifies the validity of the theory.
We also confirm that the previously reported micromagnetic
simulation results [7] are also quantitatively fitted to the present
theory.
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