HARMFUL AXIONS IN SUPERSTRING MODELS

Kiwoon Choi 1

Department of Physics, Brown University, Providence, RI 02912, USA

and

Jihn E. Kim 1

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Received 1 February 1985

We show in this paper that the existing superstring models, $\text{E}_8 \times \text{E}_8$ and O(32), have the axion decay constant problem. It is either 300 GeV or 10^{16} GeV, which are outside the cosmologically allowed region. It is also pointed out that the invisible axion with $10^8 \text{ GeV} \lesssim v_{PQ} \lesssim 10^{12} \text{ GeV}$ is a necessity for all theories which have an effective interaction $(\phi_n/M_p)F \tilde{F}$ below the Planck scale.

The type I superstring theories with O(32) or $\text{E}_8 \times \text{E}_8$ Yang–Mills groups have attracted a great deal of attention recently [1–4] because of the absence of the Yang–Mills and gravitational anomalies. One clear prediction of these theories is the existence of the axion [5,6].

On the other hand, there exists an upper bound [7] on the invisible axion scale v where the Peccei–Quinn symmetry is broken. Since the energy density of the coherent axion field is proportional to v, $v > 10^{12} \text{ GeV}$ is not acceptable in the standard big bang cosmology.

In superstring theories, there appear [2] two types of axions, the model independent one (≡ MI axion) and the Peccei–Quinn type one (≡ PQ axion). The MI axion scale is near the Planck scale because the nonrenormalizable interaction of the MI axion arises as a result of the compactification. The PQ axion scale is not determined by the compactification, but determined by the process of spontaneous symmetry breaking. Because the MI axion scale violates the aforementioned cosmological bound, which we will show later, the superstring theories at a first glance seem to be ruled out in the standard big bang cosmology. However, this is not necessarily so. This is because there can in principle exist an invisible axion of the Peccei–Quinn type.

For the canonically defined MI axion field ϕ_n and the canonically defined PQ axion field ϕ_a, the lagrangian is

\[\mathcal{L} = -\frac{1}{2} (\partial_\mu \phi_n)^2 - \frac{1}{2} (\partial_\mu \phi_a)^2 + \frac{1}{32 \pi^2} (\phi_n/M_a + \phi_a/v_{PQ}) F_\mu^i \tilde{F}^{\mu \nu}, \]

(1)

where F_μ^i is the gluon field strength and $\tilde{F}^{\mu \nu}$ is its dual. It is trivial to notice from eq. (1) that only one combination couples to $F \tilde{F}$. This component can be properly called the "axion" a. The a field is

\[a = \cos \alpha \phi_a + \sin \alpha \phi_n, \]

(2)

where

\[\cos \alpha = M_a (M_a^2 + v_{PQ}^2)^{-1/2}, \]

\[\sin \alpha = v_{PQ} (M_a^2 + v_{PQ}^2)^{-1/2}. \]

(3)

The other orthogonal field, $-\sin \alpha \phi_a + \cos \alpha \phi_n$, is truly massless. The interaction term of eq. (1) now reads

0370-2693/85/03.30 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)
\[L_{\text{int}} = \frac{1}{32\pi^2} \left(\frac{v_{\text{PQ}}/M_C}{M_C/v_{\text{PQ}}} \right) a \tilde{F} \tilde{F} \]
\[\cong \left(\frac{1}{32\pi^2} \right) \left(a/v_{\text{PQ}} \right) \tilde{F} \tilde{F} \quad (M_C \gg v_{\text{PQ}}). \] \hspace{1cm} (4)

Eq. (4) shows that \(a \) can be interpreted as an axion and hence its phenomenologies are the same as those discussed in the literature [5–8]. A remarkable feature is that even though \(M_C \gg v_{\text{PQ}} \), the model is acceptable if \(10^8 \text{ GeV} \lesssim v_{\text{PQ}} \lesssim 10^{12} \text{ GeV} \).

This argument can be generalized. If there exist many boson fields whose couplings are only to \(\tilde{F} \tilde{F} \), one combination is the axion and the most dominant component of the axion is that with the smallest scale parameter.

It looks like this argument is in contradiction with the standard wisdom of the invisible axion that the invisible axion resides mostly within the component corresponding to the largest vacuum expectation value \(a \). This is not so. In the usual invisible axion models there is only one \(U(1)_A \) symmetry and there is really one boson field. From the \(U(1)_A \) current \(J_{\mu} \sim v_1 \partial_\mu a_1 + v_2 \partial_\mu a_2 + \ldots \), we immediately see that the largest vacuum expectation value is the most important one.

What can we say about superstring models? All published superstring models are phenomenologically troublesome, because they have unacceptable axions. This is shown in the remainder of this paper.

Let us first show that \(M_a \) for the MI axion in superstring models is of the order of the Planck mass \(M_{\text{pl}} = 1.2 \times 10^{19} \text{ GeV} \). The indices \(A, B, C, \ldots \) will stand for the ten dimensions and \(\mu, \nu, \rho, \ldots \) will stand for the four dimensions. The ten-dimensional bosonic action relevant for our discussion is [1]

\[S_{10} = \int d^{10}x \ e_{10} \left[-(1/2k^2)R_{10} - (1/k^2)\phi^{-1} \partial^2 \phi \right] - (1/4g^2) \phi^{-1} F_{AB} F^{AB} - (3k^2/2g^4) \phi^{-2} H_{ABC} H^{ABC} , \] \hspace{1cm} (5)

where \(\text{dim} \ g = -3 \) and \(\text{dim} \ k = -4 \). The MI action is defined by

\[H_{\mu\nu\rho} = M_a' e_{\mu\nu\rho\sigma} \phi^\sigma , \] \hspace{1cm} (6)

where \(M_a' \) is related to \(M_a \) of eq. (1) by

\[M_a' = 8\pi^2 M_a . \] \hspace{1cm} (7)

After compactification the four-dimensional action for the kinetic energies of the graviton, the gauge boson and the axion is

\[S_4 = \int d^4x e_4 \left[-(1/16\pi)M_{\text{pl}}^2 R_4 \right. \]
\[\left. - \frac{1}{4} F_{\mu\nu}^2 F^{\mu\nu} - \frac{1}{3} (\partial_\mu a)^2 \right] . \] \hspace{1cm} (8)

The dimensional reduction does not change the relative ratios of the coefficients of the terms in eqs. (5) and (8):

\[\frac{1/2k^2}{M_{\text{pl}}^2/16\pi} = \frac{1/4g^2}{3k^2/2g^4} \phi^2 = \frac{M_{\text{pl}}^2/16\pi}{1/2} , \]

from which we obtain the relation

\[M_a' = M_{\text{pl}}/12\sqrt{\pi} . \] \hspace{1cm} (9)

The value \(M_a \) obtained from eqs. (7) and (9) is \(7 \times 10^{15} \text{ GeV} \) and is outside the cosmologically allowed region.

Following the previous discussion, we therefore need an invisible axion in superstring models. There must be a global \(U(1)_A \) Peccei–Quinn symmetry in the four-dimensional world. Obviously, this global symmetry does not belong to the gauge symmetry in four dimensions.

If one requires an \(N = 1 \) supersymmetry in four dimensions, one must have an \(SU(3) \) holonomy [4]. This chooses the superstring model \(E_8 \times E_8 \) over \(O(32) \), because the latter does not give chiral fermions. With this holonomy group, \(E_8 \times E_8 \) breaks down to \(E_6 \times E_6 \). If the standard model is embedded in \(E_8 \), there do not exist interesting light fermions. The standard model is better to be embedded in \(E_6 \). Because \(E_8 \) cannot contain light fermions, this model does not have the chance to contain dark matter invisible to us. In any case, we do not have a chance to introduce a global symmetry \(U(1)_A \) from the \(SU(3) \) holonomy since \(E_6 \times SU(3) \) is a maximal subgroup of \(E_8 \). Therefore, the \(E_8 \times E_6 \) superstring model with an \(SU(3) \) holonomy is cosmologically unacceptable.

We cannot introduce any overall global symmetry which can give a desirable Peccei–Quinn symmetry, because this cannot be unbroken through the com-
The reason is the following. Suppose the global symmetry is X, i.e. the superstring model may be $(X)_{\text{global}} \times (E_8 \times E_8)_{\text{local}}$. For X to become the Peccei–Quinn symmetry in four dimensions, the gauge fields (and gauginos) must carry the X charge. In the Calabi–Yau manifold, the SU(3) gauge fields must have nonvanishing vacuum expectation values. These vacuum expectation values also break the X symmetry, because any possible linear combination of generators, $X \otimes (E_8/E_6)$ cannot commute with all the SU(3) generators.

We conclude that the requirement [4] of the $N = 1$ supersymmetry in four dimensions gives severe problems.

Let us proceed to discuss the O(32) superstring model. We do not require the $N = 1$ supersymmetry. Witten [2] noted that the SU(5) gauge symmetry from O(32) in four dimensions brings along the global Peccei–Quinn P symmetry. The P charges of the SU(5) adjoint or singlets are zero, while the P charges of 10, 10, 5, and 5 are nonzero. Therefore, the allowed scale for the vacuum expectation values of 5 and 5 is the electroweak scale, and hence the resulting axion is the Peccei–Quinn–Weinberg–Wilczek axion which is phenomenologically ruled out. In this case, existence of another invisible axion does not help as discussed in the introduction.

Therefore, the immediate questions are whether the P symmetry is avoided or the P symmetry is broken at a larger scale $10^8 \text{ GeV} < \nu < 10^{12} \text{ GeV}$ so that the axion becomes invisible. The first option does not help because of the cosmologically unacceptable MI axion. In fact, the P symmetry is not avoidable for the SU(N) embeddings which we will discuss. The only hope in the superstring models is to have the P symmetry and break it at the allowed region.

In an effort to obtain the P charge carrying SU(3) \times SU(2) \times U(1) singlets after compactification, we consider SU(7) from O(32) as a prototype example. Readers will notice that other SU(N)'s from O(32) will have the same fate as the present example.

In analogy with the SU(5) compactification scheme, the SU(7) is embedded in O(32) such that the fundamental representation of O(32) transmorf as $7 + 7 + \text{singlets}$ under SU(7). The P charge is defined by

$$P = \begin{bmatrix} i_0^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & i_0^2 \end{bmatrix},$$

where the upper left corner is the block diagonal matrix with seven entries of $i_0^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, and the other elements are zeros. Then the adjoint representation of O(32) is decomposed into

$$496 = 7 + \bar{7} + 21 + \bar{21} + 48 + \text{singlets},$$

and the P charges of each SU(7) multiplet is

$$P(21) = 2, \quad P(\bar{7}) = 1, \quad P(\bar{21}) = -2, \quad P(\bar{7}) = -1,$$

$$P(48) = 0, \quad P(\text{singlets}) = 0.$$
superstring models is the N-ality. Therefore, this feature is not avoidable in any SU(N) gauge model from O(32).

The SU(N) models with nonstandard fermions [12] cannot be obtained from O(32) superstring models, because the spinor of O($2N$) is not obtained in this way.

In conclusion, there exist harmful axions in published superstring models.

Finally, we speculate on the physical implication of the possible generation of $(\phi/M_{p1})F\tilde{F}$ term as an effective interaction below the Planck scale. The Peccei-Quinn symmetry with $10^8 \text{GeV} \leq M_{PQ} \leq 10^{12} \text{GeV}$ must be present in the low energy world, and the invisible axion is a necessary consequence. The invisible axion plays the dual role that it solves the strong CP problem and the cosmological energy density problem in a theory with the term $(\phi/M_{p1})F\tilde{F}$.

We thank Howard Georgi for his interest and careful reading of the manuscript. One of us (K.C.) thanks Kyungsik Kang for financial support and the High Energy Theory Group of Brown University for their hospitality. J.E.K. thanks Harvard University for their hospitality. We also thank Peter Nilles for his care, Antal Jevicki and Gregory Moore for helpful discussions. This research is also supported in part by the Korean Science and Engineering Foundation and by the Research Institute of Basic Sciences, Seoul National University.

Note added. The MI axion in the $E_8 \times E_8$ model can be heavy if the extra E_8' becomes strong at relatively high energy scale Λ'. Then the MI axion can decay before the present age of the universe ($\approx 5 \times 10^{17}$ s). Numerically, for $\Lambda' \gtrsim 10^7 \text{GeV}$ the lifetime of the MI axion is shorter than the age of the universe. To make the nucleosynthesis intact, i.e. by requiring the MI axion decay before 1 s, we obtain $\Lambda' \gtrsim 7 \times 10^9 \text{GeV}$.

References

F.H. Frampton, H. Van Dam and K. Yamamoto, North Carolina preprint IFP-242-UNC (1984);
D.J. Gross, J.A. Harvey, E. Martinec and R. Rohm, Princeton preprint (1984);

J.E. Kim, Seoul National University preprint SNUHE 84/02 (1984);

L.F. Abbott and P. Sikivie, Phys. Lett. 120B (1983) 133;

