Education
Ph.D. (Physics)
The University of Texas at Austin (2001.8-2008.8)
Advisor : Prof. Allan H. MacDonald
Thesis : Possible ordered states in graphene systems [corrections ]
B.S. (Physics)
Seoul National University (1995.3-2001.2)
Professional Experience
Professor
Department of Physics and Astronomy ,
Seoul National University (2020.9-present)
Associate Professor
Department of Physics and Astronomy ,
Seoul National University (2015.9-2020.8)
Visiting Scholar
Department of Physics and Astronomy ,
University of Pennsylvania (2016.2-2017.1)
Assistant Professor
Department of Physics and Astronomy ,
Seoul National University (2011.9-2015.8)
Postdoctoral Researcher
Prof. Sankar Das Sarma ,
University of Maryland (2010.9-2011.8)
Postdoctoral Researcher
Dr. Mark D. Stiles ,
National Institute of Standards and Technology (2008.9-2010.8)
Teaching/Research Assistant
Prof. Allan H. MacDonald ,
The University of Texas at Austin (2001.8-2008.8)
Assistant Staff
Tera-level Nanodevices (2001.3-2001.6)
Military Service
Korean Augmentation to the US Army , Sergeant (1997.8-1999.9)
Research Interests
   
My primary research interest is modeling condensed matter systems using analytical and numerical approaches, and I have an interest in material properties which may prove to have technological value. My technical experience covers various tools used in condensed matter theory, ranging from numerical electronic structure calculations to more analytical field theoretical approaches.
   
During my Ph.D. studies done under the supervision of Dr. Allan H. MacDonald at the University of Texas at Austin, first we investigated the influence of spin-orbit coupling on monolayer graphene and the energy gap opening by applying an external electric field in bilayer graphene using a tight-binding model and ab initio electronic structure calculations. Next, we studied the electronic structure of multilayer graphene. We developed a simple diagrammatic method to analyze the low-energy properties of arbitrarily stacked graphene sheets, and proposed an optical method to identify the stacking sequences. We also studied effects of electron-electron interactions and possible ordered states. Using a mean-field theory and perturbative renormalization group theory, we predicted that neutral graphene bilayers are pseudospin magnets, in which the charge density contribution from each spin and valley spontaneously shifts to one of the two layers. Furthermore, we demonstrated that room-temperature excitonic condensation is possible in graphene double layers, suggesting new electronic device applications based on unusual collective transport of bilayer excitonic condensates. The use of collective behavior of many electrons suggests the possibility of a new electronic device scheme called pseudospintronics .
   
After moving to NIST as a postdoctoral researcher working with Dr. Mark D. Stiles, I extended my research to the area of spintronics focusing on the effects of disorder on magnetic domain wall dynamics. We performed micromagnetic simulations in the presence of extrinsic random potential and studied the dynamics of vortex wall propagation driven by fields or currents, and vortex gyration driven by magnetic field pulses. We found that the dynamics in the presence of disorder can be understood in terms of an effective damping that increases with the disorder due to the excitement of the internal degrees of freedom in the vortex structure. Next, I joined Dr. Sankar Das Sarma's group at University of Maryland as a postdoctoral researcher. I focused on various electronic, transport and thermodynamic properties in two-dimensional electron systems including graphene and GaAs heterostructures, investigating effects of phonons, disorder and electron-electron interactions taking into account many-body corrections within the random phase approximation.
   
After I joined the Department of Physics and Astronomy at Seoul National University as a faculty member, I am focusing on electronic, optical and transport properties, and interaction effects in two-dimensional layered structures (such as multilayer graphene, transition metal dichalcogenide and black phosphorus ) and in three-dimensional topological semimetals (such as Weyl /Dirac semimetals and nodal line semimetals). We expect that the interplay between the chiral electronic structure of electrons and the interactions with light, disorder and other electrons leads to many interesting physics exhibiting a unique quantum response. Currently, we are studying optical and transport properties of various materials focusing on the characteristic frequency dependence and density/temperature dependence of quantum response functions. We are also investigating the interaction induced effects such as correlation energy, collective phenomena, ordered states and topological phase transitions.
Publications
[arXiv ,
Google Scholar ,
ORCID ]
Ultrafast Control over Stiffening and Softening of Coherent Interlayer Coupling in WSe2 /WS2 Heterobilayers
Jinjae Kim, Jeonghyeon Suh, Suk-Ho Lee, Kenji Watanabe, Takashi Taniguchi, Faisal Ahmed, Zhipei Sun, Moon-Ho Jo, Hongki Min* , and Hyunyong Choi*
Accepted by Nano Letters
Sliding-dependent electronic structures of alternating-twist tetralayer graphene
Kyungjin Shin, Jiseon Shin, Yoonsung Lee, Hongki Min* , and Jeil Jung*
Phys. Rev. B 110 , 115136 (2024) ,
arXiv:2406.11527 (2024) , Editor's Suggestion
Effect of trivial bands on chiral anomaly induced longitudinal magnetoconductivity in Weyl semimetals
Jeonghyeon Suh and Hongki Min
Phys. Rev. B 109 , 125128 (2024) ,
arXiv:2401.13855 (2024)
Sub-MeV dark matter detection with bilayer graphene
Anirban Das, Jiho Jang, and Hongki Min
Phys. Rev. D 110 , 043020 (2024) ,
arXiv:2312.00866 (2023)
Optical transitions of a single nodal ring in SrAs3 : Radially and axially resolved characterization
Jiwon Jeon, Jiho Jang, Hoil Kim, Taesu Park, Dongwook Kim, Soonjae Moon, Jun Sung Kim, Ji Hoon Shim, Hongki Min* , and Eunjip Choi*
Phys. Rev. Lett. 131 , 236903 (2023) ,
arXiv:2303.14973 (2023) ,
Dept. News (Kor , Eng )
Role of local conductivities in the plasmon reflections at the edges and stacking domain boundaries of trilayer graphene
Boogeon Choi, Gyouil Jeong, Seongjin Ahn, Hankyul Lee, Yunsu Jang, Baekwon Park, Hans A. Bechtel, Byung Hee Hong, Hongki Min, and Zee Hwan Kim
J. Phys. Chem. Lett. 14 , 8157 (2023)
Chirality and correlations in the spontaneous spin-valley polarization of rhombohedral multilayer graphene
Yunsu Jang, Youngju Park, Jeil Jung* , and Hongki Min*
Phys. Rev. B 108 , L041101 (2023) ,
arXiv:2304.07467 (2023)
Electronic structure of biased alternating-twist multilayer graphene
Kyungjin Shin, Yunsu Jang, Jiseon Shin, Jeil Jung* , and Hongki Min*
Phys. Rev. B 107 , 245139 (2023) ,
arXiv:2212.14541 (2022)
Semiclassical Boltzmann magnetotransport theory in anisotropic systems with a nonvanishing Berry curvature
Jeonghyeon Suh, Sanghyun Park, and Hongki Min
New Journal of Physics 25 , 033021 (2023) ,
arXiv:2110.08816 (2021)
Nearly flat bands in twisted triple bilayer graphene
Jiseon Shin, Bheema Lingam Chittari, Yunsu Jang, Hongki Min, and Jeil Jung
Phys. Rev. B 105 , 245124 (2022) ,
arXiv:2204.01019 (2022)
Semiclassical magnetotransport including effects of Berry curvature and Lorentz force
Seungchan Woo, Brett Min, and Hongki Min
Phys. Rev. B 105 , 205126 (2022) ,
arXiv:2202.02910 (2022)
Diffusive density response of electrons in anisotropic multiband systems
Jeonghyeon Suh, Sunghoon Kim, E. H. Hwang* , and Hongki Min*
Phys. Rev. B 106 , L121113 (2022) ,
arXiv:2201.12119 (2022)
Topological multiband s -wave superconductivity in coupled multifold fermions
Changhee Lee, Chiho Yoon, Taehyeok Kim, Suk Bum Chung* , and Hongki Min*
Phys. Rev. B 104 , L241115 (2021) ,
arXiv:2103.12630 (2021)
Quasiparticle interference and impurity resonances on WTe2
H. Kwon, T. Jeong, S. Appalakondaiah, Y. Oh, I. Jeon, Hongki Min, S. Park, Y. J. Song, E. H. Hwang, and S. Hwang
Nano Research 13 , 2534 (2020)
Quasi-one-dimensional higher-order topological insulators
Chiho Yoon, Cheng-Cheng Liu, Hongki Min* , and Fan Zhang*
arXiv:2005.14710 (2020)
Tunable quantum interference effect on magnetoconductivity in few-layer black phosphorus
Sunghoon Kim and Hongki Min
Phys. Rev. Research 2 , 022045(R) (2020) ,
arXiv:1912.01465
Emergent anisotropic non-Fermi liquid at a topological phase transition in three dimensions
SangEun Han, Changhee Lee, Eun-Gook Moon* , and Hongki Min*
Phys. Rev. Lett. 122 , 187601 (2019) ,
arXiv:1809.10691 ,
KPS Webzine ,
Dept. News
Vertex corrections to the dc conductivity in anisotropic multiband systems
Sunghoon Kim, Seungchan Woo, and Hongki Min
Phys. Rev. B 99 , 165107 (2019) ,
arXiv:1901.04135
Optical conductivity of black phosphorus with a tunable electronic structure
Jiho Jang, Seongjin Ahn, and Hongki Min
2D Mater. 6 , 025029 (2019) ,
arXiv:1811.07529 ,
Dept. News
Semiclassical Boltzmann transport theory of few-layer black phosphorus in various phases
Sanghyun Park, Seungchan Woo, and Hongki Min
2D Mater. 6 , 025016 (2019)
[corrigendum ],
arXiv:1811.03903 ,
Dept. News
Optically-controlled orbitronics on a triangular lattice
Vo Tien Phong, Zachariah Addison, Seongjin Ahn, Hongki Min, Ritesh Agarwal, and E. J. Mele
Phys. Rev. Lett. 123 , 236403 (2019) ,
arXiv:1809.09598
Type-II Dirac line nodes in strained Na3 N
Dongwook Kim, Seongjin Ahn, Jong Hyun Jung, Hongki Min, Jisoon Ihm, Jung Hoon Han, and Youngkuk Kim
Phys. Rev. Materials 2 , 104203 (2018) ,
arXiv:1807.08523
Diluted magnetic Dirac-Weyl materials: Susceptibility and ferromagnetism in three-dimensional chiral gapless semimetals
Sanghyun Park, Hongki Min* , E. H. Hwang* , and S. Das Sarma
Phys. Rev. B 98 , 064425 (2018) ,
arXiv:1804.10867
Phase transitions of the polariton condensate in 2D Dirac materials
Ki Hoon Lee, Changhee Lee, Hongki Min* , and Suk Bum Chung*
Phys. Rev. Lett. 120 , 157601 (2018) ,
arXiv:1710.00841 ,
Dept. News
Characterization of edge contact: Atomically resolved semiconductor-metal lateral boundary in MoS2
H. Kwon, K. Lee, J. Heo, Y. Oh, H. Lee, S. Appalakondaiah, W. Ko, H. W. Kim, J.-W. Jung, H. Suh, Hongki Min, I. Jeon, E. H. Hwang, and S. Hwang
Adv. Mater. 29 , 1702931 (2017)
Electrodynamics on Fermi cyclides in nodal line semimetals
Seongjin Ahn, E. J. Mele* , and Hongki Min*
Phys. Rev. Lett. 119 , 147402 (2017) ,
arXiv:1703.00130 ,
KPS Webzine ,
Dept. News
Mapping of Bernal and non-Bernal stacking domains in bilayer graphene using infrared nanoscopy
Gyouil Jeong, Boogeon Choi, Deok-Soo Kim, Seongjin Ahn, Baekwon Park, Jin Hyoun Kang, Hongki Min, Byoung-Hee Hong, and Zee Hwan Kim
Nanoscale 9 , 4191 (2017)
Ferromagnetism in chiral multilayer two-dimensional semimetals
Hongki Min, E. H. Hwang, and S. Das Sarma
Phys. Rev. B 95 , 155414 (2017) ,
arXiv:1702.01859
Semiclassical Boltzmann transport theory for multi-Weyl semimetals
Sanghyun Park, Seungchan Woo, E. J. Mele, and Hongki Min
Phys. Rev. B 95 , 161113(R) (2017) ,
arXiv:1701.07578
Broken sublattice symmetry states in Bernal stacked multilayer graphene
Chiho Yoon, Yunsu Jang, Jeil Jung* , and Hongki Min*
2D Mater. 4 , 021025 (2017) ,
arXiv:1610.07105 ,
Dept. News
Large negative differential transconductance in multilayer graphene: the role of intersubband scattering
Seungchan Woo, E. H. Hwang* , and Hongki Min*
2D Mater. 4 , 025090 (2017) ,
arXiv:1610.07006 ,
Dept. News
Optical conductivity of multi-Weyl semimetals
Seongjin Ahn, E. J. Mele* , and Hongki Min*
Phys. Rev. B 95 , 161112(R) (2017) ,
arXiv:1609.08566
Zero-line modes at stacking faulted domain walls in multilayer graphene
Changhee Lee, Gunn Kim* , Jeil Jung* , and Hongki Min*
Phys. Rev. B 94 , 125438 (2016) ,
arXiv:1607.01641
Collective modes in multi-Weyl semimetals
Seongjin Ahn, E. H. Hwang* , and Hongki Min*
Scientific Reports 6 , 34023 (2016) ,
arXiv:1604.02989
Stacking dependence of carrier-interactions in multilayer graphene systems
Yunsu Jang, E. H. Hwang, A. H. MacDonald, and Hongki Min
Phys. Rev. B 92 , 041411(R) (2015) ,
arXiv:1503.00212
Stacking structures of few-layer graphene revealed by phase-sensitive infrared nanoscopy
Deok-Soo Kim, Hyeoksang Kwon, Alexey Yu. Nikitin, Seongjin Ahn, Luis Martin-Moreno, Francisco J. Garcia-Vidal, Sun-Min Ryu, Hongki Min, and Zee Hwan Kim
ACS Nano 9 , 6765 (2015)
Carrier screening, transport, and relaxation in three-dimensional Dirac semimetals
S. Das Sarma, E. H. Hwang, and Hongki Min
Phys. Rev. B 91 , 035201 (2015) ,
arXiv:1408.0518
Inelastic carrier lifetime in a coupled graphene/electron-phonon system: Role of plasmon-phonon coupling
Seongjin Ahn, E. H. Hwang* , and Hongki Min*
Phys. Rev. B 90 , 245436 (2014) ,
arXiv:1409.8394
Transport gap in dual-gated graphene bilayers using oxides as dielectrics
Kayoung Lee, Babak Fallahazad, Hongki Min, and Emanuel Tutuc
IEEE Transactions on Electron Devices 60 , 103 (2013)
Competing ordered states in bilayer graphene
Fan Zhang, Hongki Min, and A. H. MacDonald
Phys. Rev. B 86 , 155128 (2012) ,
arXiv:1205.5532
Interplay between phonon and impurity scattering in two-dimensional hole transport
Hongki Min, E. H. Hwang, and S. Das Sarma
Phys. Rev. B 86 , 085307 (2012) ,
arXiv:1203.1929
Polarizability and screening in chiral multilayer graphene
Hongki Min, E. H. Hwang, and S. Das Sarma
Phys. Rev. B 86 , 081402(R) (2012) ,
arXiv:1202.2132
Comparison of microscopic models for disorder in bilayer graphene: Implications for the density of states and the optical conductivity
D. S. L. Abergel, Hongki Min, E. H. Hwang, and S. Das Sarma
Phys. Rev. B 85 , 045411 (2012) ,
arXiv:1109.5702
dμ/dn in suspended bilayer graphene: the interplay of disorder and band gap
D. S. L. Abergel, Hongki Min, E. H. Hwang, and S. Das Sarma
Phys. Rev. B 84 , 195423 (2011) ,
arXiv:1107.4100
Edge saturation effects on the magnetism and band gaps in multilayer graphene ribbons and flakes
Bhagawan Sahu, Hongki Min, and Sanjay K. Banerjee
Phys. Rev. B 84 , 075481 (2011) ,
arXiv:1104.4354
Optical and transport gaps in gated bilayer graphene
Hongki Min, D. S. L. Abergel, E. H. Hwang, and S. Das Sarma
Phys. Rev. B 84 , 041406(R) (2011) ,
arXiv:1104.0938
Landau levels and band bending in few-layer epitaxial graphene
Hongki Min, Shaffique Adam, Young Jae Song, Joseph A. Stroscio, M. D. Stiles, and A. H. MacDonald
Phys. Rev. B 83 , 155430 (2011) ,
arXiv:1101.2454
Semiclassical Boltzmann transport theory for graphene multilayers
Hongki Min, Parakh Jain, Shaffique Adam, and M. D. Stiles
Phys. Rev. B 83 , 195117 (2011) ,
arXiv:1012.5820
Chirality-dependent phonon-limited resistivity in multiple layers of graphene
Hongki Min, E. H. Hwang, and S. Das Sarma
Phys. Rev. B 83 , 161404(R) (2011) ,
arXiv:1011.0741
Effects of disorder on magnetic vortex gyration
Hongki Min, Robert D. McMichael, Jacques Miltat, and M. D. Stiles
Phys. Rev. B 83 , 064411 (2011) ,
arXiv:1102.3711
High-resolution tunnelling spectroscopy of a graphene quartet
Y. J. Song, A. F. Otte, Y. Kuk, Y. Hu, D. B. Torrance, P. N. First, W. A. de Heer, Hongki Min, S. Adam, M. D. Stiles, A. H. MacDonald, and J. A. Stroscio
Nature 467 , 185 (2010)
Effects of edge magnetism and external electric field on energy gaps in multilayer graphene nanoribbons
Bhagawan Sahu, Hongki Min, and Sanjay K. Banerjee
Phys. Rev. B 82 , 115426 (2010) ,
arXiv:1006.3572
Band structure of ABC-stacked graphene trilayers
Fan Zhang, Bhagawan Sahu, Hongki Min, and A. H. MacDonald
Phys. Rev. B 82 , 035409 (2010) ,
arXiv:1004.1481
Effects of disorder and internal dynamics on vortex wall propagation
Hongki Min, Robert D. McMichael, Michael J. Donahue, Jacques Miltat, and M. D. Stiles
Phys. Rev. Lett. 104 , 217201 (2010) ,
arXiv:1003.1128 ,
NIST News
Effects of magnetism and electric field on the energy gap of bilayer graphene nanoflakes
Bhagawan Sahu, Hongki Min, and Sanjay Banerjee
Phys. Rev. B 81 , 045414 (2010) ,
arXiv:0910.2719
Spontaneous inversion symmetry breaking in graphene bilayers
Fan Zhang, Hongki Min, Marco Polini, and A. H. MacDonald
Phys. Rev. B 81 , 041402(R) (2010) ,
arXiv:0907.2448 ,
Physics Viewpoint
Origin of universal optical conductivity and optical stacking sequence identification in multilayer graphene
Hongki Min and A. H. MacDonald
Phys. Rev. Lett. 103 , 067402 (2009) ,
arXiv:0903.2163
Quantum wells in polar-nonpolar oxide heterojunction systems
C.-C Joseph Wang, Bhagawan Sahu, Hongki Min, Wei-Cheng Lee, and A. H. MacDonald
Phys. Rev. B 79 , 115408 (2009) ,
arXiv:0810.0798
Comment on "Electron screening and excitonic condensation in double-layer graphene systems"
Rafi Bistritzer, Hongki Min, Jung-Jung Su, and A. H. MacDonald
Comment on Phys. Rev. B 78 , 241401(R) (2008),
arXiv:0810.0331
Electronic structure of multilayer graphene
Hongki Min and A. H. MacDonald
Prog. Theor. Phys. Suppl. 176 , 227 (2008) ,
arXiv:0806.2792
Room-temperature superfluidity in graphene bilayers
Hongki Min, Rafi Bistritzer, Jung-Jung Su, and A. H. MacDonald
Phys. Rev. B 78 , 121401(R) (2008) ,
arXiv:0802.3462 ,
Nanotechweb News
Energy gaps, magnetism, and electric field effects in bilayer graphene nanoribbons
Bhagawan Sahu, Hongki Min, A. H. MacDonald, and Sanjay Banerjee
Phys. Rev. B 78 , 045404 (2008) ,
arXiv:0801.1991
Chiral decomposition in the electronic structure of graphene multilayers
Hongki Min and A. H. MacDonald
Phys. Rev. B 77 , 155416 (2008) ,
arXiv:0711.4333
Pseudospin magnetism in graphene
Hongki Min, Giovanni Borghi, Marco Polini, and A. H. MacDonald
Phys. Rev. B 77 , 041407(R) (2008) ,
arXiv:0707.1530 ,
Nanotechweb News
Ab initio theory of gate induced gaps in graphene bilayers
Hongki Min, Bhagawan Sahu, Sanjay K. Banerjee, and A. H. MacDonald
Phys. Rev. B 75 , 155115 (2007) ,
arXiv:cond-mat/0612236
Intrinsic and Rashba spin-orbit interactions in graphene sheets
Hongki Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, Leonard Kleinman, and A. H. MacDonald
Phys. Rev. B 74 , 165310 (2006) ,
arXiv:cond-mat/0606504
Charge and spin Hall conductivity in metallic graphene
N. A. Sinitsyn, J. E. Hill, Hongki Min, Jairo Sinova, and A. H. MacDonald
Phys. Rev. Lett. 97 , 106804 (2006) ,
arXiv:cond-mat/0602598
Books
Electronic properties of multilayer graphene
Chapter 11 in Graphene nanoelectronics: Metrology, synthesis, properties and applications
Editor: H. Raza, Springer (March 2012)
Possible Ordered States in Graphene Systems: Electronic Structure, Pseudospin Magnetism and Exciton Condensation
Hongki Min, VDM Verlag (May 2009)
Current Status
   
From September 2011, I joined the Department of Physics and Astronomy at Seoul National University as a faculty member.
Classes
Condensed Matter Physics 1,2 (Graduate)
Spring 2017 ,
Fall 2017 ,
Spring 2018 ,
Fall 2018 ,
Spring 2019 ,
Fall 2019 ,
Spring 2022 ,
Fall 2022 ,
Spring 2023 ,
Fall 2023 ,
Spring 2024 ,
Fall 2024
Many-body Physics 1,2 (Graduate)
Spring 2015 ,
Fall 2015
Quantum Physics 1,2 (Undergraduate)
Spring 2012 ,
Fall 2012 ,
Spring 2013 ,
Fall 2013 ,
Spring 2014 ,
Fall 2014 ,
Spring 2020 ,
Fall 2020 ,
Spring 2021 ,
Fall 2021
Advanced Topics in Condensed Matter Physics: Graphene (Graduate)
Fall 2012
Studies on Historic Articles of Physics (Undergraduate)
Fall 2017
Group members
Taehyeok Kim (mansaei1004@gmail.com )
Jeonghyeon Suh (sjh828@snu.ac.kr )
Kyungjin Shin (ttargy123@snu.ac.kr )
Taehun Kim (dasfsaasdf@snu.ac.kr )
Jinu Park (luckymonkey7@snu.ac.kr )
Dongeun Kim (harrymartin@snu.ac.kr )
Former members
Seongjin Ahn , Ph.D. (sjahn@snu.ac.kr ) [Thesis, 2018.2 ]
Changhee Lee , Ph.D. (changhee900820@gmail.com ) [Thesis, 2020.2 ]
Sunghoon Kim , M.S. (kshhsk95@snu.ac.kr ) [Thesis, 2020.8 ]
Seungchan Woo , Ph.D. (silkian@snu.ac.kr ) [Thesis, 2021.8 ]
Sanghyun Park , Ph.D. (etaspark@gmail.com ) [Thesis, 2021.8 ]
Chiho Yoon , Ph.D. (yooon@snu.ac.kr ) [Thesis, 2022.8 ]
Yunsu Jang , Ph.D. (yun9854@gmail.com ) [Thesis, 2023.2 ]
Jiho Jang , Ph.D. (jiho.jang@snu.ac.kr ) [Thesis, 2024.2 ]