# Pseudospintronics: a new electronic device scheme in graphene systems - 연필심 위의 물리학

#### Hongki Min

hmin@snu.ac.kr

Department of Physics and Astronomy, Seoul National University, Korea

Seoul National University, May 16, 2012

DEPARTMENT OF PHYSICS & ASTRONOMY



#### Motivation



• How can we overcome the barrier efficiently between the text book and real research problems?

### What is graphene?

#### Graphene is 2D honeycomb lattice of carbon atoms



Adapted from Wikipedia

 $a = 0.246 \,\mathrm{nm}$ 

# How to make graphene?

#### Scotch tape method







Adapted from NIST

Other methods: epitaxial growth, chemical vapor deposition, ...

# Why graphene?

#### Graphene is described by relativistic wavefunction



Relativistic wavefunction in a low energy system

P. R. Wallace, Phys. Rev. **71**, 622 (1947)

#### Graphene has high electron mobility



100 times faster than conventional semiconductors at room temperature

Y. Zhang *et al*, Nature **438**, 201 (2005)

# Why graphene?

Bilayer graphene is a band gap tunable semiconductor



Band gap opening by an external electric field

E. McCann, Phys. Rev. B **74**, 161403 (2006)

Graphene can be used as touch screen and flexible display



Atomically thin and conducting

S. Bae *et al*, Nat. Nanotech. 5, 574 (2010)

# Why graphene?

#### Graphene is an excellent thermal conductor



#### Graphene is 200 times stronger than steel



**NEMS** application

C. Lee *et al*, Science 321, 385 (2008)

# Outline

- 1. Electronic structure
  - Tight-binding model
- 2. Transport and optical properties
   Boltzmann transport theory
- 3. Electron-electron interactions
  - Mean-field theory
- 4. Conclusion and future work— New electronic device scheme

Electronic structure – Tight-binding model

- What is the model Hamiltonian for graphene?
- What is the effective theory near the Fermi energy?
- What is the effect of stacking sequence?

#### Hamiltonian

Time independent Schrödinger equation

 $H(\mathbf{k})|\Psi_n(\mathbf{k})\rangle = E_n(\mathbf{k})|\Psi_n(\mathbf{k})\rangle$ 

- $\mathbf{k}$  = wave vector
- $E_n$  = energy band
  - n = band index

### **Tight-binding model**

#### Example: 1D chain composed of two kinds of atoms



$$f(\mathbf{k}) = t \left[ e^{ik(a/2)} + e^{-ik(a/2)} \right] = 2t \cos\left(\frac{ka}{2}\right)$$

# Monolayer graphene



 ${}^{6}\text{C}=1s^{2}2s^{2}2p^{2}$ 

Expand around K

### Monolayer graphene

Monolayer graphene has a linear dispersion at low energies Effective theory around *K* 

$$\begin{array}{ccc} \boldsymbol{\alpha} & \boldsymbol{\beta} \\ H = v_0 \begin{pmatrix} 0 & \pi^* \\ \pi & 0 \end{pmatrix} = v_0 \mathbf{p} \cdot \boldsymbol{\sigma} \end{array}$$

$$\pi = p_x + ip_y$$

$$v_0 = \text{ in-plane velocity}$$

$$\mathbf{p} = \hbar \mathbf{k}$$

$$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

 $E(\mathbf{p}) = \pm v_0 p$ 



#### Monolayer graphene

#### Pseudospin, chirality and Berry phase





 $H = \mathbf{B} \cdot \boldsymbol{\sigma}$ 

#### Bilayer graphene

Bilayer graphene is composed of a pair of coupled graphene





### Electronic structure of bilayer graphene

Bilayer graphene is composed of a pair of coupled graphene 4-band model around *K* 



# Band gap opening in bilayer graphene

#### Band structure control by an external electric field 4-band model around *K*







# Band gap opening in bilayer graphene

Band structure control by an external electric field

⇒ Tunable energy gap semiconductor Possible application to a switch device



Min, Sahu, Banerjee, and MacDonald, Phys. Rev. B 75, 155115 (2007)

Bilayer graphene is composed of a pair of coupled graphene 4-band model around *K* 



Bilayer graphene has a parabolic dispersion at low energies Effective theory around *K* 



#### Pseudospin, chirality and Berry phase



#### Pseudospin, chirality and Berry phase



### Pseudospin and Chirality

66本99

#### Effective theory of a general chiral system

66 | 99

$$H_{J} = \varepsilon_{0} \begin{pmatrix} 0 & \pi^{*J} \\ \pi^{J} & 0 \end{pmatrix} = \varepsilon_{0} p \left( \mathbf{\sigma} \cdot \mathbf{n}_{J} (\mathbf{\phi}_{\mathbf{p}}) \right), \quad \sigma_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \sigma_{y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$\mathbf{n}_J(\phi_{\mathbf{p}}) = (\cos J\phi_{\mathbf{p}}, \sin J\phi_{\mathbf{p}})$$

 $\pi = p_x + ip_y$  $\phi_{\mathbf{p}} = \tan^{-1}(p_y / p_x)$ 

$$E_J(\mathbf{p}) = \pm \varepsilon_0 p^J$$

McCann & Fal'ko , Phys. Rev. Lett. **96**, 086805 (2006) Min & MacDonald, Phys. Rev. B **77**, 155416 (2008)

Pseudospin: Two-valued quantum degrees of freedom Example: sublattice, layer

Chirality: Projection of pseudospin to momentum direction

Monolayer graphene : 2D chiral system with chirality J=1Bilayer graphene : 2D chiral system with chirality J=2

### Multilayer stacking

#### Three distinct stacking arrangements, labeled A,B,C







### **Electronic structure**

Important lessons Min and MacDonald, Phys. Rev. B 77, 155416 (2008)

Electronic structure strongly depends on the stacking sequences.  $\Rightarrow$  Electronic structure engineering by stacking sequences

Low-energy band structure is described by a set of chiral systems.

Ex: ABA trilayer 
$$(J=1,2)$$

$$H_{eff} \sim \begin{pmatrix} 0 & \pi^* \\ \pi & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & \pi^{*2} \\ \pi^2 & 0 \end{pmatrix}$$



High-energy band structure follows that of monolayer graphene.

Transport and optical properties – Boltzmann transport theory

- What is the effect of impurities?
- What is the response to light?
- How can we identify the stacking sequence?

### Model

Boltzmann transport theory

• Non-equilibrium distribution function

$$dn = \frac{d\mathbf{k}}{(2\pi)^d} f(\mathbf{k}, t)$$
$$\mathbf{J} = (-e) \int \frac{d\mathbf{k}}{(2\pi)^d} f(\mathbf{k}, t) \mathbf{v}(\mathbf{k})$$

electrical conductivity

• Relaxation time approximation

$$\frac{df(\mathbf{k},t)}{dt} = \frac{\partial f(\mathbf{k},t)}{\partial \mathbf{k}} \cdot \frac{d\mathbf{k}}{dt} + \frac{\partial f(\mathbf{k},t)}{\partial t} \qquad \qquad \hbar \frac{d\mathbf{k}}{dt} = (-e)\mathbf{E}$$

$$\approx -\frac{f(\mathbf{k},t) - f_0(\mathbf{k})}{\tau_{\mathbf{k}}} \qquad \qquad f_0(\mathbf{k}) = \begin{array}{c} \text{equilibrium} \\ \text{equilibrium} \\ \text{distribution function} \\ \tau_{\mathbf{k}} = \end{array}$$

# Model

Boltzmann transport theory

• Relaxation time

$$\frac{1}{\tau_F} = \frac{2\pi}{\hbar} n_{imp} V_{imp}^2 v(\varepsilon_F)$$
DOS

Fermi's Golden rule

• Electrical conductivity 
$$\mathbf{J} = (-e) \int \frac{d\mathbf{k}}{(2\pi)^d} f(\mathbf{k}, t) \mathbf{v}(\mathbf{k}) = \sigma \mathbf{E}$$
  
$$\sigma = e^2 \left[ g_s g_v v(\varepsilon_F) \right] \left[ \frac{1}{2} \mathbf{v}_F^2 \tau_F \right] \qquad \mathbf{v}_F = \frac{1}{\hbar} \frac{\partial \varepsilon}{\partial k} \Big|_{\varepsilon = \varepsilon_F}$$
  
DOS Diffusion constant in 2D Fermi velocity

$$\Rightarrow \sigma \propto \frac{v_F^2}{n_{imp}V_{imp}^2}$$

# Density dependence of conductivity

#### Short-range scatterers

Min et al. Phys. Rev. B 83, 195117 (2011)

Short range scatterers



 $A \rightarrow J=1$ ,  $AB \rightarrow J=2$ ,  $ABC \rightarrow J=3$ ,  $ABA \rightarrow J=1,2$ 

#### **Optical conductivity measurements**

#### Transmittance of graphene



$$T(\omega) = \left(1 + \frac{2\pi}{c}\sigma(\omega)\right)^{-2}$$

$$R(\omega) = 1 - T(\omega)$$

#### Optical conductivity of bilayer graphene

High frequency limit



At high frequencies, each decoupled layer gives  $\sigma_{uni}$ , thus optical conductivity approaches to  $N\sigma_{uni}$ .

#### Optical conductivity of bilayer graphene

Intermediate frequency regime ( $t_{\perp}$ =0.3~0.4 eV)



At intermediate frequencies, optical conductivity shows characteristic peaks depending on the stacking sequence.

#### Optical conductivity of bilayer graphene

Low frequency limit



At low frequencies, optical conductivity approaches to  $N\sigma_{uni}$ .

Optical conductivity of graphene multilayers

Low frequency limit

• Monolayer graphene (J=1)

$$\sigma_{uni} = \frac{\pi}{2} \frac{e^2}{h}$$

• J-chiral system



• Chirality sum is the number of layers

$$\sigma = \sum_{i} \sigma_{J_{i}} = N \sigma_{uni}$$

At low frequencies, optical conductivity approaches to  $N\sigma_{uni}$ .





Optical conductivity measurements provide a useful way to identify the number of layers and stacking sequences.

#### **Comparison with experiments**

#### Optical conductivity and stacking sequence



Mak *et al*, PRL **104**, 176404 (2010)

Min and MacDonald, PRL **103**, 067402 (2009)

#### Electron-electron interactions - Mean-field theory

- What is the effect of electron-electron interaction?
- How can we treat the electron-electron interaction?
- Is there a pseudospin version of ferromagnetism?

### **Electron-electron interaction**

Interaction-induced ordered states

• Magnetism

. . .

• Superconductivity

• Exciton-condensation





#### Mean-field theory

Weiss molecular-field approximation

$$\begin{split} H &= -\frac{1}{2} \sum_{\langle i,j \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j \\ \mathbf{S}_i &= \langle \mathbf{S}_i \rangle + \delta \mathbf{S}_i \\ \mathbf{S}_i \cdot \mathbf{S}_j &= \left( \langle \mathbf{S}_i \rangle + \delta \mathbf{S}_i \right) \cdot \left( \langle \mathbf{S}_j \rangle + \delta \mathbf{S}_j \right) \\ &= \langle \mathbf{S}_i \rangle \cdot \left\langle \mathbf{S}_j \right\rangle + \delta \mathbf{S}_i \cdot \left\langle \mathbf{S}_j \right\rangle + \left\langle \mathbf{S}_i \right\rangle \cdot \delta \mathbf{S}_j + \delta \mathbf{S}_j \delta \mathbf{S}_j \\ &\approx \langle \mathbf{S}_i \rangle \cdot \mathbf{S}_j + \left\langle \mathbf{S}_j \right\rangle \cdot \mathbf{S}_i - \left\langle \mathbf{S}_i \right\rangle \cdot \left\langle \mathbf{S}_j \right\rangle \\ H^{MF} &\approx -\sum_i \mathbf{B}_i^{MF} \cdot \mathbf{S}_i \qquad \mathbf{B}_i^{MF} = \sum_j J_{ij} \left\langle \mathbf{S}_j \right\rangle \end{split}$$

### Mean-field theory

#### Weiss molecular-field approximation



# Mean-field theory

Hartree-Fock approximation



Interacting electrons

*Non-interacting* electrons in an effective potential

#### Pseudospin magnetism

Pseudospin  $\Rightarrow$  Two-valued quantum degrees of freedom Bilayer graphene (chirality *J*=2)



Ferromagnetism means spontaneous spin polarization.

Is there spontaneous charge polarization in the presence of electron-electron interactions?

 $\Rightarrow$  Pseudospin magnetism

#### Pseudospin magnetism in bilayer graphene

In-plane pseudospin direction Min et al. Phys. Rev. B 77, 041407(R) (2008)



No electron-electron interaction

#### Pseudospin magnetism in bilayer graphene

In-plane pseudospin direction Min et al. Phys. Rev. B 77, 041407(R) (2008)



 $\Rightarrow$  VoÆecfromelieotrioninteractionssprecturned on Spontaneous charge transfer between the two layers

# Pseudospin magnetism in multilayer graphene



Pseudospin magnetism is more stable for larger chirality.  $\Rightarrow$  ABC stacked multilayers are excellent candidates. Ex) AB, ABC, ABCA, ABCAB,... Conclusion and future work – New electronic device scheme

- How can we use the ordered states in devices?
- Are there other interaction-induced ordered states?
- Ongoing work

#### Search for ordered states in graphene systems

Interplay between chirality, e-e interaction and disorder

Dirac-like chiral wavefunction

+ Electron-electron interaction

Disorder

 $\Rightarrow$  New ordered states in graphene systems

Energy band structure and stacking sequences

Pseudospin magnetism in coupled graphene bilayers

High-quality sample with low disorder

#### Prospects

Current electronic device scheme  $\Rightarrow$  Future electronic device scheme

Single particle behavior

 $\Rightarrow$  Collective behavior of many particles

Classical/semi-classical phenomena

 $\Rightarrow$  Quantum phenomena in macroscopic scale

#### Collective electron device scheme

Example: Giant magnetoresistance (GMR)



⇒ Collective behavior of many electrons Magnetic field control of ordered states

# Collective electron device scheme

#### Example: Pseudospin magnetism

- Collective behavior of many electrons
- Can be switched with a small gate voltage change using much less power
- Electrical control of ordered states
- Can exhibit a pseudospin version of GMR and spin-transfer torque

Pseudospintronics!



#### Conclusion

Text book examples vs research problems

