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 Motivation 

Text book examples vs research problems 

• How can we overcome the barrier efficiently 

between the text book and real research problems? 

Text book 

examples 

Research 

problems 



 What is graphene? 

Graphene is 2D honeycomb lattice of carbon atoms 

Adapted from Wikipedia 

Graphene (2D) 

nm 246.0anm 246.0a

Graphite (3D) 



 How to make graphene? 

Scotch tape method 

Other methods: epitaxial growth, chemical vapor deposition, … 

Adapted from Scientific American Adapted from NIST 



 Why graphene? 

Graphene has high electron mobility 

Y. Zhang et al,  

Nature 438, 201 (2005) 

100 times faster than  

conventional semiconductors  

at room temperature 

Graphene is described by relativistic wavefunction 

P. R. Wallace, 

Phys. Rev. 71, 622 (1947) 

Relativistic wavefunction 

in a low energy system 



 Why graphene? 

Bilayer graphene is a band gap tunable semiconductor 

E. McCann,  

Phys. Rev. B 74, 161403 (2006) 

Band gap opening 

by an external electric field 

Graphene can be used as touch screen and flexible display 

S. Bae et al, 

Nat. Nanotech. 5, 574 (2010) 

Atomically thin and conducting 



 Why graphene? 

C. Lee et al, 

Science 321, 385 (2008) 

Graphene is 200 times stronger than steel 

NEMS application 

A. Balandin et al, 

Nano Lett. 8, 902 (2008) 

Graphene is an excellent thermal conductor 

Heat spreader 



1.    Electronic structure 

― Tight-binding model 

 Outline 

2.    Transport and optical properties 

― Boltzmann transport theory 

3.    Electron-electron interactions 

― Mean-field theory 

4.    Conclusion and future work 

― New electronic device scheme 



Electronic structure 

− Tight-binding model 

• What is the model Hamiltonian for graphene? 

• What is the effective theory near the Fermi energy? 

• What is the effect of stacking sequence? 
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 Tight-binding model 

Example: 1D chain composed of two kinds of atoms 
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 Monolayer graphene 

Tight-binding model 
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Monolayer graphene has a linear dispersion at low energies 

  Effective theory around K 

 Monolayer graphene 
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Pseudospin, chirality and Berry phase 

 Monolayer graphene 
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 Bilayer graphene 

Bilayer graphene is composed of a pair of coupled graphene 

A 35.3d

A 46.2a
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Bilayer graphene is composed of a pair of coupled graphene 

  4-band model around K 

 Electronic structure of bilayer graphene 
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Band structure control by an external electric field 

  4-band model around K 

 Band gap opening in bilayer graphene 
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Bilayer graphene 

Source Drain SiO2 

gate 

SiO2 

gate 

 Band gap opening in bilayer graphene 

Band structure control by an external electric field 

 Tunable energy gap semiconductor 

Possible application to a switch device 
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Min, Sahu, Banerjee, and MacDonald, Phys. Rev. B 75, 155115 (2007) 
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Bilayer graphene is composed of a pair of coupled graphene 

  4-band model around K 
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 Effective theory of bilayer graphene 
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Bilayer graphene has a parabolic dispersion at low energies 

  Effective theory around K 
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 Effective theory of bilayer graphene 
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Pseudospin, chirality and Berry phase 
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 Effective theory of bilayer graphene 
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 Effective theory of bilayer graphene 
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Monolayer graphene : 2D chiral system with chirality J=1  

Bilayer graphene       : 2D chiral system with chirality J=2 

 Pseudospin and Chirality 

Effective theory of a general chiral system 

Pseudospin: Two-valued quantum degrees of freedom 

  Example: sublattice, layer 
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McCann & Fal’ko , Phys. Rev. Lett. 96, 086805 (2006) 

Min & MacDonald, Phys. Rev. B 77, 155416 (2008) 



Three distinct stacking arrangements, labeled A,B,C 

 

 Multilayer stacking 

α 

β 

A α β 
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α β 
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 Electronic structure of multilayer 

Stacking sequence and energy band structure A 

C 

B 

ABC trilayer (chirality=3) 
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Min and MacDonald, Phys. Rev. B 77, 155416 (2008) 



 Electronic structure of multilayer 

Stacking sequence and energy band structure A 

C 

B 

ABCA (chirality=4) 
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 Electronic structure 

Important lessons 

Low-energy band structure is  

described by a set of chiral systems. 

High-energy band structure follows that of monolayer graphene. 

Electronic structure strongly depends on the stacking sequences. 

Electronic structure engineering by stacking sequences 
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Min and MacDonald, Phys. Rev. B 77, 155416 (2008) 



Transport and optical properties 

− Boltzmann transport theory 

• What is the effect of impurities? 

• What is the response to light? 

• How can we identify the stacking sequence? 



 Model 

• Relaxation time approximation 
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 Model 

DOS Diffusion constant in 2D Fermi velocity 
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 Density dependence of conductivity 
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Transmittance of graphene 

 Optical conductivity measurements 

Nair et al, Science 320, 1308 (2008) 
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High frequency limit 

At high frequencies, each decoupled layer gives σuni, thus 

optical conductivity approaches to Nσuni. 
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Intermediate frequency regime (t=0.3~0.4 eV) 

At intermediate frequencies, optical conductivity shows  

characteristic peaks depending on the stacking sequence. 
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Low frequency limit 

At low frequencies, optical conductivity approaches to Nσuni. 
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 Optical conductivity of graphene multilayers 

Low frequency limit 

• Monolayer graphene (J=1) 
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• J-chiral system 
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• Chirality sum is the number of layers 
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At low frequencies, optical conductivity approaches to Nσuni. 



 Optical conductivity of ABC trilayer 
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Min and MacDonald, Phys. Rev. Lett. 103, 067402 (2009) 
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 Optical conductivity of ABA trilayer 

Optical conductivity ABA trilayer 

Min and MacDonald, Phys. Rev. Lett. 103, 067402 (2009) 
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to identify the number of layers and stacking sequences. 

h

e
uni

2

2


 

E
 (

eV
) 

(eV) 

Optical conductivity and stacking sequence 



Min and MacDonald, PRL 103, 067402 (2009) 

 Comparison with experiments 

Mak et al, PRL 104, 176404 (2010) 
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Electron-electron interactions 

− Mean-field theory 

• What is the effect of electron-electron interaction? 

• How can we treat the electron-electron interaction? 

• Is there a pseudospin version of ferromagnetism? 



 Electron-electron interaction 

Interaction-induced ordered states 

• Magnetism 

• Superconductivity 

• Exciton-condensation 
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 Mean-field theory 

Weiss molecular-field approximation 
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Weiss molecular-field approximation 

 Mean-field theory 
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Hartree-Fock approximation 

 Mean-field theory 

Interacting electrons Non-interacting electrons  

in an effective potential 



Pseudospin 

  Bilayer graphene (chirality J=2) 
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 Two-valued quantum degrees of freedom 

     Is there spontaneous charge polarization in the presence 

     of electron-electron interactions? 

     Ferromagnetism means spontaneous spin polarization. 

 Pseudospin magnetism 
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In-plane pseudospin direction 

 

 

 

 

 

 

 

 

 

Min et al. Phys. Rev. B 77, 041407(R) (2008) 
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In-plane pseudospin direction 
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 Vortex formation in momentum space 

Spontaneous charge transfer between the two layers 
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 Pseudospin magnetism in bilayer graphene 

Electron-electron interactions are turned on 
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In-plane pseudospin direction 

 

 

 

 

 

 

 

 

 

ABC stacked multilayers are excellent candidates. 
Ex) AB, ABC, ABCA, ABCAB,… 

 Pseudospin magnetism in multilayer graphene 


Pseudospin magnetism is more stable for larger chirality. 
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J=2 

J=4 

  )sin,(cos~,  JJyx

A 

C 

B 



Conclusion and future work 

− New electronic device scheme 

• How can we use the ordered states in devices? 

• Are there other interaction-induced ordered states? 

• Ongoing work 



Dirac-like chiral wavefunction 

 New ordered states in graphene systems 

Electron-electron interaction + 

Energy band structure and stacking sequences 

 Search for ordered states in graphene systems 

Pseudospin magnetism in coupled graphene bilayers 

Interplay between chirality, e-e interaction and disorder 

Disorder − 

High-quality sample with low disorder 



Single particle behavior 

 Collective behavior of many particles 

 Prospects 

Classical/semi-classical phenomena 

 Quantum phenomena in macroscopic scale 

Current electronic device scheme 

Future electronic device scheme 



 Collective behavior of many electrons 

 Collective electron device scheme 

Example: Giant magnetoresistance (GMR) 

Magnetic field control of ordered states 



• Collective behavior of 

many electrons 

 Collective electron device scheme 

Example: Pseudospin magnetism 

Pseudospintronics! 

• Can be switched with a  

small gate voltage change 

using much less power 

• Can exhibit a pseudospin  

version of GMR and spin-transfer torque 

• Electrical control of ordered states 
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 Conclusion 

Text book examples vs research problems 

• Ask 

Text book 

examples 

Research 

problems 

• Seek 

• Knock 

: Questions 

: Motivation 

: Doors 


