Effects of disorder on magnetic vortex dynamics

Hongki Min
hmin@umd.edu

Condensed Matter Theory Center, Department of Physics, University of Maryland

APS March Meeting, Mar 21, 2011
Acknowledgments

Mark D. Stiles
Robert D. McMichael
Michael J. Donahue

Jacques Miltat

NIST-CNST/UMD-Nanocenter
Cooperative Agreement

Effects of disorder and internal dynamics on vortex wall propagation
Hongki Min, Robert D. McMichael, Michael J. Donahue, Jacques Miltat, and M. D. Stiles

Effects of disorder on magnetic vortex gyration
Hongki Min, Robert D. McMichael, Jacques Miltat, and M. D. Stiles
Outline

I. Effects of disorder on vortex wall propagation
 • Field-induced propagation
 • Current-induced propagation
 • Enhanced damping and internal dynamics

II. Effects of disorder on vortex gyration
 • Gyration in a disordered film
 • Gyration in a single pinning potential

Extrinsic disorder and excitation of internal domain wall structures enhance the effective damping.
Motivation

Domain wall structure
Field induced domain wall motion

Magnetization dynamics

• Landau-Lifshits-Gilbert (LLG) equation

\[\frac{\partial}{\partial t} \mathbf{M} = -\gamma \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M} \mathbf{M} \times \frac{\partial}{\partial t} \mathbf{M} \]

\(\mathbf{M} = \) magnetization \(\gamma = \) gyromagnetic ratio \(\mathbf{H}_{\text{eff}} = \) Effective magnetic field \(\alpha = \) Gilbert damping

Collective coordinate approach

• Transverse wall and vortex wall
Collective coordinate approach

Two-coordinate model for vortex core position

• **Equations of motion** (X, Y)

\[
\alpha \mathbf{DV} = \mathbf{F} + \mathbf{V} \times \mathbf{G}
\]

- $\mathbf{V} =$ time derivative of (X, Y)
- $\mathbf{D} =$ viscosity tensor
- $\mathbf{F} =$ generalized force
- $\mathbf{G} =$ gyroscopic tensor
- $\alpha =$ Gilbert damping

\[
m \ddot{\mathbf{v}} + \Gamma \mathbf{v} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})
\]

- $D_{ij} = \int d^3x \frac{\partial \mathbf{m}}{\partial X_i} \cdot \frac{\partial \mathbf{m}}{\partial X_j}$
- $F_i = \gamma \int d^3x H_{\text{eff}} \cdot \frac{\partial \mathbf{m}}{\partial X_i} = -\frac{\gamma}{\mu_0 M} \frac{\partial E}{\partial X_i}$
- $G_{ij} = \int d^3x \mathbf{m} \cdot \left(\frac{\partial \mathbf{m}}{\partial X_i} \times \frac{\partial \mathbf{m}}{\partial X_j} \right)$

Thiele, PRL 30, 230 (1973);
Schryer and Walker, JAP 45, 5406 (1974);
Thiaville et al, EPL 69, 990 (2005);
Li and Zhang, PRB 70, 024417 (2004);
He et al, PRB 73, 184408 (2006);
Tretiakov et al, PRL 100, 127204 (2008);
Clarke et al, PRB 78, 134412 (2008);
.....

2D massless charged particle moving through a medium with a viscosity tensor $\alpha \mathbf{D}$ in the presence of an in-plane electric field \mathbf{F} and a perpendicular magnetic field \mathbf{G}.
Does this reduced model, which ignores the extrinsic disorder and internal structure of the domain wall, provide a good interpretation of experiments?
Simulation

- LLG equation solver
 - Objected Oriented MicroMagnetic Framework
- Permalloy (Ni\textsubscript{80}Fe\textsubscript{20}) thin film
 - 200 nm width, 20 nm thickness, 5 nm cell size
 - 10000 nm ~ 15000 nm length
- Disorder model
 - Correlated variation in M_s to model thickness fluctuations
 \[
 D = \frac{\sqrt{\langle M(r) - M_s \rangle^2}}{M_s}
 \]
- Removing finite size effects
 - Compensating fields at ends
 - Absorbing boundary conditions at ends
$D = \sqrt{\Delta M^2(r)/M_s}$

Enhanced propagation by disorder

Pinned by disorder

$\mu_0 H = 3 \text{ mT}$

Velocity estimation by ensemble average

\[\Delta = 0.025 \]

\[X = 0 \times (\text{nm}) \]

\[\Delta = 0.075 \]

\[X = 0 \times (\text{nm}) \]

\[\mu_0 H = 3 \text{ mT} \]

\[V_{DW} = 34.2 \text{ m/s} \]

\[V_{DW} = 53.3 \text{ m/s} \]

\[V_{DW} = 63.5 \text{ m/s} \]

\[V_{DW} = 77.7 \text{ m/s} \]

No disorder

Pinning by disorder

\[\mu_0 H = 3 \text{ mT} \]

\[D = 0.025 \]

\[D = 0.05 \]

\[D = 0.075 \]

\[D = 0.025 \]

\[D = 0.05 \]

\[D = 0.075 \]

\[D = 0.025 \]

\[D = 0.05 \]

\[D = 0.075 \]
Disorder can enhance/suppress velocity

Domain wall velocity as a function of field

\[V_{DW}(\text{m/s}) \]

\[\mu_0 H \text{ (mT)} \]

\[D=0 \]

\[D=0.025 \]

\[D=0.05 \]
Ideal model with different damping constants

Domain wall velocity as a function of fields

Results can be understood in terms of an effective damping that increases with the disorder.
Current induced domain wall motion

Magnetization dynamics

- Landau-Lifshits-Gilbert (LLG) equation

\[
\begin{align*}
\left(\frac{\partial}{\partial t} + \mathbf{v}_s \cdot \nabla \right) \mathbf{M} &= -\gamma \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{\mathbf{M}} \mathbf{M} \times \left(\frac{\partial}{\partial t} + \frac{\beta}{\alpha} \mathbf{v}_s \cdot \nabla \right) \mathbf{M} \\
\end{align*}
\]

\(\mathbf{M}\) = magnetization \(\mathbf{H}_{\text{eff}}\) = Effective magnetic field \(\gamma\) = gyromagnetic ratio

\(\alpha\) = Gilbert damping \(\beta\) = spin-transfer torque parameter \(\mathbf{v}_s\) = spin velocity

Collective coordinate approach: Vortex wall

- Equations of motion \((X, Y)\)

\[
\begin{align*}
\Gamma \left(\mathbf{V} - \frac{\beta}{\alpha} \mathbf{v}_s \right) &= \mathbf{F} + (\mathbf{V} - \mathbf{v}_s) \times \mathbf{G} \\
\end{align*}
\]

\(\mathbf{V}\) = domain wall velocity \(\mathbf{D}\) = viscosity tensor \(\mathbf{F}\) = generalized force \(\mathbf{G}\) = gyroscopic tensor
Changing α in high current regime: $v_s = 2.5v_c$ ($\beta = 0$)

Ideal model with different β/α:

$\Gamma \left(V - \frac{\beta}{\alpha} v_s \right) = F + (V - v_s) \times G$

X/λ vs Y/λ

Trajectories depend on β/α.
\[D = \sqrt{\Delta M^2(r)/M_s} \]

Deviated trajectory by disorder

\[\beta/\alpha = 1 \]

\[J = 2 \times 10^{13} \text{ A/m}^2 \]
Disorder enhances the effective damping

Disorder vs velocity

Damping vs velocity

\[J = 2 \times 10^{13} \text{ A/m}^2 > J_c, \beta = 0 \]
Disorder enhances the effective damping

Domain wall velocity as a function of disorder

\[D = \frac{\sqrt{\Delta M^2(r)}}{M_s} \]

Extracted effective damping constant could vary sample by sample
Energy dissipation

Dissipation through spin wave and vortex core

\begin{align*}
\frac{dE}{dtdx} &= \alpha \left(\frac{fJ}{\text{ns} \cdot \text{nm}} \right) \\
\alpha &= 0.01 \\
\mu_0 H &= 3 \text{ mT}
\end{align*}

\[
\frac{dE}{dt} \propto -\alpha \left(\frac{\partial M}{\partial t} \right)^2
\]
Energy dissipation

Dissipation through spin wave and vortex core

\(\alpha = 0.01 \)
\(\mu_0 H = 3 \text{ mT} \)

\[\frac{dE}{dt dx} \left(\frac{\text{fJ}}{\text{ns} \cdot \text{nm}} \right) \]

Increased rate of energy dissipation from vortex core motion indicates excitation of the internal degrees of freedom in domain wall structure.
Summary of Part I

- Disorder can affect domain wall dynamics significantly.
- Excitation of internal degrees of freedom by disorder gives enhanced effective damping.
- Caution is needed when using idealized models to interpret domain wall motion measurements.
Vortex in a magnetic disk

Diameter=400 nm, thickness=10 nm, cell=2.5 nm

Study the enhanced damping ratio in vortex gyration
Displacement of vortex core by static fields

$\mu_0 H_y = 10 \text{ mT}$

No magnetic field

H_x, H_y, H_p

$t = 200 \text{ ps}$
Gyration frequency map from Kerr microscopy

Compton and Crowell, PRL 97, 137202 (2007);
Compton, Chen and Crowell, PRB 81, 144412 (2010)

Gyration with a frequency that is a characteristic of a pining site
\[D = 0.05, \mu_0 H_p = 0.1 \text{ mT}, \, dt_p = 0.2 \text{ ns} \]

\[D = \sqrt{\Delta M^2(r)/M_s} \]

Gyration frequency map from simulation

Disorder image

Gyration frequency map

Gyration with a frequency that is a characteristic of a pining site
Gyration with a frequency that is a characteristic of a pining site.
Time evolution of gyration radius

$D = 0.05, \mu_0 H_p = 20 \, \text{mT}, \, dt_p = 1 \, \text{ns}$

Transition from free to trapped regimes

Correlation length $\approx 10 \, \text{nm}$

No disorder
Vortex gyration in a single pinning potential

Single pinning potential with a radius of 10 nm

\[\delta = \frac{\Delta M_c}{M_s} \]

\[H_p = 20 \text{ mT} \]

\[t = 1 \text{ ns} \]

400 nm
Collective coordinate approach

Two-coordinate model for vortex core position

- Equations of motion

\[\alpha \mathbf{D} \mathbf{V} = \mathbf{F} + \mathbf{V} \times \mathbf{G} \]

\[R = R_0 \exp \left(-\frac{t}{\tau} \right), \quad \phi = 2\pi ft \]

\[\Rightarrow \quad 2\pi f_{\tau} C \alpha = 1 \]

\[C = \frac{D_{\phi\phi}}{G + \alpha D_{R\phi}} \]

Geometrical factor

\[\Rightarrow \quad \frac{f_0 \tau_0}{f \tau} = \frac{\alpha_{\text{eff}} C}{\alpha_0 C_0} \]

\[\text{By comparing free and trapped regimes, the effective damping can be determined.} \]
Enhanced decay rate by a pinning potential

Evolution of gyration radius

\[\delta = \Delta M_c / M_s \]

![Graph showing the evolution of gyration radius over time with different values of \(\delta \).](image)

- **Trapped at** \(r=10 \text{ nm} \)
- **Measured from the peak position in the spectrum**
- **Measured from the line width in the spectrum**

Inset:

\[\frac{f_0 \tau_0}{f \tau} = \frac{\alpha_{\text{eff}} C}{\alpha_0 C_0} \]

Transition from free to trapped regimes
Deformation by a pinning potential

Evolution of deformation factor

\[\delta = \frac{\Delta M_c}{M_s} \]

Deformation of vortex should be taken into account

Deformation of vortex structure

Deformation of a vortex structure

\[C = \frac{D_{\phi\phi}}{G + \alpha D_{R\phi}} \]

\[\frac{f_0 \tau_0}{f \tau} = \frac{\alpha}{\alpha_0} \frac{C}{C_0} \]
Enhanced effective damping

Enhancement ratio as a function of depth

Enhanced damping mostly comes from the change in geometry of the vortex.

\[\frac{\alpha_{\text{eff}}}{\alpha_0} = \frac{f_0\tau_0}{f\tau} \frac{C_0}{C} \]

\[\delta = \frac{\Delta M_c}{M_s} \]
As the frequency increases, the vortex gets more excited increasing the effective damping.
Summary of Part II

- The enhanced damping rate could be measured by the gyration experiments up to the deformation factor.

- The larger the gyration frequency, the bigger the effective damping.

- The effective damping is enhanced by disorder and internal excitations of domain wall structure.

E-mail: hmin@umd.edu