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I. Effects of disorder on vortex wall propagation

• Field-induced propagation

• Current-induced propagation

• Enhanced damping and internal dynamics

Outline

Extrinsic disorder and excitation of internal domain 

wall structures enhance the effective damping.

II. Effects of disorder on vortex gyration

• Gyration in a disordered film

• Gyration in a single pinning potential



Motivation

Domain wall structure

Applied field



Field induced domain wall motion

Magnetization dynamics

• Landau-Lifshits-Gilbert (LLG) equation

Collective coordinate approach

• Transverse wall and vortex wall
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Collective coordinate approach

• Equations of motion

GVFDV 

ji

ij
XX

dxD








 

mm3

ii

i
X

E

MX
dxF









 

0

eff

3






m
H























 

ji

ij
XX

dxG
mm

m
3

),( YX

time derivative of (X,Y)V

Gilbert damping

viscosity tensorD

generalized forceF

gyroscopic tensorG

Two-coordinate model for vortex core position
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2D massless charged particle moving
through a medium with a viscosity 
tensor αD in the presence of an 
in-plane electric field F and a 
perpendicular magnetic field G
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H > Hc

Does this reduced model, which ignores the extrinsic 

disorder and internal structure of the domain wall, 

provide a good interpretation of experiments? 
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Simulation

• Removing finite size effects

─ Compensating fields at ends

─ Absorbing boundary conditions at ends

• Permalloy (Ni80Fe20) thin film 

─ 200 nm width, 20 nm thickness, 5 nm cell size

─ 10000 nm ~ 15000 nm length

• LLG equation solver

─ Objected Oriented MicroMagnetic Framework

• Disorder model

─ Correlated variation in Ms to 

model thickness fluctuations
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Edge roughness: Nakatani et al, Nat. Mater. 2, 521 (2003); Martinez et al, PRB 75, 174409 (2007)



Velocity estimation by ensemble average
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Disorder can enhance/suppress velocity

Domain wall velocity as a function of field
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H/Hc(α=0.01)

Domain wall velocity as a function of fields

Ideal model with different damping constants

Results can be understood in terms of an effective 
damping that increases with the disorder.

V
D

W
/V

0

DWV
1

DW

V

cH



Current induced domain wall motion

Magnetization dynamics

• Landau-Lifshits-Gilbert (LLG) equation

MvMHMMv 


























seffs






tMt

spin-transfer torque parameter spin velocitysv

Collective coordinate approach: Vortex wall

• Equations of motion ),( YX

  GvVFvV 







 ss




Gilbert damping

gyromagnetic ratioEffective magnetic fieldeffHmagnetizationM

domain wall velocityV

viscosity tensorD

generalized forceF

gyroscopic tensorG



Changing α in high current regime: vs=2.5vc(β=0)
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Disorder enhances the effective damping

Disorder vs velocity
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Domain wall velocity as a function of disorder
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• Disorder can affect domain wall

dynamics significantly.

• Excitation of internal degrees of 

freedom by disorder gives enhanced

effective  damping.

• Caution is needed when using 

idealized models to interpret 

domain wall motion measurements.

Summary of Part I

Min et al, PRL 104, 217201 (2010)
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Vortex in a magnetic disk

Diameter=400 nm, thickness=10 nm, cell=2.5 nm

Study the enhanced damping ratio in vortex gyration



Displacement of vortex core by static fields

No magnetic field μ0Hx=10 mT

μ0Hx=10 mT

μ0Hy=10 mT

μ0Hy=10 mT

400 nmHx

Hy

μ0Hp=0.1 mT

t=200 ps



Gyration frequency map from Kerr microscopy

Gyration with a frequency that is a characteristic of a pining site

Compton and Crowell, PRL 97, 137202 (2007); 

Compton, Chen and Crowell, PRB 81, 144412 (2010)



Hx (mT)

H
y

(m
T

)

f (GHz)

μ0Hx (mT)

μ
0
H

y
(m

T
)

X (nm)

Y
(n

m
)

80

-80

0

10

-10

0

80-80 0 10-10 0

> 0.4

< 0.2

0.3

Gyration frequency map from simulation

Disorder image Gyration frequency map

=0.05, μ0Hp=0.1 mT, dtp=0.2 ns  s

2 )( MM r

Gyration with a frequency that is a characteristic of a pining site
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Single pinning potential with a radius of 10 nm

Vortex gyration in a single pinning potential
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Collective coordinate approach

Two-coordinate model for vortex core position

• Equations of motion

By comparing free and trapped regimes, 
the effective damping can be determined.
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Evolution of deformation factor

Deformation of vortex should be taken into account

Deformation of 
a vortex structure
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Enhanced damping mostly comes from the 
change in geometry of the vortex.
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Enhanced effective damping

Effective damping as a function of frequency
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As the frequency increases, the vortex gets more 
excited increasing the effective damping.



• The enhanced damping rate could 

be measured by the gyration 

experiments up to the deformation 

factor.

• The larger the gyration frequency, 

the bigger the effective damping.

• The effective damping is enhanced 

by disorder and internal excitations

of domain wall structure.

Summary of Part II

E-mail: hmin@umd.edu
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