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Dynamics of nonlocality for a two-mode squeezed state in a thermal environment
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We investigate the time evolution of nonlocality for a two-mode squeezed state in a thermal environment.
The initial two-mode pure squeezed state is nonlocal with a stronger nonlocality for a larger degree of
squeezing. It is found that the larger the degree of initial squeezing, the more rapidly the squeezed state loses
its nonlocality. We explain this by the rapid destruction of quantum coherence for the strongly squeezed state.

PACS number~s!: 03.65.Bz, 89.70.1c
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I. INTRODUCTION

Quantum nonlocality is one of the most profound featu
of quantum mechanics@1,2#. It enables current developmen
of quantum information theory encompassing quantum t
portation @3–8#, quantum computation@9#, and quantum
cryptography@10#. There have been studies on tests of qu
tum nonlocality versus local realism. Bell suggested an
equality that any local hidden variable theory must obey@2#.
Several types of Bell’s inequalities have been derived
terms of two-body correlation functions of two measurem
variables at distant places@11# to test quantum nonlocality
for a spin-1/2 or SU~2! system.

A spin-1/2 system can be utilized as a qubit for quant
computation. Quantum nonlocality of the spin-1/2 system
required as a quantum channel to teleport an unknown q
state@3,12#. In fact, it is possible to teleport not only a two
dimensional spin-1/2 quantum state but also
N-dimensional state@4# and a continuous-variable state@5#.
The type of quantum channel depends on the dimensio
the Hilbert space of an unknown quantum state. For telep
tation of a continuous-variable state, the quantum chan
should be in an entangled continuous-variable state suc
the two-mode squeezed state@6#. Recently, practical imple-
mentation of quantum teleportation for a continuous-varia
state has been realized experimentally using a two-m
squeezed field@7,8#. In quantum teleportation, the most im
portant ingredient is the quantum nonlocality of the chann
which can easily be destroyed in nature. In this paper we
interested in how the thermal environment affects the qu
tum nonlocality of the two-mode squeezed field.

Quantum nonlocality of an entangled continuous-varia
state has been discussed using the Schmidt form for
tangled nonorthogonal states@13# and quadrature-phase ho
modyne measurement@14#. A given state is nonlocal when i
violates any Bell’s inequality. In fact, a state does not have
violate all the possible Bell’s inequalities to be consider
quantum nonlocal. A state is quantum nonlocal for the giv
Bell’s inequality that is violated by the measurement of t
state. Banaszek and Wo´dkiewicz defined Bell’s inequality
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based on parity measurement and they found that the t
mode squeezed state violates Bell’s inequality, show
quantum nonlocality@15#.

In this paper we study the dynamic behavior of the qu
tum nonlocality based on parity measurement for a tw
mode squeezed state in a thermal environment. Measure
of the degree of quantum nonlocality is defined here by
maximal violation of Bell’s inequality. The nonlocality is
stronger for a squeezed state with a larger degree of squ
ing. It is found that the nonlocality disappears more rapid
in the thermal environment as the initial state is squee
more.

This paper is organized as follows. In Sec. II, Bell’s i
equality based on parity measurement is discussed. The
ity measurement is directly related to the Wigner function.
Sec. III, the two-mode master equation is solved for the
namics of the Wigner function of the initial two-mod
squeezed state. Convolution theory is utilized in the solut
@16#. We investigate the dynamic behavior of the quantu
nonlocality measured by the maximum violation of Bell
inequality for the two-mode squeezed state in a thermal
vironment in Sec. IV.

II. BELL’S INEQUALITY BY PARITY MEASUREMENT

It is important to choose the type of measurement va
ables when testing nonlocality for a given state. In the ori
nal gedanken experiment@1#, Einstein, Podolsky, and Rose
~EPR! considered the positions~or the momenta! of two par-
ticles as the measurement variables to discuss two-body
relation. Bell@2# argued that the EPR wave function does n
exhibit nonlocality because its Wigner functio
W(x1 ,p1 ;x2 ,p2) is positive everywhere, allowing its de
scription by a local hidden variable theory. Munro show
that various types of Bell’s inequalities are not violated
terms of homodyne measurements of two particles@14,17#.
To the contrary, Banaszek and Wo´dkiewicz @15# examined
even and odd parities as the measurement variables
showed that the EPR state and the two-mode squeezed
are nonlocal in the sense that they violate Bell’s inequalit
such as the Clauser and Horne inequality and the Clau
Horne-Shimony-Holt inequality.

The even and odd parity operators,Ôe and Ôo , are the
projection operators measuring the probabilities of the fi
©2000 The American Physical Society01-1
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having even and odd numbers of photons, respectively:

Ôe5 (
n50

`

u2n&^2nu; Ô05 (
n50

`

u2n11&^2n11u. ~1!

The Wigner function at the origin of phase space for a s
of density operatorr̂ is proportional to the mean parity@18#,

W~0!5~2/p!Tr@~Ôe2Ôo!r̂#. ~2!

Further, the Wigner functionW(a) at the phase pointa is
the mean parity for the displaced original state,

W~a!5~2/p!Tr@~Ôe2Ôo!D̂~a!r̂D̂†~a!#, ~3!

whereD̂(a) is the displacement operator@18#.
So far the argument has been confined to parity meas

ment of a single-mode field. As the quantum nonlocality c
be discussed for two-mode fields, we thus define the qu
tum correlation operator based on joint parity measureme

P̂ab~a,b!5P̂e
a~a!P̂e

b~b!2P̂e
a~a!P̂o

b~b!

2P̂o
a~a!P̂e

b~b!1P̂o
a~a!P̂o

b~b!, ~4!

where the superscriptsa and b denote the modes and th
displaced parity operatorP̂e,o(a) is defined as

P̂e,o~a!5D̂~a!Ôe,oD̂†~a!. ~5!

The displaced parity operator acts like a rotated spin pro
tion operator in a spin measurement. We can easily de
that the local hidden variable theory imposes the follow
Bell’s inequality @15#:

uB~a,b!u[u^P̂ab~a,b!1P̂ab~a,b8!

1P̂ab~a8,b!2P̂ab~a8,b8!&u<2, ~6!

whereB(a,b) is the Bell function.
By a simple extension of the relation~3!, the two-mode

Wigner function is found to be proportional to the mean
P̂ab such thatW(a,b)5(4/p2)Tr@ r̂abP̂

ab(a,b)# for the
two-mode state of density operatorr̂ab . The Bell function
~6! can then be written in terms of the Wigner functions
different phase-space points,

B~a,b!5
p2

4
@W~0,0!1W~a,0!1W~0,b!2W~a,b!#.

~7!

The type of Bell’s inequality in Eq.~6! was first discussed by
Clauser, Horne, Shimony, and Holt@11#. Clauser and Horne
later found another type of inequality which can also be
pressed in phase space using the quasiprobabilityQ function
@15#. TheQ function is related to the probability of the sta
having no photons. The lower and upper critical values of
Clauser-Horne Bell’s inequality are21 and 0.

We have seen that the two-mode Wigner function is u
ful to test quantum nonlocality of the given field so that,
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the next section, we find the evolution of the Wigner fun
tion for the initial two-mode squeezed state coupled with
thermal environment.

III. TIME EVOLUTION OF TWO-MODE SQUEEZED
STATES IN A THERMAL ENVIRONMENT

A two-mode squeezed state is the correlated state of
field modesa andb that can be generated by a nonlinearx (2)

medium @19,20#. A two-mode pure squeezed state is o
tained by applying the unitary operator on the two-mo
vacuum,

uCab~s!&5exp~2sâb̂1s* b̂†â†!u0a,0b&, ~8!

wheres5s exp(2iw) and â(b̂) is an annihilation operato
for the modea(b). The value ofs determines the degree o
squeezing. The largers, the more the state is squeezed.

The Wigner function corresponding to the squeezed s
is the Fourier transform of its characteristic functio
CW(z,h) @20#,

CW~z,h!5Tr@ r̂ exp~zâ†2z* â!exp~hb̂†2h* b̂!#. ~9!

For the two-mode squeezed state of density matrixr̂
5uCab(s)&^Cab(s)u, the Wigner function is written as

Wab~a,b!5
4

p2 exp@22 cosh~2s!~ uau21ubu2!

12 sinh~2s!~ab1a* b* !#. ~10!

The correlated nature of the two-mode squeezed state is
hibited by theab cross term which vanishes whens50.

The Fokker-Planck equation~in Born-Markov approxima-
tion! describing the time evolution of the Wigner function
the interaction picture can be written as

]Wab~a,b,t!

]t
5

g

2 (
a i5a,b

F ]

]a i
a i1

]

]a i*
a i*

12S 1

2
1n̄D ]2

]a i]a i*
GWab~a,b,t!,

~11!

where we have assumed that the two modes of the envi
ment are independent of each other and the energy d
rates of the two modes are the same and denoted byg. The
two modes have the same average thermal photon numbn̄.
By solving the Fokker-Planck equation~11!, we get the time
evolution of the Wigner function at timet to be given by the
convolution of the original function and the thermal enviro
ment @16#,

Wab~a,b,t!5
1

t~t!4 E d2z d2h Wa
th~z!Wb

th~h!

3WabS a2r ~t!z

t~t!
,
b2r ~t!h

t~t!
,t50D ,

~12!
1-2
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where the parametersr (t)5A12e2gt and t(t)5Ae2gt.
Wth(z) is the Wigner function for the thermal state of ave
age thermal photon numbern̄:

Wth~z!5
2

p~112n̄!
expS 2

2uzu2

112n̄D . ~13!

Performing the integration in Eq.~12!, the Wigner function
for the initial two-mode squeezed state evolving in the th
mal environment is obtained as

Wab~a,b,t!5N exp@2E~t!~ uau21ubu2!

1F~t!~ab1a* b* !# ~14!

where

E~t!5
2r ~t!2~112n̄!12t~t!2 cosh 2s

D~t!
,

F~t!5
2t~t!2 sinh 2s

D~t!
,

D~t!5t~t!412r ~t!2t~t!2~112n̄!cosh 2s

1r ~t!4~112n̄!2, ~15!

and N is the normalization factor. In the limit ofs50, the
ab cross term vanishes and the state can be represente
the direct product of each mode state such t
Wab(a,b,t)5Wa(a,t)Wb(b,t). It is obvious that the
Wigner function ~14! exhibits local characteristics in thi
limit.

The system will eventually assimilate with the enviro
ment. This can be seen in the Wigner function, at the limit
t→`,

FIG. 1. The time evolution of the maximal valueuBumax of the
Bell function versus the dimensionless timer (t)[A12exp(2gt)
which is 0 att50 and 1 att5`. The initial degree of squeezin
s50.3 and the average photon numbern̄ of the thermal environ-
ment is n̄50 ~solid line!, n̄50.5 ~dotted line!, and n̄52 ~dashed
line!. The largern̄, the more rapidly the nonlocality is lost.
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Wab~a,b!5
4

p2~11n̄!2 expS 2
2

~112n̄!
~ uau21ubu2! D .

~16!

This is the direct product of two thermal states in modea
andb.

IV. EVOLUTION OF QUANTUM NONLOCALITY

Substituting Eq.~14! into Eq.~7!, we find the evolution of
nonlocality for the initial two-mode squeezed state in a th
mal environment. The Bell functionB at timet is given by

B~a,b,t!5
p2N

4
exp$11exp@2E~t!uau2#

1exp@2E~t!ubu2#2exp@2E~t!~ uau21ubu2!

12F~t!uabucosu#%, ~17!

where ua and ub are the phases ofa and b and u5ua
1ub . When cosu521, the Bell functionBm(uau,ubu,t) is
described by the absolute valuesuau andubu. Bm is symmetric

FIG. 2. The time evolution of uBumax versus r (t)
[A12exp(2gt) when the squeezed state is prepared with the
tial degree of squeezings50.1 ~solid line!, s50.5 ~dotted line!, and
s51.0 ~dashed line!. The two-mode squeezed state is coupled w
the n̄50 vacuum~a! and then̄51 thermal environment~b!. In the
vacuum, the larger the degree of squeezing, the more rapidly
nonlocality is lost. In then̄51 thermal environment, we find tha
the nonlocality persists longer when the squeezing iss;0.5.
1-3
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in exchanging a and b such that Bm(uau,ubu,t)
5Bm(ubu,uau,t). It is straightforward to show thatB<Bm at
any instant of timet. In order to find the evolution of the
nonlocality, the maximal valueuBumax of the Bell functionB
is calculated by the steepest descent method@21# and using
the properties ofBm(uau,ubu,t). We say the field is quantum
mechanically nonlocal asuBumax is larger than 2 and the
nonlocality is stronger asuBumax gets larger.

The initial two-mode squeezed state is always nonloca
uBumax.2 for s.0. uBumax increases monotonically as th
degrees of squeezing increases. The state becomes m
mally nonlocal withuBumax;2.190 55 ass→` @15#. At an
intermediate time 0,t,`, the pure squeezed state evolv
to a two-mode mixed squeezed state and nonlocality is lo
a certain time of evolution. Figures 1 and 2 showuBumax
versus the dimensionless timer (t) defined in Eq.~12!. We
find that the nonlocality initially prepared persists until
characteristic timetc(s,n̄) depending on the temperature
the thermal environment and the initial squeezing. In Fig.
is found that, when the environment is the vacuum,uBumax
decreases as time proceeds. After reaching a minimum va
uBumax increases to 2, which is the value ofuBumax for the
vacuum. Even though it is not clearly seen in the figure d
to the scale, for anyn̄Þ0 thermal environment,uBumax in-
creases to its value for the thermal field after decreasing
minimum. In Fig. 1, asn̄ gets largeruBumax decreases much
faster and further.

In Fig. 2, we identify an interesting phenomenon: t
larger the initial degree of squeezing the more rapidlyuBumax
decreases. We analyze the reason whyuBumax decreases more
rapidly for larger initial squeezing as follows.

The two-mode squeezed state~8! can be represented b
the continuous superposition of two-mode coherent state~a
similar analysis has been done for a single-mode sque
state@22#!,

uCab~s!&5E d2a G~a,s!ua,a* eiw&, ~18!

where the Gaussian weight function

G~a,s!5~p sinhs!21 expF2S 12tanhs

tanhs D uau2G . ~19!

As s gets larger, the weight of a large-a state is greater, so
that the contribution ofua,a* eiw& for a largea becomes
more important in the continuous superposition~18!.

The quantum interference between coherent compo
states is the key to the quantum nature of the field. T
quantum interference is destroyed by the environment.
s,
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speed of destruction depends on the distance between
coherent component states and the average thermal ener
the environment@23#. This is the reason why a macroscop
quantum superposition state is not easily seen in nature
the continuous superposition~18! we find that as the degre
of squeezing is larger, the superposition extends further
that the quantum interference can be destroyed more ea
Quantum nonlocality in a two-mode squeezed state a
originates from quantum interference between the cohe
component states, which can be destroyed easily as the
tribution of the large-amplitude coherent state becomes
portant.

In fact, the uncertainty increases to its maximum and th
decreases to the value of the environment when a sin
mode squeezed state is influenced by a thermal environm
@24#. The uncertainty increases faster as the degree
squeezing is larger. This can be explained using the s
argument as the loss of quantum nonlocality.

In Fig. 2~a!, when the environment is the vacuum, it
found that the characteristic timetc(s,n̄) to lose the quan-
tum nonlocality is shorter as the initial degree of squeezin
larger. In Fig. 2~b!, with a nonzero temperature thermal e
vironment (n̄Þ0), we find that a larger degree of squeezi
does not necessarily result in a shorter characteristic t
tc(s,n̄). This clearly shows that the characteristic time is
function of the average number of thermal photons as wel
the degree of squeezing. However, it is still true thatuBumax
decreases faster~the slope of its curve is steeper! whens is
larger. It is also found thatuBumax decreases faster forn̄Þ0
than for n̄50.

We have studied the dynamic behavior of nonlocality
a two-mode squeezed state in a thermal environment. A t
mode squeezed state can be used for the quantum chan
quantum teleportation of a continuous-variable state. T
two-mode squeezed state is found to be a nonlocal state
gardless of its degree of squeezing, and a higher degre
squeezing brings about a larger quantum nonlocality. As
squeezed state is influenced by the thermal environment
nonlocality is lost. The rapidity of the loss of nonlocalit
depends on the initial degree of squeezing and on the a
age thermal energy of the environment. The more stron
the initial field is squeezed, the more rapidly the maximu
nonlocality decreases. This has been analyzed extensive
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