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Abstract We investigate the performance of quantum teleportation under a lossy
environment using two different types of optical hybrid qubits. One is the hybrid of a
polarized single-photon qubit and a coherent-state qubit (type-I logical qubit), and the
other is the hybrid of a qubit of the vacuum and the single-photon and a coherent-state
qubit (type-II logical qubit). We show that type-II hybrid qubits are generally more
robust to photon loss effects compared to type-I hybrid qubits with respect to fidelities
and success probabilities of quantum teleportation.

Keywords Quantum teleportation · Quantum information processing · Quantum
optics · Optical qubit · Hybrid qubit · Decoherence

1 Introduction

Quantum teleportation is a protocol to transfer an unknown qubit from one place to
another via an entangledquantumchannel [1–3]. It is at the heart of various applications
in quantum communication and computation. In particular, it plays a crucial role
in implementing all-optical quantum computation [4–9]. A typical qubit for optical
quantum teleportation utilizes the horizontal and vertical polarization states of a single
photon, {|H〉, |V 〉} [2,5–7], or alternatively the vacuum and single-photon states, {|0〉,
|1〉} [10,11]. However, in this type of approaches based on a single-photon qubit,
the success probability of a Bell-state measurement, which is an essential element in
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realizing the quantum teleportation protocol, cannot exceed 1/2 using linear optics and
photon detection [12,13]. Efforts are being made to overcome this limitation using
auxiliary states, additional operations or multipartite encoding [14–18], while each
of them has its own price to pay. An alternative approach employs coherent states
as the qubit basis, {|α〉, | − α〉} [19,20], where ±α are amplitudes of the coherent
states. It enables one to implement a nearly deterministic Bell-state measurement [20–
23]. However, due to the non-orthogonality of two coherent states, |α〉 and | − α〉, a
necessary operation to finish the teleportation process such as the Pauli-Z operation
cannot be performed in a deterministic way and produces additional errors [8,9].

Recently, a hybrid approach to optical quantum information processing was pro-
posed by combining advantages of the two aforementioned approaches [24]. In this
approach, the logical qubit is constructed using entanglement between the polarization
states of a single photon and coherent states that leads to nearly deterministic quantum
controls [24]. It enables one to perform a near-deterministic quantum teleportation as
well as near-deterministic universal gate operations in a more efficient manner com-
pared to previous approaches [4–9]. The required resource is hybrid states in the form
of |HI〉 = |H〉|α〉+|V 〉|−α〉 [24].Within this context, it was shown that such a hybrid
entanglement is useful for teleportation between a polarized single-photon qubit and
a coherent-state qubit [25] and for a loophole-free Bell inequality test [26]. However,
it is known that the generation of entanglement between a polarized single photon
and coherent states such as |HI〉 is highly demanding [27–30]. There exists a recent
theoretical proposal that enables one to efficiently generate the state |HI〉 based on
parametric downconversion, linear optics elements, and photodetectors [31], while it
requires preparation of a coherent-state superposition [32] as a resource.

On the other hand, the hybrid entanglement of the vacuum and the single photon
(instead of single-photon polarization) with coherent states, such as |HII〉 = |0〉|α〉 +
|1〉| − α〉, was successfully demonstrated in recent experiments [33,34]. While |HII〉
is easier to generate than |HI〉, universal gate operations for a logical qubit in the
form of |HII〉 are not so straightforward to implement. This is because single-qubit
operations in the basis of the vacuum |0〉 and the single photon |1〉 except the phase
rotation are basically non-deterministic [11]. Nevertheless, it was recently shown that
the qubits utilizing the vacuum and the single photon basis are more robust against
losses compared to the polarized single-photon qubits [35].

Thus, the two types of hybrid states |HI〉 and |HII〉 have their own advantages and
disadvantages compared to each other for quantum information processing. However,
we still do not have any clear references about the choice of the type in a specific
scenario of the implementation of quantum information protocols. Therefore, it may
be essential to investigate two distinct approaches under the same circumstances, one
based on the form of |HI〉 and the other of |HII〉, and compare their performances
regarding noises or resources for quantum information processing.

In this paper, we investigate the implementations of quantum teleportation in a lossy
environment as a paradigmatic example to compare the two different types of hybrid
qubits in the form of |HI〉 and |HII〉. We will consider the photon loss effect, which is
the dominant noise factor for optical quantum information processing [9] among all
possible decoherence effects during teleportation process [36–38]. We first analyze
the effects of photon losses on the entangled quantum channel distributed between
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two separated parties, based on the two different hybrid states. We then compare their
performances of quantum teleportation with respect to the average fidelity and the
average success probability of teleportation. Our analysis shows that the quantum
teleportation with the hybrid of a qubit of the vacuum and the single-photon and a
coherent-state qubit |HII〉 is more robust to photon losses than the hybrid of a polarized
single-photon qubit and a coherent-state qubit |HI〉.

2 Qunatum teleportation using hybrid qubits

2.1 Two types of optical hybrid qubits

Since there are a number of studies on quantum information processing using various
kinds of optical hybrid systems [24,33,34,39–49], we first need to clarify the types
of optical hybrid qubits that we consider in this paper. The first one is the hybrid of a
polarized single-photon qubit and a coherent-state qubit, which was originally used to
propose the hybrid scheme of optical quantum information processing recently [24].
The other is the hybrid of a qubit of the vacuum and the single-photon and a coherent-
state qubit, which was recently generated by experiments [33,34].We consider optical
hybrid qubits constructed in the logical basis,

{|0L〉 = |+〉|α〉, |1L 〉 = |−〉| − α〉}, (1)

and the two different types of hybrid qubits are then defined as

I. the hybrid of a polarized single-photon qubit and a coherent-state qubit where
|±〉 = (|H〉 ± |V 〉)/√2,

II. the hybrid of a qubit of the vacuum and the single-photon and a coherent-state
qubit where |±〉 = (|0〉 ± |1〉)/√2.

We will refer to the former as type-I hybrid qubit which is the same form used in
Ref. [24], while the latter will be referred to as type-II hybrid qubit hereafter.

2.2 Teleportation scheme for hybrid qubits

In the standard quantum teleportation procedure [1], Alice is supposed to teleport
an arbitrary unknown state |φ〉 = μ|0L〉 + ν|1L 〉 to Bob via a maximally entangled
quantum channel |Ψch〉 = (|0L〉|0L〉 + |1L〉|1L〉)/√2. Alice performs a Bell-state
measurement on the unknown qubit and her part of the entangled channel and sends
the measurement outcome to Bob. Bob applies an appropriate unitary transform on his
state depending on Alice’s measurement outcome in order to reconstruct the original
qubit.

The hybrid teleportation scheme of type-I qubits is described in Ref. [24]. As shown
in Fig. 1a, Alice and Bob share a hybrid entangled channel in order to teleport a type-I
hybrid qubit from Alice to Bob. The total product state of the unknown input state |φ〉
and the channel state |Ψch〉 in terms of the type-I hybrid encoding can be expressed as
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(a)

(b) (d)(c)

Fig. 1 (Color Online) a Schematic of hybrid quantum teleportation. Photon losses are supposed to occur
in the channel state Ψch . Us (Uα) represents a unitary transform applied to a single-photon state (coherent
state). φ and ρ represent the initial state and the final teleported state, respectively. The logical Bell-state
measurement is composed of two elements, Bs and Bα , that correspond to Bell-state measurements for
single-photon states and coherent states, respectively. bWhen type-I hybrid qubits are used, BI

s is performed
using a 50:50 beam splitter (BS), two polarizing beam splitters (PBS) and four single-photon detectors [12].
c Bα is implemented using a 50:50 beam splitter and two photon-number-resolving detectors (PNRD) [20].
d In the case of type-II hybrid qubits, BII

s is implemented using a 50:50 beam splitter and two single-photon
detectors [10]

|φ〉aA|Ψch〉bBcC = 1

2

(
|Φ+

L 〉aAbB |φ〉cC + |Φ−
L 〉aAbB Ẑ |φ〉cC

+ |Ψ +
L 〉aAbB X̂ |φ〉cC + |Ψ −

L 〉aAbB X̂ Ẑ |φ〉cC
)
, (2)

with logical Bell states

|Φ±
L 〉 = 1√

2
(|0L〉|0L 〉 ± |1L〉|1L〉), (3)

|Ψ ±
L 〉 = 1√

2
(|0L〉|1L 〉 ± |1L〉|0L〉), (4)

and Pauli operators X̂ and Ẑ in terms of the logical qubit basis, where subscripts a, b
and c in Eq. (2) represent single-photonmodes and A, B andC represent coherent-state
modes as depicted in Fig. 1a. This equation can be rewritten as

|φ〉aA|Ψch〉bBcC =1

4

[( |Φ+
I 〉ab|Φ+

α 〉AB
N+

α

+ |Ψ +
I 〉ab|Φ−

α 〉AB
N−

α

)
|φ〉cC

+
( |Φ+

I 〉ab|Φ−
α 〉AB

N−
α

+ |Ψ +
I 〉ab|Φ+

α 〉AB
N+

α

)
Ẑ |φ〉cC
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+
( |Φ−

I 〉ab|Ψ +
α 〉AB

N+
α

− |Ψ −
I 〉ab|Ψ −

α 〉AB
N−

α

)
X̂ |φ〉cC

+
( |Φ−

I 〉ab|Ψ −
α 〉AB

N−
α

− |Ψ −
I 〉ab|Ψ +

α 〉AB
N+

α

)
X̂ Ẑ |φ〉cC

]
, (5)

where

|Φ±
I 〉 = 1√

2
(|H〉|H〉 ± |V 〉|V 〉), (6)

|Ψ ±
I 〉 = 1√

2
(|H〉|V 〉 ± |V 〉|H〉), (7)

and

|Φ±
α 〉 = N±

α (|α〉|α〉 ± | − α〉| − α〉), (8)

|Ψ ±
α 〉 = N±

α (|α〉| − α〉 ± | − α〉|α〉), (9)

with N±
α = 1/

√
2 ± 2e−4|α|2 . Comparing Eqs. (2) and (5), we notice that in order to

perform the logical Bell-state measurement to discriminate between four logical Bell
states in Eqs. (3) and (4), one needs to perform two small Bell measurement units, i.e.,
one for |Φ±

I 〉 and |Ψ ±
I 〉 and the other is for |Φ±

α 〉 and |Ψ ±
α 〉 as shown in Eq. (5). Thus,

the Bell-state measurement for the polarized single-photon states (BI
s for modes a and

b) and another Bell-state measurement for the coherent states (Bα for modes A and
B) should be performed as illustrated in Fig. 1a. For example, if |Φ+

I 〉 is detected by
BI
s and |Φ+

α 〉 is detected by Bα , one can conclude that one of the logical Bell states,
|Φ+

L 〉, has been measured.
The BI

s measurement can be taken using a 50:50 beam splitter, two polarizing beam
splitters and four single-photon detectors as shown in Fig. 1b [12]. Here, the single-
photon detectors should be able to discriminate between zero, one and more than one
photons. We define the 50:50 beam splitter operator as

Ui, j = e− π
4 (a†i a j−ai a

†
j ), (10)

where i and j are two field modes entering the beam splitter and ai (a
†
i ) is the annihi-

lation (creation) operator for mode i . After the action of the beam splitter Ua,b which
is applied to single-photon qubits of modes a and b, the output states of the Bell states
of polarized single-photon states are

|Ψ +
I 〉 BS−→ 1√

2
(|HV 〉|0〉 − |0〉|HV 〉), (11)

|Ψ −
I 〉 BS−→ 1√

2
(|H〉|V 〉 − |V 〉|H〉), (12)

|Φ±
I 〉 BS−→ 1

2
(|HH〉|0〉 − |0〉|HH〉) ± 1

2
(|VV 〉|0〉 − |0〉|VV 〉). (13)
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By detecting one photon at one detector and one photon at another detector, two (|Ψ +
I 〉

and |Ψ −
I 〉) of the four Bell states can be discriminated. If two photons are detected

at one detector, we cannot figure out whether it was |Φ+
I 〉 or |Φ−

I 〉 which means a
measurement failure.

The Bα measurement is implemented in a nearly deterministic way using a 50:50
beam splitter and two photon-number-resolving detectors as shown in Fig. 1c [20].
The operation of the beam splitter UA,B on coherent states is characterized as
UA,B |α〉A|β〉B = |(α +β)/

√
2〉A|(−α +β)/

√
2〉B . The Bell states of coherent states

after passing through the beam splitter UA,B are

|Φ±
α 〉AB BS−→ N±

α (|√2α〉 ± | − √
2α〉)A|0〉B, (14)

|Ψ ±
α 〉AB BS−→ N±

α |0〉A(|√2α〉 ± | − √
2α〉)B, (15)

where |even〉 ≡ N+
α (|√2α〉 + | − √

2α〉) and |odd〉 ≡ N−
α (|√2α〉 − | − √

2α〉) are
even and odd number states which contain only even and odd number of photons,
respectively. The four Bell states of coherent states can be discriminated using two
photon-number-resolving measurements as

(even, 0) : Φ+
α , (odd, 0) : Φ−

α ,

(0, even) : Ψ +
α , (0, odd) : Ψ −

α . (16)

If even number of photons are detected at mode A and no photon is detected at mode
B, it means that the Bell state was |Φ+

α 〉, and so on. The failure of Bα occurs when
both the detectors are silent due to the vacuum portion in state |even〉.

If we assume that available resources are linear optics elements and photodetectors
(either single-photon detectors or number-resolving detectors), the success probability
of BI

s is limited to 1/2 [12,13] and the success probability of the Bα is 1−exp(−2|α|2)
[24].A remarkable advantage of the schemebased on the hybrid qubits is that thewhole
teleportation process can be made successful as far as one of the two measurement
elements, BI

s or Bα , succeeds. To see this, consider the case of the measurement failure
of BI

s, which means that one cannot figure out whether the state was |Φ+
I 〉 or |Φ−

I 〉.
The possible measurement outcomes according to the measurement result of Bα are
then |Φ+

I 〉|Φ+
α 〉, |Φ+

I 〉|Φ−
α 〉, |Φ−

I 〉|Ψ +
α 〉, or |Φ−

I 〉|Ψ −
α 〉 as shown in Eq. (5). Thus,

the success of the Bα measurement results in the success of the whole teleportation
process. In the case of the measurement failure of Bα , in which one cannot figure
out whether it was |Φ+

α 〉 or |Ψ +
α 〉, the possible measurement outcomes according to

the measurement result of BI
s are |Φ+

I 〉|Φ+
α 〉, |Ψ +

I 〉|Φ+
α 〉, |Φ−

I 〉|Ψ +
α 〉, or |Ψ −

I 〉|Ψ +
α 〉 as

shown in Eq. (5). Thus, the success of the BI
s measurement results in the success of the

whole teleportation process too. In this way, the success probability of teleportation
of a hybrid qubit is Ph = 1 − exp(−2|α|2)/2 [24].

To complete the teleportation process, an appropriate Pauli operation (1, Ẑ , X̂ , or
X̂ Ẑ ) should be applied according to themeasurement result (Us andUα in Fig. 1a). The
Pauli operations for type-I hybrid qubits in the logical basis (1) can be done determin-
istically [24]. The Pauli X operation can be performed by applying a bit flip operation
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on each of the two modes. The implementations of a polarization rotator on the polar-
ized single-photon states (|+〉 ↔ |−〉), where |±〉 = (|H〉 ± |V 〉)/√2, and a π phase
shifter on the coherent states (|α〉 ↔ | − α〉) accomplish the Pauli X operation. The
Pauli Z operation is performed by applying theπ phase shift operation on the polarized
single-photon states (|±〉 → ±|±〉), andnooperation is requiredon the coherent states.

The hybrid teleportation of type-II qubits can be carried out similarly to the case
of type-I. The total product state of an unknown input state |φ〉 and the channel state
|Ψch〉 can be written as Eq. (5) by replacing |Φ±

I 〉 and |Ψ ±
I 〉 with the Bell states of the

vacuum and the single-photon states |Φ±
II 〉 and |Ψ ±

II 〉, respectively, which are defind as
|Φ±

II 〉 = (|0〉|0〉 ± |1〉|1〉)/√2, (17)

|Ψ ±
II 〉 = (|0〉|1〉 ± |1〉|0〉)/√2. (18)

The Bell-state measurement for the vacuum and the single-photon states, BII
s , and the

Bell-state measurement for the coherent states, Bα , should then be performed. The
BII
s measurement can be performed using a 50:50 beam splitter and two single-photon

detectors as shown in Fig. 1d with the success probability of 1/2 [10]. By applying
the beam splitter operation Ua,b, the Bell states of the vacuum and the single-photon
states are transformed as

|Ψ +
II 〉 BS−→ |0〉|1〉, (19)

|Ψ −
II 〉 BS−→ |1〉|0〉, (20)

|Φ±
II 〉

BS−→ 1

2
(|0〉|2〉 − |2〉|0〉) ± 1√

2
|0〉|0〉. (21)

If one photon is detected at one detector and the other detector is silent, one can identify
whether it was |Ψ +

II 〉 or |Ψ −
II 〉. However, if two photons are detected at one detector or

both detectors are silent, we cannot find whether it was |Φ+
II 〉 or |Φ−

II 〉.
The Pauli X operation for type-II hybrid qubits in the logical basis (1) can be

implemented by acting the π phase shift on each of the two modes. However, the
Pauli Z operation for type-II hybrid qubits cannot be performed deterministically. In
order to perform the Pauli Z operation for type-II hybrid qubits, one needs a bit flip
between |0〉 and |1〉 (i.e., |0〉 ↔ |1〉) for the vacuum and the single-photon states
or a sign flip for the coherent states (| ± α〉 → ±| ± α〉) which can be implemented
non-deterministically [8,11]. One simple working solution is to “logically relabel” the
vacuum and the single photon, |0〉 and |1〉, whenever it is necessary. In other words,
we know that |0〉 and |1〉 remain unaltered, whenever they should be altered, so that
it can be logically corrected at the final measurement stage. Under the assumption
above, the success probability of quantum teleportation for type-II hybrid qubits is the
same to that for type-I qubits Ph = 1 − exp(−2|α|2)/2.

2.3 Generation scheme for the channel state of type-II hybrid qubits

The channel state |Ψch〉 for the quantum teleportation of the type-I hybrid qubits can
be generated using two hybrid pairs, |H〉|√2α〉 + |V 〉| − √

2α〉 [24]. Similarly, one
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can generate the channel state of the type-II hybrid qubits using two resource states
|+〉|√2α〉 + |−〉| − √

2α〉, where |±〉 = (|0〉 ± |1〉)/√2, which was experimentally
demonstrated recently [34] and the Bell-state measurement of the coherent states, Bα .
The resource states can be transformed to |+〉|α〉|−α〉+ |−〉|−α〉|α〉 = |0L〉|−α〉+
|1L〉|α〉 by applying the 50:50 beam splitter on the coherent states. To perform the Bα

measurement on these states, one of the coherent states of each state are mixed by a
50:50 beam splitter, such that the total state evolves as

(|0L〉| − α〉 + |1L〉|α〉)(|0L〉| − α〉 + |1L〉|α〉)
BS−→ (|0L〉|0L〉 + |1L〉|1L〉) 1

2N+
α

|even〉|0〉 − (|0L〉|0L〉 − |1L〉|1L 〉) 1

2N−
α

|odd〉|0〉

+ (|0L〉|1L 〉 + |1L〉|0L〉) 1

2N+
α

|0〉|even〉 + (|0L〉|1L〉 − |1L〉|0L〉) 1

2N−
α

|0〉|odd〉.
(22)

After the measurement of two photon-number-resolving detectors, the possible
obtained states are |0L〉|0L 〉 ± |1L〉|1L〉 and |0L〉|1L〉 ± |1L〉|0L〉. The latter states
can be transformed to the former by applying the Pauli X operation on one of the
logical qubits. Therefore, the channel state |0L〉|0L 〉+ |1L〉|1L〉 is generated with suc-
cess probability [1− exp(−2|α|2)]2/2. We note that the state |0L〉|0L〉− |1L 〉|1L〉 can
also be used as a channel state. The only change caused by using the channel state
|0L〉|0L〉 − |1L〉|1L〉 instead of |0L〉|0L〉 + |1L〉|1L〉 for the quantum teleportation is
that the appropriate unitary transformations which are required in the last step of the
teleportation process are switched by the amount of the Pauli Z operation (1 ↔ Ẑ , X̂
↔ X̂ Ẑ ).

3 Quantum teleportation for hybrid qubits under photon losses

In an ideal situation, quantum teleportation can be carried out with the unit success
probability and the teleported state should be exactly the same to the input state. How-
ever, in realistic implementations, there are factors that reduce the success probability
and the teleportation fidelity. Here, we consider two major such factors. One is inef-
ficiency of the Bell-state measurement, and the other is photon losses in the quantum
channel as shown in Fig. 1a. In the following subsections, we will calculate and com-
pare the fidelities between the input and the output states and the success probabilities
of teleportation for two different types of hybrid qubits.

3.1 Teleportation of type-I hybrid qubits

The time evolution of density operator ρ under photon losses is governed by the
Born-Markov master equation [50],

∂ρ

∂τ
= Ĵρ + L̂ρ, (23)
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where τ is the interaction time, Ĵρ = γi aiρa
†
i , L̂ρ = −(γ /2)i (a

†
i aiρ + ρa†i ai ),

and γ is the decay constant. The general solution of Eq. (23) is written as, ρ(τ) =
exp[( Ĵ + L̂)τ ]ρ(0), where ρ(0) is the initial density operator [51]. We assume that
each mode of the channel state |Ψch〉 suffers the same decoherence rate characterized
by γ . The entangled channel of the type-I hybrid qubits at time τ under the above
assumption is obtained using Eq. (23) as

ρch
I (τ ) = 1

2

{[(
t2|+〉〈+| + r2|0〉〈0|) ⊗ |tα〉〈tα|]⊗2

+ [(
t2|−〉〈−| + r2|0〉〈0|) ⊗ | − tα〉〈−tα|]⊗2

+ [
t2e−2|α|2r2 |+〉〈−| ⊗ |tα〉〈−tα|]⊗2

+ [
t2e−2|α|2r2 |−〉〈+| ⊗ | − tα〉〈tα|]⊗2

}
, (24)

where |±〉 = (|H〉 ± |V 〉)/√2, t = e−γ τ/2, r = √
1 − e−γ τ , and [·]⊗2 means the

direct product of same states. The parameter r containing both the real time τ and
the decoherence rate γ will be used as the normalized time. As we see in Eq. (24),
coherent-state qubits not only lose their relative phase information but also undergo
amplitude damping by photon losses. However, we know the value of the interaction
time τ , and we can use |± tα〉 as a dynamic qubit basis in order to reflect the amplitude
damping as suggested in Ref. [20]. The Bell states of coherent states using the dynamic
qubit basis can be defined as

|Φ±
α (τ )〉 = N±

α (τ )(|tα〉|tα〉 ± | − tα〉| − tα〉), (25)

|Ψ ±
α (τ )〉 = N±

α (τ )(|tα〉| − tα〉 ± | − tα〉|tα〉), (26)

where N±
α (τ ) = 1/

√
2 ± 2e−4t2|α|2 . Adopting this, we define a dynamic orthonormal

basis of optical hybrid qubits as

{|0L(τ )〉 = |+〉|tα〉, |1L(τ )〉 = |−〉| − tα〉}, (27)

where |±〉 = (|H〉 ± |V 〉)/√2 and an unknown hybrid qubit which Alice wants to
teleport as |φ(τ)〉 = μ|0L(τ )〉+ν|1L (τ )〉where μ = cos(u/2) and ν = eiv sin(u/2).
The logical Bell-state measurement should then be taken on the input state |φ(τ)〉 and
one part of the decohered channel state ρch

I (τ ). The Bell-state measurement for the
polarized single-photon states, BI

s, and that of the coherent states, Bα , are taken [24].
The Bα measurement is represented by the projection operators:

O1 =
∞∑
n=1

|2n〉A〈2n| ⊗ |0〉B〈0|, (28)

O2 =
∞∑
n=1

|2n − 1〉A〈2n − 1| ⊗ |0〉B〈0|, (29)
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O3 =
∞∑
n=1

|0〉A〈0| ⊗ |2n〉B〈2n|, (30)

O4 =
∞∑
n=1

|0〉A〈0| ⊗ |2n − 1〉B〈2n − 1|, (31)

Oe = |0〉A〈0| ⊗ |0〉B〈0|, (32)

where subscripts 1, 2, 3 and 4 correspond toΦ+
α ,Φ−

α ,Ψ +
α andΨ −

α , respectively, while
Oe represents the measurement failure for which both the detectors do not register any
photon. The BI

s measurement is represented by following projection operators,

M1 = |HV 〉a〈HV | ⊗ |0〉b〈0| + |0〉a〈0| ⊗ |HV 〉b〈HV |, (33)

M2 = |H〉a〈H | ⊗ |V 〉b〈V | + |V 〉a〈V | ⊗ |H〉b〈H |, (34)

Me = |HH〉a〈HH | ⊗ |0〉b〈0| + |0〉a〈0| ⊗ |HH〉b〈HH |
+ |VV 〉a〈VV | ⊗ |0〉b〈0| + |0〉a〈0| ⊗ |VV 〉b〈VV |, (35)

where M1 and M2 correspond to Ψ +
I and Ψ −

I , respectively, while Me represents a
measurement failure. The teleportation process will be successful unless both Bα and
BI
s fail.
The unnormalized output state after measurement outcome Mi ⊗ Oj is obtained as

ρi, j = Tra,b,A,B[(Ua,b ⊗UA,B)(|φ(τ)〉〈φ(τ)| ⊗ ρch
I (τ ))(U †

a,b ⊗U †
A,B)(Mi ⊗ Oj )],

(36)

where the partial trace is taken over Alice’s modes a, b, A and B in Fig. 1a. Finally,
Bob should perform appropriate unitary operations (1, Ẑ , X̂ , or X̂ Ẑ ) according to
Alice’s measurement results. The details are as follows: 1 for ρ

1,2
I and ρ

e,1
I , Ẑ for

ρ
1,1
I , ρ1,e

I and ρ
e,2
I , X̂ for ρ

2,4
I and ρ

e,3
I , and X̂ Ẑ for ρ

2,3
I , ρ2,e

I and ρ
e,4
I .

The final teleported state is then

ρT
I (τ ) = |μ|2(t2|+〉〈+| + r2|0〉〈0|) ⊗ |tα〉〈tα|

+ |ν|2(t2|−〉〈−| + r2|0〉〈0|) ⊗ | − tα〉〈−tα|
+ t2e−4|α|2r2(μν∗|+〉〈−| ⊗ |tα〉〈−tα| + μ∗ν|−〉〈+| ⊗ | − tα〉〈tα|),

(37)

regardless of the outcomes of the Bell-state measurements. The success probability is

PI(τ ) =
2∑
j=1

Trc,C [ρ1, j ] +
4∑
j=3

Trc,C [ρ2, j ] +
2∑

i=1

Trc,C [ρi,e] +
4∑
j=1

Trc,C [ρe, j ]

= t2(1 − 1

2
e−2|α|2t2), (38)
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Fig. 2 (Color Online) a–c Average fidelities and d–f average success probabilities of the type-I hybrid
qubits (black solid curves) and the type-II hybrid qubits (red dashed curves) against the normalized time
r . The horizontal dotted lines indicate classical limit, 2/3, which can be achieved by using a separable
teleportation channel. Graphs are plotted with various values of amplitude α of coherent states as |α| = 1
for a and d, |α| = 2 for b and e, and |α| = 5 for c and f

where the trace was taken over for Bob’s part. The average fidelity between the input
state |φ(τ)〉 and the teleported state ρT

I (τ ) is

FI(τ ) = 1

4π

∫ 2π

0

∫ π

0
〈φ(τ)|ρT

I (τ )|φ(τ)〉 sin ududv = 1

3
t2(2 + e−4|α|2r2). (39)

The average is taken over in the Bloch sphere of all possible input states |φ(τ)〉 =
cos(u/2)|0L(τ )〉 + eiv sin(u/2)|1L(τ )〉 to be teleported. The results of the average
fidelity and success probability are plotted in Fig. 2.

3.2 Teleportation of type-II hybrid qubits

We consider quantum teleportation of type-II hybrid qubits over a lossy environment.
We assume that each mode of the channel state |Ψch〉 suffers the same decoherence
rate γ as before. The entangled channel at time τ under above assumption is obtained
using Eq. (23) as

ρch
II (τ ) = 1

2

{[
ρ++ ⊗ |tα〉〈tα|]⊗2 + [

ρ−− ⊗ | − tα〉〈−tα|]⊗2

+ [
e−2|α|2r2ρ+− ⊗ |tα〉〈−tα|]⊗2 + [

e−2|α|2r2ρ−+ ⊗ | − tα〉〈tα|]⊗2
}
,

(40)

where

ρ++ = 1 + t

2
|+〉〈+| + 1 − t

2
|−〉〈−| + r2

2
|+〉〈−| + r2

2
|−〉〈+|, (41)
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ρ−− = 1 − t

2
|+〉〈+| + 1 + t

2
|−〉〈−| + r2

2
|+〉〈−| + r2

2
|−〉〈+|, (42)

ρ+− = t2 + t

2
|+〉〈−| + t2 − t

2
|−〉〈+|, (43)

ρ−+ = (ρ+−)†, (44)

and |±〉 = (|0〉±|1〉)/√2.As before,weuse the dynamic qubit basis for coherent states
and define the new orthonormal basis as Eq. (27), |0L(τ )〉 = |+〉|tα〉 and |1L(τ )〉 =
|−〉| − tα〉, where |±〉 = (|0〉 ± |1〉)/√2, and an unknown hybrid qubit which Alice
wants to teleport as |φ(τ)〉 = μ|0L(τ )〉+ν|1L(τ )〉. The logicalBell-statemeasurement
should be performed on the input state |φ(τ)〉 and one part of the decohered channel
state ρch

II (τ ). The Bell-state measurement for the vacuum and the single-photon states,
BII
s , and that of the coherent states, Bα , are taken. The projection operators of the Bα

measurement are already introduced in Sect. 3.1. The BII
s measurement is represented

by following projection operators,

E1 = |0〉a〈0| ⊗ |1〉b〈1|, (45)

E2 = |1〉a〈1| ⊗ |0〉b〈0|, (46)

Ee = |0〉a〈0| ⊗ |0〉b〈0| + |0〉a〈0| ⊗ |2〉b〈2| + |2〉a〈2| ⊗ |0〉b〈0|, (47)

whereΨ +
II andΨ −

II correspond to E1 and E2, and Ee represents a measurement failure.
The teleportation process will be successful unless both Bα and BII

s fail.
The unnormalized state after measurement outcome Ei ⊗ Oj is obtained as

ρ
i, j
II = Tra,b,A,B[(Ua,b ⊗UA,B)(|φ(τ)〉〈φ(τ)| ⊗ ρch

II (τ ))(U †
a,b ⊗U †

A,B)(Ei ⊗ Oj )].
(48)

Bob should perform appropriate logical gate operations (1, Ẑ , X̂ , or X̂ Ẑ ) according to
measurement results of Alice. The details are as follows: 1 for ρ

1,2
II , ρ2,1

II and ρ
e,1
II , Ẑ

for ρ
1,1
II , ρ2,2

II , ρe,2
II and ρ

1,e
II , X̂ for ρ

1,3
II , ρ2,4

II and ρ
e,3
II , and X̂ Ẑ for ρ

1,4
II , ρ2,3

II , ρe,4
II and

ρ
2,e
II . As discussed in Sect. 2.2, we assume that when the Pauli Z operation is necessary

to complete the teleportation process, we do not apply it directly on the output but
rather logically relabel |0〉 and |1〉.

The final teleported states after applying appropriate unitary transforms are dif-
ferent from each other according to the Bell-state measurement results. We present
all possible teleported states (ρT

i ), their probabilities (pi ) of obtaining such particu-
lar outcomes, and fidelities ( fi ) with the input state |φ(τ)〉 in “Appendix.” Here we
consider the average fidelity and the average success probability as

FII(τ ) = 1

4π

∫ 2π

0

∫ π

0

∑
i pi fi∑
i pi

sin ududv, (49)

PII(τ ) = 1

4π

∫ 2π

0

∫ π

0

∑
i

pi sin ududv, (50)
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where the average is taken for all possible input states |φ(τ)〉 to be teleported and
the summations run over 1 to 5. It is difficult to perform the integration in Eq. (49)
in an analytical way because of the summation in the denominator, and we obtain
the average fidelity FII(τ ) numerically using MATHEMATICA. The average success
probability in Eq. (50) is obtained as PII(τ ) = 1 − exp(−2|α|2t2)/2; as one can see,
the overall factor of t2 in Eq. (38) is not here. While a qubit of the vacuum and the
single photon in a type-II hybrid qubit after photon loss still remain in the logical qubit
space, a polarized single-photon qubit in type-I hybrid qubit evolve out of the logical
qubit space due to the addition of the vacuum element under photon loss effects. Such
a difference between type-I and type-II qubits makes the drop of the factor t2.

We plot the average fidelity and the average success probability in Fig. 2. We also
compare these results with the results obtained with the type-I qubits in Sect. 3.1.
Our results in Fig. 2 clearly show that the average fidelity and the average success
probability for type-II are always higher than those of type-I. Again, this can be
attributed to the difference in the decoherence mechanism that a qubit of the vacuum
and the single photon (type-II) remains in the qubit space under photon loss effects,
while a polarized single-photon qubit (type-I) gets out of the qubit space.

4 Remarks

In this paper, we have discussed two types of hybrid qubits for quantum teleportation.
One is the hybrid of a polarized single-photon qubit and a coherent-state qubit (type-
I), and the other is the hybrid of a qubit of the vacuum and the single-photon and a
coherent-state qubit (type-II). Using these two different types of hybrid qubits, we
have analyzed the performance of quantum teleportation taking into account both the
success probability and output fidelity under the effects of photon losses on the hybrid
entangled channels.We found that both the average fidelity and the success probability
of teleportationusing the type-II hybrid qubits are always higher than those of the type-I
hybrid qubits. The reason for this result is that a type-II hybrid qubit always, even under
the effects of photon losses, remains in the logical qubit space spanned by the vacuum
and the single-photon states. On the other hand, the leakage from the logical qubit
space possibly occurs for the type-I hybrid qubits under the photon loss effects, due to
the addition of the vacuum element to the photon polarization states. This difference
leads to such lower fidelity and success probability for the type-I hybrid qubits. Our
results show that the type-II hybrid qubits employing the vacuumand the single-photon
states in the single-photon part may be better candidates of hybrid teleportation over
a lossy environment. Our result is consistent with the previous study of single-mode
qubits [35] where the qubits of the vacuum and the single photon were found to be
more efficient than the polarized single-photon qubits for the direct transmission and
quantum teleportation.

For future studies, it will be worth investigating the performance of two different
types of hybrid qubits in the implementationof scalable quantumcomputation. For this,
there are additional important factors to consider such as error correction models and
fault-tolerant limits under the photon losses as well as resource requirements [9]. The
effects of photon losses on quantum computation using the type-I hybrid qubit were

123



4742 H. Kim et al.

already studied in Ref. [24]. In a similar way, it may be possible to investigate fault-
tolerant limits for the type-II hybrid qubit under the photon loss effects and compare
the results with those obtained with type-I qubits. In order to analyze and compare
their performance more faithfully, it may be necessary to identify an appropriate error
correction model for the type-II hybrid qubits.

Acknowledgments This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP) (No. 2010-0018295) and by the KIST Institutional Program
(Progect No. 2E26680-16-P025).

Appendix

In this appendix, we present all possible teleported states, their probabilities of
obtaining such particular outcomes and fidelities with the input state |φ(τ)〉 for the
teleportation of type-II hybrid qubits. All the listed states are the final teleported states
on which appropriate unitary transforms are applied. If the measurement results are
revealed as E1 ⊗ O2, E1 ⊗ O3, E2 ⊗ O1 and E2 ⊗ O4, the final teleported states are

ρT
1 (τ ) = |μ|2ρ++ ⊗ |tα〉〈tα| + |ν|2ρ−− ⊗ | − tα〉〈−tα|

+ te−4|α|2r2(μν∗ρ+− ⊗ |tα〉〈−tα| + μ∗νρ−+ ⊗ | − tα〉〈tα|), (51)

with the probability

p1(τ ) = Trc,C [ρ1,2] + Trc,C [ρ1,3] + Trc,C [ρ2,1] + Trc,C [ρ2,4]
= 1

4

(
1 − e−2|α|2t2) (

1 + te−2|α|2t2) . (52)

Their fidelities with the input state |φ(τ)〉 are calculated as

f1(τ ) = (|μ|4 + |ν|4)1 + t

2
+ 2|μ|2|ν|2

(
1 − t

2
e−4|α|2t2 + t

t2 + t

2
e−4|α|2r2

)

+
(
μ2ν∗2 + μ∗2ν2

)
t
t2 − t

2
e−4|α|2 + (μν∗ + μ∗ν)

r2

2
e−2|α|2t2 . (53)

If the measurement results are revealed as E1 ⊗ O1, E1 ⊗ O4, E2 ⊗ O2 and E2 ⊗ O3,
the final teleported states are

ρT
2 (τ ) = |μ|2ρ′++ ⊗ |tα〉〈tα| + |ν|2ρ′−− ⊗ | − tα〉〈−tα|

+ te−4|α|2r2(μν∗ρ+− ⊗ |tα〉〈−tα| + μ∗νρ−+ ⊗ | − tα〉〈tα|), (54)

where

ρ′++ = 1 + t

2
|+〉〈+| + 1 − t

2
|−〉〈−| − r2

2
|+〉〈−| − r2

2
|−〉〈+|, (55)
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ρ′−− = 1 − t

2
|+〉〈+| + 1 + t

2
|−〉〈−| − r2

2
|+〉〈−| − r2

2
|−〉〈+|, (56)

with the probability

p2(τ ) = Trc,C [ρ1,1] + Trc,C [ρ1,4] + Trc,C [ρ2,2] + Trc,C [ρ2,3]
= 1

4

(
1 − e−2|α|2t2) (

1 − te−2|α|2t2) , (57)

and the fidelities are

f2(τ ) = (|μ|4 + |ν|4)1 + t

2
+ 2|μ|2|ν|2

(
1 − t

2
e−4|α|2t2 + t

t2 + t

2
e−4|α|2r2

)

+
(
μ2ν∗2 + μ∗2ν2

)
t
t2 − t

2
e−4|α|2 − (μν∗ + μ∗ν)

r2

2
e−2|α|2t2 . (58)

If the measurement results are revealed as Ee ⊗ O1 and Ee ⊗ O3, the final teleported
states are

ρT
3 (τ ) = |μ|2ρ++ ⊗ |tα〉〈tα| + |ν|2ρ−− ⊗ | − tα〉〈−tα|

+ t2e−4|α|2r2(μν∗ρ+− ⊗ |tα〉〈−tα| + μ∗νρ−+ ⊗ | − tα〉〈tα|), (59)

with the probability

p3(τ ) = Trc,C [ρe,1] + Trc,C [ρe,3] = 1

4

(
1 − e−2|α|2t2)2 , (60)

and the fidelities are

f3(τ ) = (|μ|4 + |ν|4)1 + t

2
+ 2|μ|2|ν|2

(
1 − t

2
e−4|α|2t2 + t2

t2 + t

2
e−4|α|2r2

)

+
(
μ2ν∗2 + μ∗2ν2

)
t2
t2 − t

2
e−4|α|2 + (μν∗ + μ∗ν)

r2

2
e−2|α|2t2 . (61)

If the measurement results are revealed as Ee ⊗ O2 and Ee ⊗ O4, the final teleported
states are

ρT
4 (τ ) = |μ|2ρ′++ ⊗ |tα〉〈tα| + |ν|2ρ′−− ⊗ | − tα〉〈−tα|

+ t2e−4|α|2r2(μν∗ρ+− ⊗ |tα〉〈−tα| + μ∗νρ−+ ⊗ | − tα〉〈tα|), (62)

with the probability

p4(τ ) = Trc,C [ρe,2] + Trc,C [ρe,4] = 1

4
(1 − e−2|α|2t2)(1 + e−2|α|2t2), (63)
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and the fidelities are

f4(τ ) = (|μ|4 + |ν|4)1 + t

2
+ 2|μ|2|ν|2

(
1 − t

2
e−4|α|2t2 + t2

t2 + t

2
e−4|α|2r2

)

+
(
μ2ν∗2 + μ∗2ν2

)
t2
t2 − t

2
e−4|α|2 − (μν∗ + μ∗ν)

r2

2
e−2|α|2t2 . (64)

Lastly, for the measurement results of E1⊗Oe and E2⊗Oe, the final teleported states
are

ρT
5 (τ ) = 1

1 − (μν∗ + μ∗ν)r2

×
{(

|μ|2 1 + t

2
− μν∗ r2

2
− μ∗ν r

2

2
+ |ν|2 1 − t

2

)
ρ′++ ⊗ |tα〉〈tα|

+
(

|μ|2 1 − t

2
− μν∗ r2

2
− μ∗ν r

2

2
+ |ν|2 1 + t

2

)
ρ′−− ⊗ | − tα〉〈−tα|

+ e−4|α|2r2
[(

μν∗ t2 + t

2
+ μ∗ν t

2 − t

2

)
ρ+− ⊗ |tα〉〈−tα|

+
(

μν∗ t2 − t

2
+ μ∗ν t

2 + t

2

)
ρ−+ ⊗ | − tα〉〈tα|

]}
(65)

with the probability

p5(τ ) = Trc,C [ρ1,e] + Trc,C [ρ2,e] = 1

2
e−2|α|2t2 [

1 − (μν∗ + μ∗ν)r2
]
, (66)

and the fidelities are

f5(τ ) = 1

1 − (μν∗ + μ∗ν)r2

{
(|μ|4 + |ν|4)

[(
1 + t

2

)2

+
(
1 − t

2

)2

e−4|α|2t2
]

+ 2|μ|2|ν|2
[
r2

4

(
1+e−2|α|2t2)2+

(
t2+t

2

)2

e−4|α|2r2 +
(
t2−t

2

)2

e−4|α|2
]

+ (μ2ν∗2+μ∗2ν2)
[
r4

2
e−2|α|2t2+

(
t2+t

2

)(
t2−t

2

) (
e−4|α|2r2 +e−4|α|2)

]

− (μν∗ + μ∗ν)
r2

2

(
1 + e−2|α|2t2)

(
1 + t

2
+ 1 − t

2
e−2|α|2t2

)}
. (67)
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