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Abstract We study quantum teleportation between two different types of optical
qubits using hybrid entanglement as a quantum channel under decoherence effects.
One type of qubit employs the vacuum and single-photon states for the basis, called a
single-rail single-photonqubit, and the other utilizes coherent states of opposite phases.
We find that teleportation from a single-rail single-photon qubit to a coherent-state
qubit is better than the opposite direction in terms of fidelity and success probability.
We compare our results with those using a different type of hybrid entanglement
between a polarized single-photon qubit and a coherent state.

Keywords Quantum teleportation · Quantum information processing · Optical
qubit

1 Introduction

There are a number of possible approaches based on optical systems to quantum
information processing. A well-known method is to use single photons as quantum
information carriers. In this type of method, quantum information is encoded in the
polarization degree of freedom of a single photon [1,2], or alternatively, presence
and absence of a single photon are used for qubit encoding [3,4]. Another possible
method utilizes coherent states with opposite phases as a qubit basis [5–10]. Both the
approaches have their own advantages and disadvantages for quantum information
processing [11–14]. One notable merit of the method based on coherent states is
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that the Bell-state measurement, a crucial element for optical quantum information
processing, can be performed in a nearly deterministic manner using a beam splitter
and photodetectors [7,15].

Recently, a hybrid approach that combines the advantages of both the methods was
proposed, where hybrid entanglement between a single photon with the polarization
degree of freedom and a coherent state in a free-travelling field is used as a resource
[16]. It enables one to perform a nearly deterministic quantum teleportation and a
universal set of gate operations for quantum computing using linear optics and photon
detection [17]. This type of entanglement is also useful for quantum key distribution
and security analysis [18] and has an advantage in performing a loophole-free Bell
inequality test using inefficient detectors [19]. In fact, various types of optical hybrid
approaches to quantum information processing have been investigated so far in order to
find efficient encoding, communication, computation and detection methods [17–25].

As an application of hybrid entanglement, Park et al. studied quantum telepor-
tation between a polarized single-photon qubit and a coherent-state qubit [22]. For
this application, hybrid entanglement between a polarized single-photon qubit and a
coherent-state qubit is required. Even though a cross-Kerr nonlinearity can be used,
in principle, to generate this type of hybrid entanglement [26–28], it is extremely
demanding to obtain a clean cross-Kerr interaction of sufficient strength [29–31].
A scheme using a pre-arranged coherent-state superposition and linear optics ele-
ments was suggested [16], while preparation of a coherent-state superposition with a
high fidelity [32] is a difficult part in this scheme. A more feasible method based on
the single-photon-addition technique was proposed and experimentally demonstrated
[33], where hybrid entanglement was generated between a single-photon single-rail
qubit (hereafter, a single-rail qubit) [4] and a coherent-state qubit. In this type of hybrid
entanglement [33], the vacuum and single-photon states, |0〉 and |1〉, are used as the
basis instead of the horizontal and vertical polarizations of a single photon, |H〉 and
|V 〉.

Thus, we study, in this paper, quantum teleportation between a single-rail qubit and
a coherent-state qubit using hybrid entanglement between those two types of qubits.
We compare our results with the previous work [22] where quantum teleportation was
studied using hybrid entanglement between a polarized single-photon and a coherent
state.

2 Hybrid entanglement under decoherence

We consider a hybrid entangled state of a single-rail qubit and a coherent-state qubit:

|ψ〉sc = 1√
2

( |0〉s |α〉c + |1〉s |−α〉c
)
, (1)

where |±α〉 are coherent states of amplitudes ±α. Here, the subscripts s and c stand
for the single-rail qubit and the coherent-state qubit, respectively, and±α are assumed
to be real without loss of generality. We again point out that this type of entanglement
was experimentally demonstrated [33].
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The decoherence effect on state ρ caused by photon loss is described by the master
equation under the Born–Markov approximationwith a zero-temperature environment
[34] as

∂ρ

∂τ
= Ĵρ + L̂ρ

Ĵρ = γ Σi âi ρ â†i ,

L̂ρ = −γ

2
Σi

(
â†i âi ρ + ρ â†i âi

)
, (2)

where τ is the system–environment interaction time, γ is the decay constant deter-
mined by the coupling strength of the system and environment, and âi (â

†
i ) is the

annihilation (creation) operator for mode i . Throughout this paper, we assume that
modes s and c undergo the same decoherence time with the same decay constant γ .
The formal solution of Eq. (2) is [35]

ρ (τ) = exp
[(

Ĵ + L̂
)

τ
]
ρ (0), (3)

where ρ (0) is the initial density operator. This leads to a time-dependent expression
for the initial hybrid channel |ψ〉sc in Eq. (1) as

ρsc (α ; t) = 1

2

(
|0〉s 〈0| ⊗ |tα〉c 〈tα| +

{
t2 |1〉s 〈1| + (1 − t2) |0〉s 〈0|

}

⊗ |−tα〉c 〈−tα| + t e−2α2(1−t2) |0〉s 〈1| ⊗ |tα〉c 〈−tα|
+ t e−2α2(1−t2) |1〉s 〈0| ⊗ |−tα〉c 〈tα|

)
, (4)

where t = exp (−γ τ/2) corresponds to the amplitude decay.We define the normalized
interaction time r = (1 − t2)1/2 for later use which gives values of r = 0 at τ = 0
and r = 1 at τ = ∞.

3 Teleportation between a single-rail qubit and a coherent-state qubit

Quantum teleportation enables one to transfer an unknown qubit to a distant place
using an entangled channel. In order to perform quantum teleportation, the sender
needs to perform a Bell-state measurement and the receiver should carry out single-
qubit transforms based on the outcome of the Bell-state measurement. In order to
reflect feasible conditions, we assume that available resources in addition to hybrid
entanglement are passive linear optics elements and photon detection. In this paper,
we use notation s → c for the teleportation from a single-rail qubit to a coherent-state
qubit and c → s for the teleportation in the opposite direction.

3.1 Teleportation from a single-rail qubit to a coherent-state qubit

We start with the case of s → c. The teleportation fidelity F is defined as F =
〈ψt | ρout |ψt 〉 where |ψt 〉 is the target state of teleportation and ρout is the output state
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after completing the teleportation process. The input state is in the form of a single-rail
qubit as

|ψt 〉s = a |0〉s + b |1〉s , (5)

where a and b are unknown coefficients with the normalization condition |a|2+|b|2 =
1. It would then be reasonable to choose the target state in the coherent-state basis as

|ψt 〉c = N (a |tα〉c + b |−tα〉c) , (6)

whereN = (
1 + (ab∗ + a∗b) exp (−2t2α2)

)−1/2
is the normalization factor required

due to the nonorthogonality between the two coherent states, |tα〉 and |−tα〉. It is
important to note that in order to reflect the decrease in the coherent-state amplitude
under the photon loss in the entangled channel as Eq. (4), we set the amplitude of
the target state accordingly as tα. In this way, we can analyze our system under
investigation in a 2 ⊗ 2-dimensional “dynamic” Hilbert space as done in Ref. [7].

The Bell-state discrimination for the input state (denoted by s) with the single-rail
qubit part of the channel (denoted by s′) is an essential part of quantum teleportation.
The four Bell states are

∣∣B1,2
〉
ss′ = 1√

2
(|0〉s |0〉s′ ± |1〉s |1〉s′) , (7)

∣
∣B3,4

〉
ss′ = 1√

2
(|0〉s |1〉s′ ± |1〉s |0〉s′) . (8)

After passing through a 50:50 beam splitter, the Bell states are changed as follows:

|B1〉ss′ → 1

2

(
|2〉s |0〉s′ + √

2 |0〉s |0〉s′ − |0〉s |2〉s′
)
, (9)

|B2〉ss′ → 1

2

(
− |2〉s |0〉s′ + √

2 |0〉s |0〉s′ + |0〉s |2〉s′
)
, (10)

|B3〉ss′ → |1〉s |0〉s′ , (11)

|B4〉ss′ → |0〉s |1〉s′ . (12)

As a result, two of the Bell states, |B3〉ss′ and |B4〉ss′ , can be discriminated using two
single-photon detectors at the output modes of the beam splitter. On the other hand, the
other two Bell states cannot be distinguished using linear optics elements [3,36,37].

The net effect of the Bell-state discrimination of the input state and channel state
is equivalent to taking the inner product of the total density operator |ψt 〉s 〈ψt | ⊗
ρs′c (α ; t) with a Bell state. For example, when one of the Bell states, |B1〉ss′ , is
measured, the output state for the teleportation is

ρs→c
out = ss′ 〈B1|

{|ψt 〉s 〈ψt | ⊗ ρs′c(α ; t)} |B1〉ss′
Tr

[|B1〉ss′ 〈B1|
{|ψt 〉s 〈ψt | ⊗ ρs′c(α ; t)}] , (13)

where the denominator is for normalization.
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An appropriate local single-qubit transform is then applied to the output state in
order to reconstruct the target state. In the case considered above with |B1〉ss′ , no
additional operation is required. The required transforms for the coherent-state part
for the other cases are

Xc : |±tα〉c → |∓tα〉c ,

Zc : |±tα〉c → ±|±tα〉c , (14)

where Xc and Zc correspond to the bit- and phase-flip operations, respectively, for
coherent-state qubit. When the measurement outcome is |B2〉ss′ , Zc should be per-
formed, and when |B3〉ss′ is measured, Xc should be applied. For the case of |B4〉ss′ ,
both Xc and Zc are needed. Since the two of the Bell states that can be identified using
linear optics are |B3〉ss′ and |B4〉ss′ , both Zc and Xc are required. We note that Zc is
not unitary unless α → ∞.

It is straightforward to perform Xc using a phase shifter described by exp (iϕ â†â)

with ϕ = π . On the other hand, the implementation of Zc is not straightforward due
to the nonorthogonality between the coherent states, but there are several possible
methods. The simplest way is to use the displacement operation, which is a unitary
transform, in order to approximate Zc for relatively large values of α [8]. This can
be performed using a strong coherent field and a beam splitter with a high transmis-
sivity. Another possible method is to use an additional teleportation circuit for the
coherent-state qubit via an entangled coherent state as the quantum channel [9]. Since
quantum teleportation without the single-qubit transforms makes the input qubit bit
flipped or phase flipped depending on the Bell-state measurement, one can perform
the phase-flip operation with success probability of 1/2 together with the Xc operation.
The teleportation process can be applied successively until the phase-flip operation is
obtained. However, this method requires entangled coherent states and detectors as
additional resource [9]. It is worth noting that when quantum teleportation is used for
quantum computing, the single-qubit operations may not be necessary because they
can be absorbed into the error correction process via the Pauli frame technique [38].

Inserting the explicit form of ρs′c (α ; t) in Eq. (4) and |ψt 〉s in Eq. (5) into Eq. (13),
we get

ρs→c
out = M

{
|a|2 |tα〉 〈tα| +

[
(1 − t2)|a|2 + t2|b|2

]
|−tα〉 〈−tα|

+ t e−2α2(1−t2) [
ab∗ |tα〉 〈−tα| + a∗b |−tα〉 〈tα| ]

}
, (15)

where M =
{
(2 − t2)|a|2 + t2 |b|2 + t e−2α2

(ab∗ + a∗b)
}−1

. The fidelity between

the output state ρs→c
out in Eq. (15) and the target state |ψt 〉c in Eq. (6) is

Fs→c = c 〈ψt | ρs→c
out |ψt 〉c

= N 2M ×
{∣∣a (a + b e−2t2α2

)
∣∣2 +

[
(1 − t2)|a|2 + t2|b|2

] ∣∣(a e−2t2α2 + b)
∣∣2

+ 2 t e−2α2(1−t2) Re
[
a b∗ (

a e−2t2α2 + b
) (

a∗ + b∗ e−2t2α2
)] }

. (16)
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(a) (b)

(c) (d)

Fig. 1 Average fidelities of teleportation as a function of the normalized time r for a α = 0.5, b α = 1, c
α = 2 and d α = 10. The red solid curves correspond to the cases for s → c, and the purple dot–dashed
curves are for c → s. The horizontal dotted line is the classical limit, 2/3, given for comparisons (Color
figure online)

We need the average fidelity over all possible input states. It can be found by para-
meterizing the coefficients of the input state as a = cos [ θ/2 ] exp[ i φ/2 ] and
b = sin [ θ/2 ] exp[ −i φ/2 ], where 0 ≤ θ < π and 0 ≤ φ < 2π . The formal
expression of the average fidelity Fave

s→c is

Fave
s→c = 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ Fs→c. (17)

We have numerically performed the integration in Eq. (17) for several values of α and
plot the results in Fig. 1.

3.2 Teleportation from a coherent-state qubit to a single-photon qubit

We now consider the case of c → s, where the input qubit is a coherent-state qubit
in the form of Eq. (6) and the target state is a single-rail qubit in Eq. (5). The Bell-
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state measurement for coherent-state qubits can be performed by using a 50:50 beam
splitter and two photon-number parity measurements [7]. The four Bell states in the
dynamic coherent-state basis are

∣∣B1,2
〉
cc′ = N± (|tα〉c |tα〉c′ ± |−tα〉c |−tα〉c′) ,

∣∣B3,4
〉
cc′ = N± (|tα〉c |−tα〉c′ ± |−tα〉c |tα〉c′) , (18)

where N± = (
2 ± 2 exp(−4t2α2)

)−1/2
are normalization factors. The Bell states

evolve through the 50:50 beam splitter as

|B1〉cc′ → N+ |even〉c |0〉c′ , |B2〉cc′ → N− |odd〉c |0〉c′ ,

|B3〉cc′ → N+ |0〉c |even〉c′ , |B4〉cc′ → N− |0〉c |odd〉c′ , (19)

where |even〉 =
∣∣∣
√
2 tα

〉
+

∣∣∣−√
2 tα

〉
has nonzero photon-number probabilities only

for even numbers of photons and |odd〉 =
∣∣
∣
√
2 tα

〉
−

∣∣
∣−√

2 tα
〉
has nonzero photon-

number probabilities only for odd numbers of photons. The parity measurement
projection operators Oj ,

Ô1 =
∞∑

n=1

|2n〉c 〈2n| ⊗ |0〉c′ 〈0| ,

Ô2 =
∞∑

n=1

|2n − 1〉c 〈2n − 1| ⊗ |0〉c′ 〈0| ,

Ô3 =
∞∑

n=1

|0〉c 〈0| ⊗ |2n〉c′ 〈2n| ,

Ô4 =
∞∑

n=1

|0〉c 〈0| ⊗ |2n − 1〉c′ 〈2n − 1| , (20)

where subscript j corresponds to the j-th Bell state, can be used to discriminate
between the four states. It should be noted that there is a nonzero probability of
getting |0〉c |0〉c′ for which neither of the detectors registers any photon. Such as a
case is regarded as a failure event, and the failure probability is Pf = exp [−2t2α2]
[7,17]. We shall further discuss the success probability of the teleportation process
later in this paper.

According to the standard teleportation protocol, when |B1〉cc′ is measured, no
additional operation is required. The output state with the normalization factor is

ρc→s
out =

Trcc′
{
(Ô1)cc′(ÛBS)cc′

[
ρsc′ (α ; t) ⊗ |ψ〉c 〈ψ | ]

(Û †
BS)

}

Tr
{
(Ô1)cc′(ÛBS)cc′

[
ρsc′ (α ; t) ⊗ |ψ〉c 〈| ψ ]

(Û †
BS)

}

=
(
|a|2 + (1 − t2)|b|2

)
|0〉 〈0| + t2 |b|2 |1〉 〈1|
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+ t e−2α2(1−t2) (
ab∗ |0〉 〈1| + a∗b |1〉 〈0|) , (21)

where ÛBS represents the 50:50 beam splitter operator defined as UBS =
exp

[
π
4 ( â†0 â1 − â1â

†
0 )

]
. If |B2〉cc′ is measured, the Pauli-Z operation for the single-

rail qubit is required to complete the teleportation process, which can be performed
by a π -phase shifter. When |B3〉cc′ and |B4〉cc′ are measured, the Pauli-X operation is
needed to implement the bit flip, |0〉 ↔ |1〉, which is difficult to realize using linear
optics. We shall thus take only |B1〉cc′ and |B2〉cc′ as successful Bell-measurement
outcomes. The fidelity between the output state and the target state is

Fc→s = s 〈ψt | ρc→s
out |ψt 〉s

= |a|4 +
(
(1 − t2) + 2 t e−2α2(1−t2)

)
|a|2|b|2 + t2 |b|4, (22)

and its average can be calculated using Eq. (17) as

Fave
c→s = 2

3
+ t2 + 2 t e−2α2(1−t2)

6
. (23)

In Fig. 1, the average teleportation fidelities for both the directions of s → c and
c → s are plotted against the normalized time r for several different amplitudes. A
conspicuous observation is that the fidelity for the direction of s → c is always higher
than that of the other direction regardless of the values of α and r . However, as we shall
see inSect. 4, this gapbetween thefidelities for the twodirections is smaller than thegap
when the other type of hybrid entanglement [22] between a coherent-state qubit and a
polarized single-photon qubit is employed. The teleportation fidelities for both s → c
and c → s decrease more rapidly as α becomes larger. This is due to the fact that the
hybrid entanglement has the properties of a macroscopic superposition when α is large
[33,39]. When r approaches 1, the teleportation fidelity for s → c goes up to 1. The
reason for this is that the target state, |ψt 〉c = N (a |tα〉 + b |−tα〉), approaches the
vacuum in this limit and the overlap between the target state and the classicalmixture of
|tα〉 and |−tα〉, N 2

( |a|2 |tα〉 〈tα| + |b|2 |−tα〉 〈−tα| ), approaches 1 accordingly.

3.3 Success probabilities

When using linear optics and photodetectors, the success probability of the Bell-state
measurement is limited and certain required single-qubit transforms are unavailable.
These factors make the success probability of the teleportation process also to be
limited.

In the case of s → c, the Bell-state measurement for single-rail qubits can identify
only two of the four Bell states. We pointed out that one of the local transforms, Zc, is
nontrivial, but there are a couple of possible methods to implement it. Considering the
inherent limitation of the Bell measurement, the success probability of teleportation
for s → c can be considered to be 1/2 when there is no photon loss, i.e., when r = 0.
The photon loss process causes some of the qubit elements in state |1〉 to evolve
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Fig. 2 Success probabilities for
teleportation from a
coherent-state qubit to a
single-rail qubit (c → s) with
several values of amplitudes
(α = 0.5, 1, 2, 10) against the
normalized time r . We also note
that the success probability for
the case of s → c is 1/2
regardless of the value of r ,
which is not plotted

to |0〉. This type of loss cannot be noticed by photodetectors used for the Bell-state
measurement because any decohered single-rail qubit remains within the original two-
dimensional qubit space. As an extreme example, let us suppose that the channel is
fully decohered for r → ∞, i.e., it has become the vacuum. In this case, the two
modes for the Bell-state measurement can be represented as

(a |0〉s + b |1〉s) |0〉s′
= a√

2
(|B1〉ss′ + |B2〉ss′) + b√

2
(|B3〉ss′ − |B4〉ss′) . (24)

Note that |B3〉 and |B4〉 correspond to successful events, while the other twoBell states
cannot be identified. It is straightforward to notice that taking average over a and b
for the input state, the success probability of the teleportation process is Pave

s→c = 1/2
for r → ∞. In fact, no matter whether the single photon |1〉s′ or the vacuum |0〉s′
is incoming for mode s′, the success probability does not change; this means that
Pave
s→c = 1/2 regardless of the value of the decoherence time r .
The Bell-state measurement for coherent-state qubits, required for the case of c →

s, can identify all four Bell states with the success probability of 1 − e−2t2α2
[7,17].

However, we pointed out that a local single-qubit operation, the Pauli-X operation
which flips |0〉 and |1〉, cannot be effectively performed using linear optics elements.
We thus take only two outcomes of the Bell-state measurements as successful events,
and the average success probability of the teleportation in this case is

Pave
c→s = 1 − e−2t2α2

2
. (25)

Clearly, Pave
s→c is always larger than Pave

c→s , but they become identical in the limit of
tα  1.We plot the teleportation success probabilities for several values of α in Fig. 2
which shows that Pave

c→s becomes 1/2 as α increases.
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4 Comparison between two different hybrid schemes

In this section, we compare our results with the previous study in Ref. [22], where
the quantum teleportation between a photon-polarization qubit and a coherent-state
qubit (hereafter denoted as p ↔ c) was studied. The quantum channel used for
teleportation between a photon-polarization qubit and a coherent-state qubit [22] is a
hybrid entangled state in the form of

|ψ〉sc = 1√
2

(|H〉p |α〉c + |V 〉p |−α〉c
)
, (26)

where subscript p represents the polarization qubit. The input or target state for the
polarization qubit is

|ψt 〉p = a |H〉p + b |V 〉p . (27)

Similarly to the case of single-rail qubits, the Bell-state measurement for polar-
ized single-photon qubits can discriminate only two of four Bell states using linear
optics elements [36,40], while their single-qubit transforms are straightforward [2].
The results are discarded only when no photons are detected in the Bell-state measure-
ment. Of course, when loss caused by decoherence occurs, the parity measurement
scheme used for the Bell-state measurements in the coherent-state basis cannot filter
out “wrong results” in the polarization part, which is obviously different from the Bell-
state measurement with polarization qubits, and this type of error will be reflected in
the degradation of the fidelity.

The fidelities of the two cases obtained in Ref. [22] are

Fc→p = t2
[
|a|4 + |b|4 + e−2α2(1−t2) |a|2 |b|2

]
. (28)

and

Fp→c = N 2 S ×
{∣∣a

(
a + b e−2t2α2

) ∣∣2 + ∣∣b
(
a e−2t2α2 + b

) ∣∣2

+ 2 e−2α2(1−t2) Re
[
a b∗(a + b e−2t2α2)(

a∗ e−2t2α2 + b∗)] }
, (29)

where S =
(
1 + e−2α2

(ab∗ + a∗b)
)−1

. Using Eq. (17), the average fidelity Fave
c→p is

obtained as

Fave
c→p = t2

(
2 + e−2α2(1−t2)

3

)

. (30)

and Fave
p→c can be numerically calculated for given values of α. The average success

probabilities for the two cases are [22]
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(b)(a)

(d)(c)

Fig. 3 Average fidelities of teleportation of p → c (blue dashed curve), s → c (red solid), c → s (purple
dot–dashed) and c → p (brown doubledot–dashed). The classical limit 2/3 (horizontal dotted line) is given
for comparison. a α = 0.5, b α = 1, c α = 2, d α = 10 (Color figure online)

Pave
p→c = t2

2
, (31)

Pave
c→p = e2α

2t2 − 1

2
ln

1 + e−2α2t2

1 − e−2α2t2
. (32)

Figures 3 and 4 present the average fidelities and success probabilities for the four
cases of teleportation. In terms of fidelities, the case of p → c is better than the
case if s → c. The reason is explained as follows. The Bell-state measurement for
polarized single-photon qubits allows one to discard failure events whenever photon
loss occurs. However, in the case of single-rail qubits, where the vacuum and single-
photon states form the qubit basis, the photon losses cannot be identified by detectors,
which degrades the fidelity of the output state. Because of the same reason, the success
probability for p → c is lower than that for s → c (Fig. 4).

On the other hand, the fidelity of c → s is better than the c → p case as shown
in Fig. 3. In these cases, the Bell-state measurement for coherent-state qubits is used,
where the photon losses cannot be identified by detectors. When photon losses occur
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(a) (b)

(c) (d)

Fig. 4 Average success probabilities of p → c (blue dashed curve), s → c (red solid), c → s (purple
dot–dashed) and c → p (brown double-dot–dashed). a α = 0.5, b α = 1, c α = 2, d α = 10 (Color figure
online)

in the channel during the teleportation process, the output state for c → s remains in
the qubit space of the vacuum and single photon. However, when photons are lost in
the channel, the output state for c → p would contain the vacuum state in addition to
|H〉 and |V 〉, which degrades the fidelity more. The success probabilities for the two
cases are close to each other as shown in Fig. 4.

5 Remarks

We have investigated quantum teleportation between two distinct types of optical
qubits under photon loss effects. One type of qubit is of the vacuum and single photon
as the basis states, called a single-rail qubit, and the other is of coherent states of
opposite phases. First, the average fidelity of teleportation from a single-rail qubit to a
coherent-state qubit (s → c) is always larger than the opposite direction (c → s) under
photon loss. This is due to the fact that failure events caused by photon loss are always
noticed by the detectors for the Bell-sate measurement and they can be discarded
whenever they occur. This enhances the fidelity for the former case. It should be noted
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that the nonorthogonality of the two coherent states is another factor which increases
the fidelity for c → s when α is small.

The success probability of teleportation from a coherent-state qubit to a single-rail
qubit becomes higher up to 1/2 as the coherent amplitude α gets larger, while it is
reduced by the decoherence time. This is due to the fact that Bell-state discrimination
for coherent state can be done perfectly for high α. In the case of the opposite direction
(s → c), however, the success probability of teleportation is 1/2 regardless of the
decoherence time and the coherent amplitude because only two of the four Bell states
in terms of single-rail qubits can be discriminated with equal ranges at any condition.

Wehave further compared our resultwith a previous related study using another type
of hybrid entanglement between a coherent-state qubit and a polarized single-photon
qubit [22]. The average fidelity of teleportation from a polarization qubit to a coherent
state qubit (p → c) is found to be always larger than that from a single-rail qubit to a
coherent-state qubit s → c. Meanwhile, the average fidelity of teleportation for c → s
is larger than that for c → p. In terms of the success probability, the teleportation from
a single-rail qubit to a coherent-state qubit is always better than that from a polarized
single-photon qubit to a coherent-state qubit. These can be attributed to the difference
between the Bell-state measurement for polarized single-photon qubits and that for
single-rail qubits; the former can filter out failure events due to photon losses, while
the latter cannot do so. On the other hand, the fidelity of c → s is better than the
case of c → p. This is due to the difference between the decoherence mechanism of
single-rail qubits and that of polarized single-photon qubits; while the former remains
in the Hilbert space of the vacuum and single-photon states even after any amount of
decoherence, the latter gets out of the original Hilbert space by photon loss effects.

Our study reveals, in detail, advantages and disadvantages of different types of
teleportation schemes using hybrid entanglement of light for efficient quantum infor-
mation processing based on hybrid architectures of optical systems.
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