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Abstract The application of machine learning to quantum information processing
has recently attracted keen interest, particularly for the optimization of control para-
meters in quantum tasks without any pre-programmed knowledge. By adapting the
machine learning technique, we present a novel protocol in which an arbitrarily ini-
tialized device at a learner’s location is taught by a provider located at a distant place.
The protocol is designed such that any external learner who attempts to participate in
or disrupt the learning process can be prohibited or noticed. We numerically demon-
strate that our protocol works faithfully for single-qubit operation devices. A trade-off
between the inaccuracy and the learning time is also analyzed.

Keywords Quantum computation · Quantum machine learning · Secure machine
learning

1 Introduction

Advances in quantum information science herald a new era of information technology.
Quantum information science has recently penetrated interdisciplinary science and
engineering fields. In particular, a current research topic is to adapt the basic idea
of machine learning for quantum information processing. Although “learning” is a
behavior of humans and other living things, a device or a machine can also learn a task
according to the theory of machine learning, which was developed as a subfield of
artificial intelligence [1]. In fact, the optimization of control parameters without any
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pre-programmed knowledge can be referred to as a typical task of machine learning. In
this context, the techniques of machine learning have recently been applied to various
quantum information protocols [2–6].

Following this trend, here we formulate an intriguing problem. Suppose that one
intends to construct an operation to execute a particular quantum task. For this purpose,
a quantum machine learning technique can be used to train the operation devices for
the desired task. However, these devices are not necessarily located at the same place
as the one who is designing the task to be taught (called a provider hereafter). To
realize scalable quantum devices or networks, joint work between different parts of
a composite architecture or between separated participants may be necessary. For the
purpose, several protocols of distributed quantum information processing have been
developed [7,8]. Therefore, a quantum learning protocol performed by a separated
learner and provider will also be required in some realistic application scenarios.

In this study, we design a protocol to prepare an arbitrary quantum device at a
distant place by machine learning. We first assume an arbitrarily initialized device
installed at one place where the learner (say Alice) is located. The other, spatially
separated, provider (say Bob) determines the target quantum task, which cannot be
directly accessed by Alice. Note that the target information does not open to any other
people. Alice and Bob use mainly quantum channels to communicate their quantum
states. The output state from the device at Alice’s location is sent to Bob so that he can
assess the learning progress. To obtain feedback from Bob, Alice also sends reference
quantum states, and Bob returns them to Alice after performing his task. In designing
such a protocol, we employ a specific learning algorithm called single measurement
and feedback [9]. When learning is complete, we say that Alice’s operation device has
learned to perform the desired quantum task.

We also consider another issue that will be very important in the related field
of called “secure machine learning” [10–12], which significantly highlighted that
the machine learning process itself could be a target of any malicious attack. The
aforementioned works classified the possible attack scenarios and defenses against
those providing the theoretical analyses of the lower boundon attacker’swork function.
Here we approach to this issue in a quantum manner, rather focusing on the scenario
where Alice and Bob do not want any other external learner. Thus, we design the
protocol such that any malicious attempts to participate in or disturb the learning can
be prohibited or noticed, as long as Alice’s learning elements (i.e., controllable unitary
and measurement devices) are not initially correlated.1 We will demonstrate byMonte
Carlo simulations that our protocol works well when learning tasks for qubit states.
The learning time and inaccuracy are also analyzed in the demonstration.

2 Concept and method

Here we describe our scenario for developing a remote learning protocol. Suppose that
two separated parties, Alice and Bob, intend to teach a device at Alice’s location to

1 Such an assumption could be strong in a device-independent quantum cryptographic scenario [13]. How-
ever, this condition is essential in machine learning because one should trust his/her machine to identify,
evaluate and control the data in the learning process.
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Fig. 1 (Color online) Schematic picture of our protocol. Alice prepares a (fiducial) state |χA〉 (which is
also known to Bob) and initializes her own (unitary) deviceU for learning. Bob determines the state |τB 〉 of
the target (which is known only to Bob) at a distant place so that Alice’s device U learns a desired quantum
operation (see the main text for details)

perform a quantum task. The target quantum task learned by the device can generally
be identified as a unitary transformation from a given initial state |χA〉 to a specific
final state |τB〉 determined by Bob, i.e., the provider. Alice and Bob communicate
through quantum and classical channels. The process of our protocol is illustrated in
Fig. 1. The tasks performed by Alice and Bob and the channels are described in detail
below.

(i) Alice’s elements—Alice prepares a controllable device U to learn a unitary
transformation task from a fiducial state |χA〉 (known to only Alice and Bob). Here U
can be expressed as the unitary operator

Û (a) = e−iaT G, (1)

where a = (a1, a2, . . . , ad2−1)
T is a (d2 − 1)-dimensional (real) vector, and

G = (ĝ1, ĝ2, . . . , ĝd2−1)
T is a vector operator whose components are SU(d) group

generators [14,15]. We assume that d is the dimension of the Hilbert space of
both |τB〉 and |χA〉. In the process, Alice controls the components a j ∈ [−π, π ]
( j = 1, 2, . . . , d2 − 1) of the vector a.2 Measurement devices and a feedback system
to update the control parameters according to a learning algorithm are also placed on
Alice’s side. Alice also prepares to generate either |c〉 (c = 0, 1) or |±〉, which will

2 The group generators Ĝ j can generally be constructed in any d. Hence such parameterization is quite
general (see “Appendix 1”). The real components a j can be matched to some real control parameters
in experiments, e.g., beam-splitter and phase-shifter alignments in a linear optical system [16] or radio
frequency (rf) pulse sequences in a nuclear magnetic resonance (NMR) system [17].
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be used as a reference state in our protocol. Alice sends both her output state obtained
by applying U to the state |χA〉 and a reference state to Bob for each trial.

(ii) Quantum channels—Alice and Bob are connected by three one-way quantum
channels (drawn as gray lines in Fig. 1). Two of the channels are from Alice to Bob
(CAB

r and CAB
o ), and the remaining one is from Bob to Alice (CB A

r ). The channel CAB
r

carries the reference states, either |c〉 (c = 0, 1) or |±〉, and CAB
o transmits Alice’s

output states to Bob. The channel CB A
r is used to deliver the reference state from Bob’s

task back to Alice.
(iii) Bob’s elements—Bob, the provider, determines the target state |τB〉 (known

only to Bob) and prepares it for each trial. Note that Bob does not transmit any
information on the target state |τB〉 directly to Alice. After receiving Alice’s output
state and a reference state, Bob operates a full-fledged quantummodule,which consists
of two Hadamard gates Ĥ = (σ̂x + σ̂z)/

√
2 and a control-swap (C-SWAP) gate, as

illustrated in Fig. 1. TheC-SWAPgate acts as Ĉswap = |0〉 〈0|⊗1̂1d2+|1〉 〈1|⊗ Ŝ, where
1̂1d2 is a d2-dimensional identity, and Ŝ is a swap operator, defined as Ŝ |x〉 |y〉 = |y〉 |x〉
[18,19].

We now illustrate how our protocol runs. First, Alice publicly declares the com-
mencement to Bob. Here, the fiducial state |χA〉 is one element of a predetermined set
of initial states, which are agreed upon only by Alice and Bob in advance.3 Bob then
determines the target state |τB〉 according to the input |χA〉 and informs Alice that he
is also ready. When Alice and Bob identify their signs,4 the process starts:

[P.1] For every trial, Alice generates a reference state, either |c〉 (c = 0, 1) or |±〉.
For the |c〉 state, Alice applies the learning unitary operator Û (a) to her input state as

|χA〉 Û (a)−−→ |̃τA(a)〉 , (2)

where a is selected on the basis of Alice’s learning algorithm. Note that a is initially
chosen at random. For either |+〉 or |−〉, Alice applies a random unitary operator
Û (rh), such that

|χA〉 Û (rh)−−−→ |χ̃A(rh)〉 , (3)

where rh = (rh,1, rh,2, . . . , rh,d2−1)
T is a randomly generated vector (known only to

Alice). Thus, the states |̃τA(a)〉 and |χ̃A(rh)〉 are sequentially changed in each trial,
depending on the choice of reference states. Alice sends both the reference state and
the output state |ψA→B〉, prepared as either |c〉r |̃τA(a)〉o or |±〉r |χ̃A(rh)〉o, to Bob
via CAB

r and CAB
o , respectively. Here, we use the subscripts “r” and “o” to denote the

reference and output modes, respectively. Note that Alice does not open the states that
are being sent.

3 This starting assumption is realistic and also may be important, since a single state |χA〉 could be used as
a cryptographic name (i.e., identity) of Alice in a modified protocol, as described in Sect. 5. Thus, it may
be more efficient that |χA〉 is prepared as an arbitrarily superposed state, e.g., a |0〉 + b |1〉.
4 Alice and Bob may use a scheme for user authentication to identify their signs [20–22].
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[P.2] Then, Bob applies the delivered state |ψA→B〉 and the target state |τB〉t to his
module, where the subscript “t” denotes the target mode. It yields the state

∣

∣Ψcomp
〉

as

|ψA→B〉 |τB〉t

(

Ĥ⊗1̂1d2

)(

Ĉswap

)(

Ĥ⊗1̂1d2

)

−−−−−−−−−−−−−−−−→ ∣

∣Ψcomp.
〉

(4)

Here, for |ψA→B〉 = |c〉r |̃τA(a)〉o, the output state
∣

∣Ψcomp
〉

is given as

∣

∣Ψcomp
〉 =

∑

k=0,1

1√
2

|k〉r

( |̃τA(a)〉o |τB〉t + (−1)k⊕c |τB〉o |̃τA(a)〉t√
2

)

, (5)

whereas for |ψA→B〉 = |±〉r |χ̃A(rh)〉o, we have

∣

∣Ψcomp
〉 = |+〉r |χ̃A(rh)〉o |τB〉t or

∣

∣Ψcomp
〉 = |−〉r |τB〉o |χ̃A(rh)〉t . (6)

Note again that only Alice knows whether the output
∣

∣Ψcomp
〉

is equal to Eq. (5)
or (6). Bob resends the reference state after performing his task, written as ρ̂ref =
Tro,t

∣

∣Ψcomp
〉 〈

Ψcomp
∣

∣, back to Alice through CB A
r .

[P.3] Then, Alice checks the returning state ρ̂ref as follows: First, if the prepared
reference state was |+〉 or |−〉, Alice performs the measurement M± with the bases
{|+〉 , |−〉} on ρ̂ref. Note that Bob’s operation does not alter the reference states |+〉 and
|−〉 [see Eq. (6)]. Thus, if an unexpected outcome, i.e., “−” (or “+”) for the initially
prepared reference state |+〉 (or |−〉), appears in M±, Alice can immediately notice that
the state transmitted inCAB

r orCB A
r has been altered by an external learner.5 Second, for

the reference state |c〉 (c = 0, 1), Alice applies the operation σ̂ c
x = (|1〉 〈0| + |0〉 〈1|)c

to the returned state ρ̂ref and performs the measurement M0/1 with the bases {|0〉 , |1〉}.
In this case, the measurement results are delivered to the feedback system for effective
quantum learning.

By iterating steps [P.1]–[P.3], Alice’s device Û (a) is supposed to learn the desired
task,

|χA〉 Û (aopt)−−−−→ ∣

∣τ̃A(aopt)
〉 	 |τB〉 , (7)

where aopt denotes the optimal vector achieved after learning is complete. To realize
this learning process, we can use the following property: If

∣

∣τ̃A(aopt)
〉 = |τB〉, Bob’s

output state
∣

∣Ψcomp
〉

for the reference state |c〉 is to be |0〉r |τB〉o |τB〉t just before the
measurement M0/1 [see Eq. (5)], so Alice cannot obtain the outcome of |1〉. More
generally, the probability Pr(k|a) that Alice measures |k〉 (k = 0, 1) in M0/1 can be
calculated as

Pr(k|a) = 1 + (−1)k f (a)
2

, (8)

5 We assumed that there are no noise effects in the channels CAB
r and CB A

r .

123



3938 J. Bang et al.

Fig. 2 Schematic picture of the use of FIFOmemory to record themeasurement outcome “fail” or “not-fail”
(see the main text)

where f (a) = |〈τB |̃τA(a)〉|2. Our learning strategy is thus to update Û (a) until |0〉 is
successively measured, without any single outcome of |1〉, in M0/1. This strategy is
conceptually equivalent to the maximization of f .

3 Learning algorithm

To realize the above-mentioned strategy, we employ the quantum learning algorithm
based on single measurement and feedback introduced in Ref. [9]. This algorithm
requires a finite NL -bit classical first-in-first-out (FIFO) memory in which the mea-
surement results are recorded as “fail” or “not-fail” data. Note that, as the memory
size is finite, the newest data have to push the old data out of the memory (see Fig. 2).
Thus, the memory retains the latest data for the learning process.

In our case, the learning algorithm is programmed in Alice’s feedback system with
the rule for updating the vector a of U . The learning algorithm runs as follows: If
Alice measures |0〉 in M0/1 (that is, “not-fail”), the feedback system reserves judg-
ment regarding whether the current Û (a) is appropriate and thus leaves the vector a
unchanged. Otherwise, if |1〉 is measured (that is, “fail”), a is updated according to

a(n) ← a(n−1) + NF

N
r(n)

l , (9)

where n denotes the number of iterations of the effective learning process (or the
total number of measurements M0/1 performed), r(n)

l is a vector randomly generated
at the nth iteration step and N = min (NL , NF + NnF). Here, NF and NnF are the
number of “fail” and “not-fail” data recorded in the memory, respectively. Our learn-
ing algorithm is intuitively understandable: The greater the number of “fail” events
is, the more changes are imposed. Note that the random vector rl , rather than any
pre-programmed knowledge, is used to develop a. This feature, i.e., using no pre-
programmed knowledge, is a typical trait of the “learning” in a broad sense, and is of
particular importance in our task, as it implies that any information about the target
|τB〉 is not directly referenced to find the optimal vector aopt.

The learning process is continued until all the “fail” data are eliminated in the NL

memory blocks. We call this the halting condition. After learning is complete, i.e.,
the halting condition is satisfied, Alice’s final output state

∣

∣τ̃A(aopt)
〉

is supposed to be

well matched to the target state |τB〉, with f = ∣

∣

〈

τB |̃τA(aopt)
〉∣

∣

2 = 1 − εL (εL � 1).
Here, we can infer that the learning error εL becomes small for large NL , but a large
NL requires a longer learning time, as explicitly shown later.
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4 Numerical analysis

Weperform numerical simulations to analyze our learning protocol. Here, we consider
the single-qubit target states (i.e., d = 2) for a numerical proof-of-principle demonstra-
tion. In the simulations, we investigate mainly the learning and survival probabilities.
The learning probability PL(n) is defined as the probability that learning is completed
before or at a certain number n of effective iteration steps. The survival probability
PS(n) is defined as PS(n) = 1 − PL(n); thus, it is the probability that learning is not
completed until n [4,5]. In Fig. 3, we draw PL(n) and PS(n) for NL = 100 by aver-
aging over 1000 simulation data. In each simulation, the target state |τB〉 is randomly
chosen. We find that PS(n) is well fitted to the exponential decay function

e−(n+1−NL )/nc , (10)

where nc is a characteristic constant and n ≥ NL because of the definition of the
halting condition. As PL(n) is an accumulate distribution function (by definition), the
average number n of iterations to complete the (effective) learning process can be
estimated from the characteristic constant nc as n = nc + NL . In our case, we obtain
nc 	 352 by fitting the simulation data and thus n 	 452 with NL = 100, whereas
the actual average iteration number counted in the simulations is 	 478 (see Table 1
in “Appendix 2”). Note that nc has a finite value, which means that learning can be
completed in a finite time. The identified states

∣

∣τ̃A(aopt)
〉

after learning are close to
their target states, and εL is as small as 	 0.027 on average.

For further analysis, simulations are also performed by increasing NL from 50 to
500 at intervals of 50. In Fig. 4a, we plot n with respect to NL . Each point in the
graph is obtained by averaging 1000 simulation data. The data points are very well
fitted to n = c1Nα

L with c1 	 0.72 and α 	 1.39 (for details of the fitting function,
see “Appendix 3”). We also plot the learning error εL (averaged over 1000 data) in
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Fig. 3 (Color online) a Learning probability PL (n) and b survival probability PS(n) for NL = 100.
PL (n) and PS(n) (red solid line) are obtained by performing 1000 simulations. In each simulation, the
target state |τB 〉 is randomly chosen. The survival probability PS(n) is well fitted to the exponential decay
function e−(n+1−NL )/nc (green dashed line), where nc is a characteristic constant that characterizes the
average number of effective iterations n required to complete the learning process; n = nc + NL . We obtain
nc 	 352 and thus n 	 452. The actual average iteration number in the simulations is 	 478
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Table 1 Values of nc , n (nsim),
and εL in Figs. 4 and 5

NL nc n = NL + nc (nsim) εL

50 	143 	193 (	195) 	0.04727

100 	352 	452 (	478) 	0.02690

150 	718 	868 (	872) 	0.01964

200 	996 	1196 (	1257) 	0.01505

250 	1365 	1615 (	1658) 	0.01268

300 	1711 	2011 (	2111) 	0.01089

350 	2176 	2526 (	2754) 	0.00981

400 	2478 	2878 (	3125) 	0.00882

450 	3207 	3657 (	3806) 	0.00836

500 	3758 	4258 (	4532) 	0.00760
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Fig. 4 (Color online) a Graph of NL versus n (red circles). We consider the fitting function n = c1Nα
L

(green dashed line) and find that c1 	 0.72 and α 	 1.39. b εL (red circles) with respect to NL . In this

case, the data are well fitted to εL = c2N−β
L (green dashed line) with c2 	 1.12 and β 	 0.81. Each point

in a and b is obtained by averaging 1000 simulation data

Fig. 4b. The data points are also well fitted to εL = c2N−β
L , and we find c2 	 1.12 and

β 	 0.81. From these results, we can see the trade-off relation between the inaccuracy
(i.e., εL ) and the learning time (i.e., n) depending on NL . To see this more clearly, we
draw the graph of εL versus n in Fig. 5 (see “Appendix 2”). By data fitting, we obtain
εL 	 1.10 × n−0.59 (green dashed line in Fig. 5).

5 Discussions on the security

We briefly discuss that our learning protocol is secure against any other external
learner (say Eve). One may explore large questions related to the security on the
machine learning. Here, we consider a specific question: ‘Can Eve learn the quantum
task originally designed by Bobwithout being discovered?’ To deal with this question,
we consider the two scenarios.
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Fig. 5 (Color online) εL versus n (red circles). Each point is the average value of 1000 simulation data;
error bars indicate the standard deviation. We obtain εL 	 1.10 × n−0.59 by data fitting (green dashed
line)

5.1 Scenario 1: intercept-and-resend attack

We first note that the target state |τB〉 is neither directly moved to Alice nor removed
from Bob’s side. Note further that the optimized vector aopt cannot be viewed on
Alice’s side after learning is complete. Thus, a strategy that Eve follows would be to
intercept the transmitted particles in the channels CABr , CABo , and CBAr , and to learn |τB〉
or

∣

∣τ̃A(aopt)
〉

from the intercepted particles. Eve then attempts to resend the particles
of the copies instead of the stolen ones so that Alice and Bob would not notice it. This,
often called “intercept-and-resend attack,” is typical scheme for breaking a QKD
system. However, this is quite formidable owing to the following complications:

[SC.1] If the qubit states transmitted through CABr or CBAr are altered, Alice imme-
diately perceives the alterations by the measurement M±, as described above. This
method of using a “cheat-sensitive” (sub)system is often used in quantum crypto-
graphic tasks.

[SC.2] Even though Eve can intercept the states moving through CABr , CABo , and
CBAr without being discovered, it is still impossible to learn |τB〉 or ∣

∣τ̃A(aopt)
〉

because
the intercepted particles, |̃τA(a)〉 〈̃τA(a)| and |χ̃ (rh)〉 〈χ̃(rh)|, are highly mixed and
indistinguishable. Actually, in such case, the state of Nint intercepted particles is close
to the random mixture 	 1

2 1̂1d when Nint 
 1 because a and rh are continuously
changed in each trial of the learning process.

[SC.3] We finally note that learning is very sensitive to any external alteration of
Alice’s estimation states |̃τA(a)〉 transmitted in CABo (see “Appendix 2”). Thus, even
for any super-Eve who can sort out |̃τA(a)〉 in CABo , Alice can be aware of any ill-
intentioned attempts by monitoring the learning time; any alteration is indicated by
learning that is too late or cannot be completed, even though unexpected outcomes do
not appear in M±.

5.2 Scenario 2: man-in-the-middle attack

We then consider another scenario, called “man-in-the-middle attack,” where Eve
communicates with Alice pretending to be Bob and at the same time performs the
learning with Bob pretending to be Alice over the public channels. In such an attack,
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Fig. 6 (Color online) The
modification of the original
protocol to guard against a
man-in-the-middle attack is
done by placing a control-T̂
operation, defined by
Ŵ = |0〉r 〈0|⊗1̂1o+|1〉r 〈1|⊗ T̂o
(red dashed box) in Bob’s side
and by small change of the rule
[P.1] in Alice’s side (See the
main text for details)

Eve can guide Alice’s unitary device(s) into an irrelevant task, e.g., |χA〉 → |τE 〉, and
can extract Bob’s target state |τB〉 from the identified task, e.g., |χE 〉 → |τB〉, in the
learning with Bob.6 Nevertheless, it is impossible for Eve to learn the target task, i.e.,
|χA〉 → |τB〉, since Alice’s input state |χA〉 is not opened. We thus note that in this
sense Eve’s strategy to learn the original task designed by Bob will end in failure.

However, due to the fact that Eve can still maliciously interfere the learning process
to separate the two legitimate parts, Alice and Bob, any strategy to detect a man-in-
the-middle attack may be necessary. For this purpose, we can modify our protocol
slightly further: First, Bob mounts a safeguard, identified as a controlled operation
Ŵ = |0〉r 〈0|⊗ 1̂1o +|1〉r 〈1|⊗ T̂o, in the front of C-SWAP (see Fig. 6). Here, T̂o is an
example operation of the target task, i.e., T̂o |χA〉 = |τB〉. 7 Then, Alice changes the
rule [P.1] a bit such that, in case the reference state is |1〉, Alice sends the state |χA〉 to
Bob without any altering so that the delivered state to Bob is |ψA→B〉 = |1〉r |χA〉o.
In this case, Bob yields the final output state |Ψout〉, by applying his module, as

|ψA→B〉 |τB〉t
Ŵ ,Ĉswap−−−−−→ |Ψout〉 = |1〉r |τB〉o |τB〉t , (11)

where the reference state |1〉r goes back to Alice through CBAr .8 However, Eve can
never produce such an output |Ψout〉 in Eq. (11) for the case where |c〉 = |1〉, because
Eve cannot make a valid example of T̂ without knowing |χA〉.9 Thus, if Eve intrudes
into the learning, an unexpected outcome |0〉will appear in Alice’s measurement M0/1
when |c〉 = |1〉. Therefore, Alice can detect a man-in-the-middle attack by monitoring

6 Here, |χE 〉 and |τE 〉 are Eve’s own fiducial and target state, respectively.
7 One of the powerful advantages of our protocol is that Bob does not need to set the device(s) corresponding
to the target task, e.g., T̂ , in his side, but this advantage may be weaken in the case where the security issue
becomes more important.
8 Noting that Ŵ has no influence on Alice’s learning in the case where |c〉 �= |1〉, it is easily checked that
our previous analyses remain valid.
9 Note further that Eve can neither sort out |c〉 = |1〉 in CABr nor Alice’s state |χA〉 in CABo (See also [SC.1]
and [SC.2]).
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whether the reference state initially prepared in |1〉would come back without changes;
a measures of |0〉 may indicate the possible existence of a middle-man, Eve.

6 Summary

In summary, we presented a protocol for a quantummachine learning, where a learner
(Alice) could learn a unitary transformation corresponding to the quantum task deter-
mined by a provider (Bob) at a distant place.We clarify here that the presented method
is also applicable in the case of non-unitary task, as a general quantum process can
be described by an overall unitary transformation in a quantum system composed of
a main and an extra system, followed by a partial measurement. In such case, Alice
will learn the overall unitary with arbitrarily designed extra system and partial mea-
surement in her side. What is more remarkable is that our protocol was designed such
that an external learner cannot participate in the learning process. We demonstrated
by Monte Carlo simulations that learning can be faithfully completed for single-qubit
target states, and analyzed the trade-off between the inaccuracy and the learning time.
We then gave brief discussions on the security issues under the scenarios constructed
by the terms of intercept-and-resend and man-in-the-middle attack. We expect that
our protocol will be developed for realistic applications in quantum information and
cryptography tasks.
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Appendix 1: Construction of SU(d) group generators

For any given d, we can generally define G in Eq. (1), systematically constructing
(d2 − 1) Hermitian operators as follows [14,15]:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

û jk = P̂jk + P̂jk,

v̂ jk = i
(

P̂jk − P̂jk

)

,

ŵl = −
√

2
l(l+1)

(

∑l
i=1 P̂ii − l P̂l+1l+1

)

,

where 1 ≤ l ≤ d − 1 and 1 ≤ j ≤ k ≤ d. Here, P̂jk = | j〉 〈k| is
a general projector. Then, the elements Ĝ j of G can be given from the set
{û12, û13, · · · , v̂12, v̂13, · · · , ŵ1, · · · , ŵd−1}, satisfying (i) hermiticity Ĝ j = Ĝ†

j ,

(ii) traceless tr(Ĝ j ) = 0 and (iii) orthogonality tr(Ĝ†
j Ĝk) = 2δ jk . The elements

Ĝ j , Ĝk ∈ G hold the relation,
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[

Ĝ j , Ĝk

]

= 2i
∑

l

f j klĜl , (12)

where f jkl is the (antisymmetric) structural constant of SU (d) algebra. Here, if d = 2
(single qubit), we have Pauli spin operators as G = {σ̂x , σ̂y, σ̂z}.

Appendix 2: Detailed data in Figs. 4 and 5

Here we provide the detailed data in Figs. 4 and 5. By performing numerical sim-
ulations while increasing NL from 50 to 500 at intervals of 50, we characterize the
learning probabilities PL(n) and survival probabilities PS(n). The simulations are
performed 1000 times for each NL . For all the cases of NL , the survival probabilities
PS(n) are well fitted to the fitting function e−(n+1−NL )/nc [as in Eq. (10)] with the
characteristic constant nc. The parameters nc and the (estimated) average number of
iterations n = NL + nc are listed in Table 1. Here, nsim denotes the average number
of iterations actually counted in the simulations. We also find the learning error εL

(averaged over 1000 simulations) for each NL . The identified values of εL are also
given in Table 1. We note again that the fitting parameters nc have finite values for all
cases. We thus expect that learning can be completed faithfully for the given NL .

Appendix 3: Approximation of nc in a random learning strategy

Here we approximately estimate nc in a random learning strategy. To this end, we
first consider the probability Pr(0|a)NL that the learning is completed for any fixed
a. Pr(0|a) is the probability of the success event (namely, of measuring |0〉 in M0/1)
[see Eq. (8)]. To proceed, we introduce a continuous function,

1

2
≤ Ξ(a) = ξ1(a1)ξ2(a2) · · · ξd2−1(ad2−1) ≤ 1, (13)

satisfying Ξ(a �= aopt) < Ξ(aopt) = 1. We note that this function Ξ(a) is made
by minimizing |Ξ(a) − P(0|a)| for all a. Thus, we infer that P(0|a)NL → 1 when
a → aopt, whereas P(0|a)NL → 0 when a is far from aopt, and consequently, we can
assume that P(0|a)NL 	 Ξ(a)NL (∀a) when NL is very large.

We then use a trick by approximating ξ j (a j )
K with a delta function as

ξ j (a j )
K ≈ exp

[

− (a j − a j,opt)
2

2Δ2

]

, (14)

where a j,opt is a component of aopt and K is assumed to be sufficiently large but
K � NL . Thus, we can also assume that Ξ(a)K 	 P(0|a)K . In the circumstance,
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we estimate the average probability P(0|a)NL
avg, such that (for Δ � 110)

P(0|a)NL
avg 	

∫

da1ξ1(a1)
NL

∫

da2ξ1(a2)
NL · · ·

∫

dad2−1ξd2−1(ad2−1)
NL

≈
d2−1
∏

j=1

∫ ∞

−∞
da j exp

[

− (a j − a j,opt)
2

2Δ2

NL

K

]

≈
(

K2πΔ2

NL

)

d2−1
2

. (15)

Then, let us consider a probability that the learning is terminated at n iteration step:

(

1 − P(0|a(1))NL
) (

1−P(0|a(2))NL
)

· · ·
(

1−P(0|a(n−1))NL
)

P(0|a(n))NL , (16)

for any sequence a(0) → a(1) → a(2) → . . . → a(n) of updating the parameter vector
in the learning. Thus, in a random learning strategy, we can approximate the learning
probability PL(n), introduced in Sect. 4, such that

PL(n) ≈ P(0|a(1))NL
avg

+
(

1 − P(0|a(1))NL
avg

)

P(0|a(2))NL
avg

+
(

1 − P(0|a(1))NL
avg

) (

1 − P(0|a(2))NL
avg

)

P(0|a(3))NL
avg

...

+
(

1 − P(0|a(1))NL
avg

) (

1 − P(0|a(2))NL
avg

)

· · ·
(

1 − P(0|a(n−1)
avg )NL

)

P(0|a(n)
avg)

NL

≈
n−1
∑

i=0

(

1 − P(0|a)NL
avg

)i
P(0|a)NL

avg = 1 −
(

1 − P(0|a)NL
avg

)n
, (17)

where P(0|a(1))
NL
avg = P(0|a(2))

NL
avg = . . . = P(0|a(n))

NL
avg = P(0|a)NL

avg. Here, using
Eq. (15), we finally arrive at (for NL 
 1 and Δ � 1)

PL(n) ≈ 1 − e− n
nc , or equivalently, PS(n) ≈ e− n

nc , (18)

where nc 	 O

(
√

N (d2−1)/2
L

)

.

Appendix 4: Effect on learning of any alterations in CAB
o

Here we consider a situation in which particles in the state |̃τA(a)〉 moving through
CAB

o are alteredwith a certain probability pint by somemalicious Eve.Here, we assume

10 The integration limits, from −∞ to ∞, are approximated by this condition.
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Fig. 7 (Color online) a Learning probability PL (n) and b survival probability PS(n) on a log scale,
assuming some Eve who can steal particles moving in CAB

o with a certain probability pint. We assume that
Eve can adopt the best learning strategy for her learning (see the main text). Here, we set NL = 100 and
consider the qubit target states, i.e., d = 2. We consider three cases: pint = 0.1 (red), 0.2 (green), and 0.3
(blue). We perform 1000 simulations to draw the graphs. In each simulation, the target state |τ 〉 is randomly
chosen. The survival probabilities PS(n) are also well fitted to Eq. (10) (black solid lines)

Table 2 Values of nc , n (nsim),
and εL in Fig. 7

pint n = NL + nc (nsim) εL

0.1 	1.736 ×103 (	1.747 ×103) 	0.019

0.2 	1.808 ×104 (	1.956 ×104) 	0.021

0.3 	2.473 ×105 (	2.767 ×105) 	0.022

a super-Eve who can sort out Alice’s estimation state |̃τA(a)〉, discarding the blinded
state |χ̃A(rh)〉, in CAB

o for his/her own effective learning. Eve’s aim is to learn Alice’s
vector a and thus to obtain the optimal vector as close to aopt as possible when Alice’s
learning is complete. Eve can thus adopt the strategy of learning Alice’s vector a
using a stolen particle for each trial and resend the newly generated particle of his/her
estimated state |̃τE (e)〉 to Bob, where e is a vector of Eve’s own device.

However, in this case, it takesmuch longer to complete the learning process because
some particles of |̃τA(a)〉 are altered as |̃τA(a)〉 → |̃τE (e)〉. To corroborate this, we
perform numerical simulations of single-qubit target states (d = 2). Here, we set
NL = 100 and consider three cases: pint = 0.1, 0.2, and 0.3. We assume further that
Eve can use the best strategy for each stolen particle, i.e.,

∣

∣

〈

τ̃E (a′)|̃τA(a)
〉∣

∣ = 2
3 [23].

In Fig. 7, we present the learning and survival probabilities for pint = 0.1 (red), 0.2
(green), and 0.3 (blue) on a log scale. The survival probabilities are also well matched
to Eq. (10). The data are listed in Table 2. Note here that n increases exponentially
with increasing alteration probability pint. In this sense, the learning efficiency is very
sensitive to the alterations. Thus, by monitoring the learning time, Alice can sense
even any super-Eve; if learning is too late or cannot be completed, Alice stops the
learning so that Eve cannot complete the process e → aopt.

Here we briefly note that, in a realistic application, Alice should evaluate and
analyze the learning time, i.e., nc, by performing the learning with her own devices,
before starting the protocol with Bob. Such task is carried out taking into account the
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errors due to the imprecise control or contaminated devices. The maximum tolerable
noise in the channels should also be estimated in this stage.
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