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Abstract We propose a quantum algorithm to obtain the lowest eigenstate of any
Hamiltonian simulated by a quantum computer. The proposed algorithm begins with
an arbitrary initial state of the simulated system. A finite series of transforms is iter-
atively applied to the initial state assisted with an ancillary qubit. The fraction of the
lowest eigenstate in the initial state is then amplified up to �1. We prove that our algo-
rithm can faithfully work for any arbitrary Hamiltonian in the theoretical analysis.
Numerical analyses are also carried out. We firstly provide a numerical proof-of-
principle demonstration with a simple Hamiltonian in order to compare our scheme
with the so-called “Demon-like algorithmic cooling (DLAC)”, recently proposed in
Xu (Nat Photonics 8:113, 2014). The result shows a good agreement with our theoret-
ical analysis, exhibiting the comparable behavior to the best ‘cooling’ with the DLAC
method. We then consider a random Hamiltonian model for further analysis of our
algorithm. By numerical simulations, we show that the total number nc of iterations is
proportional to � O(D−1ε−0.19), where D is the difference between the two lowest
eigenvalues and ε is an error defined as the probability that the finally obtained system
state is in an unexpected (i.e., not the lowest) eigenstate.
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1 Introduction

It is essential to deal with complex systems whose dynamics are typically described by
many-body Hamiltonians in various fields of quantum information and computation.
One important issue that has been raised in quantum computation is the eigen-problem
of a Hamiltonian whose Hilbert-space is very large (possibly, even several hundreds
or thousands). In particular, one of the frequently faced but quite formidable problem1

is how to find the lowest energy eigenstate of a complex system [2–4].
A possible way to attack this problem is to use an approach of so-called algo-

rithmic quantum cooling (AQC), which is often referred to as a systematic tech-
nique of decreasing (increasing) the fractions of the higher (lower) energy eigenstates
of the system [5–8]. The AQC is particularly useful when it is desired to initial-
ize the part of higher energy states, say ‘hot’ qubits (e.g., a macroscopic number
of spins [9]), to lower-energy states in ensemble quantum computation [10–14] or
quantum simulation [15,16]. Most recently, a simple but powerful ‘pseudo’ AQC
method, “Demon-like algorithmic cooling (DLAC),” has been proposed and exper-
imentally demonstrated [8]. The DLAC method can drive a given initial state to
the lowest eigenstate using a quantum-circuit module with an ancillary qubit. The
core process in this method is the measurement of the ancillary qubit to discard the
‘heated’ state and to leave only the ‘cooled’ state (like Maxwell’s famous ‘demon’
[17,18]).

In this work, we propose a quantum algorithm to obtain the lowest energy eigen-
state of an arbitrary Hamiltonian simulated by a quantum computer. Similarly to some
AQC methods [5,8] (or other variational methods in classical computation [19,20]),
we start from an arbitrary initial state of the simulated system that (usually) con-
tains very small fractions of the lower-energy eigenstates. Applying a finite series of
transformations, each of which consists of the quantum Householder reflection and
the unitary of the system dynamics, the initial state is allowed to evolve amplifying
the fraction of the lowest energy eigenstate up to �1. We note that our algorithm
also employs an ancillary qubit system, similarly to DLAC method. However, no
measurements are performed on the ancillary qubit during the algorithm process,
namely demon is not needed in our algorithm. The measurement is performed only
once at the end of the algorithm to get the final state of the system removing the
ancillary qubit.2 In our theoretical analysis, we prove that our algorithm faithfully
works for any given Hamiltonian. Numerical analyses are also carried out. Firstly,
we provide a numerical proof-of-principle demonstration for a simple Hamiltonian
whose eigenvalues are equally spaced. The result is quite consistent with our the-
oretical analysis, and in particular, it exhibits the behavior comparable to the best

1 Such a task belongs to the class of “Nondeterministic Polynomial” (NP), or its quantum generalization,
called “Quantum-Merlin-Arthur” (QMA) [1].
2 We can also observe the cooling-like and the heating-like behaviors when we consider the whole system
Hamiltonian involving the ancillary qubit system (see Appendix 3 for details).
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‘cooling’ available with the DLAC method. We then consider a random Hamiltonian
model for further analysis of our algorithm. We presume that the required iterations to
achieve an accuracy 1 − ε (ε � 1) is proportional to � O(D−αε−β) with α, β ≤ 1,
where D is difference of the two lowest eigenvalues and ε is tolerable error defined
as the probability that the finally obtained state of the system is to be unexpected
(i.e., not the lowest) eigenstate. By numerical simulations, it is found that α � 1 and
β � 0.19 < 1.

2 Problem and method

To begin, we state the problem as follows: Consider a Hamiltonian Ĥ of N -dimensional
Hilbert-space. The energy eigenvalues λk of Ĥ are scaled as

0 < λ0 < λ1 ≤ · · · ≤ λN−1 ≤ 1, (1)

where we assume no perfect degeneracy between λ0 and λ1 (i.e., λ1 − λ0 �= 0). The
energy eigenstate associated with the energy eigenvalue λk is given as |λk〉. Note that
the energy eigenvalues λk and the eigenstates |λk〉 are completely unknown. In this
circumstance, the problem that we focus on here is: How to obtain the lowest energy
eigenstate |λ0〉.

In solving this problem, we start with an initial system state |ϕ0〉 in N -dimensional
Hilbert-space of the given Hamiltonian,

|ϕ0〉 =
N−1∑

j=0

a j
∣∣v j

〉
, (2)

where the computational bases
∣∣v j

〉
and the coefficients a j are known to us. We assume

that the fraction f0(λ0) = |〈λ0|ϕ0〉|2 is not equal to zero but vanishingly small. We
then consider an ancillary system of a clean qubit. By adopting an ancilla qubit state
|φ0〉 = 1√

2
(|0〉 + |1〉), we prepare a composite initial state |ψ0〉 such that

|ψ0〉 = |φ0〉 ⊗ |ϕ0〉 = |0〉 + |1〉√
2

⊗
N−1∑

j=0

a j
∣∣v j

〉
. (3)

Here, if we expand |ϕ0〉 in terms of the eigenstates |λk〉, the composite initial state
|ψ0〉 is rewritten as

|ψ0〉 =
N−1∑

k=0

γ0,k√
2

(
|0, λk〉 + |1, λk〉

)
, (4)

where |0, λk〉 = |0〉 ⊗ |λk〉, |1, λk〉 = |1〉 ⊗ |λk〉, and γ0,k = ∑N−1
j=0 a j

〈
λk |v j

〉
. Here,

|γ0,0|2 = f0(λ0) = |〈λ0|ϕ0〉|2. Note that the coefficients γ0,k cannot be evaluated,
because the energy eigenstates |λk〉 are unknown.
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R̂0 = 1̂1 − 2 |ψ0 ψ0|T̂1 = R̂0Û R̂0Û
†

T̂2 = R̂1Û R̂1Û
†

T̂nc = R̂nc−1Û R̂nc−1Û
†

R̂1 = T̂1R̂0T̂
†
1

R̂2 = T̂2R̂1T̂
†
2

R̂nc
= T̂nc

R̂nc−1T̂
†
nc

|ψnc

|ψ0

...
...

|ψ1

|ψ2

|ψnc−1

T̂3 = R̂2Û R̂2Û
†

Transformations and state evolutions

Householder reflections

Fig. 1 (Color online) Schematic picture of the process of our algorithm (see the main text)

Then, we construct a finite number nc of transformations, T̂1, T̂2, . . . , T̂nc , according
to the following recursive relation: for i = 1, 2, . . . , nc,

R̂i = T̂i R̂i−1T̂ †
i , and T̂i = R̂i−1Û R̂i−1Û †, (5)

where R̂0 is “quantum Householder reflection,” defined as R̂0 = 1̂−2 |ψ0〉 〈ψ0|. Such
an operation has widely been used in quantum search [21], or other tasks [22–24]. We
also use a 2N -dimensional unitary Û , defined as

Û =
(
|0〉 〈0| ⊗ Â(τ )

)
+ i

(
|1〉 〈1| ⊗ Â(τ )†

)
, (6)

where Â(τ ) = ei π4 τ Ĥ is a unitary of the system’s dynamics,3 and τ ∈ (0, 1] is a
scaling constant concerning the time of Hamiltonian action.

Then, the process of our algorithm can simply be thought of as a series of transfor-
mations T̂i applied on the initial composite state |ψ0〉 such that (See Fig. 1):

T̂nc . . . T̂2T̂1 |ψ0〉 = ∣∣ψnc

〉
. (7)

At the final step of nc, measurement is performed only once on the ancillary qubit.
Tracing out the ancillary qubit state by the measurement, the remaining state of the
system is supposed to be close to the lowest energy eigenstate |λ0〉.

3 Here, we omit the conventional minus (‘−’) sign in the exponent.
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3 Theoretical analysis

We now analyze the process of our algorithm. By using Eqs. (4)–(7), we can describe
the evolution of the composite state (see Appendix 1):

|ψ0〉 T̂1−→ |ψ1〉 =
N−1∑

k=0

γ0,k√
2

(
γ1,k |0, λk〉 + γ ∗

1,k |1, λk〉
)

T̂2−→ |ψ2〉 =
N−1∑

k=0

γ0,k√
2

(
γ1,kγ2,k |0, λk〉 + γ ∗

1,kγ
∗
2,k |1, λk〉

)

...

T̂i−→ |ψi 〉 =
N−1∑

k=0

γ0,k√
2

(
Γi,k |0, λk〉 + Γ ∗

i,k |1, λk〉
)

... (8)

where Γi,k = γ1,kγ2,k · · · γi,k (thus, Γ ∗
i,k = γ ∗

1,kγ
∗
2,k . . . γ

∗
i,k), and γi,k is given as a

function of kth-ordered energy eigenvalue λk (Here, Γ0,k = 1). The explicit form of
γi,k is given as

γi,k =
(

4 |Wi−1|2 − 1
)

− 2 |Wi−1| e−i
π(1−τλk )

4 . (9)

where the factor |Wi | is defined as

|Wi | =
∣∣∣〈ψi | Û |ψi 〉

∣∣∣ =
N−1∑

k=0

∣∣γ0,k
∣∣2 ∣∣Γi,k

∣∣2 cos
π (1 − τλk)

4
. (10)

Then, after sufficiently large nc 
 1 step, we perform a von-Neumann measure-
ment with {|0〉 , |1〉} on the ancillary qubit. The ancillary qubit is then removed, and
we get the final state

∣∣ϕnc

〉
involving the fractions fnc (λk) = ∣∣γ0,k

∣∣2 ∣∣Γnc,k
∣∣2 of the

energy eigenstates. More specifically, the final state
∣∣ϕnc

〉
is given as follows (Note

that
∑N−1

k=0

∣∣γ0,k
∣∣2 ∣∣Γi,k

∣∣2 = 1).

∣∣ϕnc

〉 →

⎧
⎪⎨

⎪⎩

∑N−1

i=0
γ0,kΓnc,k |λk〉 if |0〉 is measured (with 1

2 probability),
∑N−1

i=0
γ0,kΓ

∗
nc,k |λk〉 if |1〉 is measured(with 1

2 probability),

(11)

We now show that the final state
∣∣ϕnc

〉
in Eq. (11), either

∑N−1
i=0 γ0,kΓnc,k |λk〉 or∑N−1

i=0 γ0,kΓ
∗

nc,k
|λk〉, becomes close to |λ0〉 in the limit of nc → ∞. In particular, we

will show that
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f0(λ0) ≤ f1(λ0) ≤ · · · < fnc−1(λ0) ≤ fnc (λ0) → 1, (as nc → ∞). (12)

To this end, we state and sketch the proof of the following two propositions: [P.1] The
coefficient factor

∣∣γi,0
∣∣2 of the lowest eigenstate is always larger than or equal to 1, and

thus, fi (λ0) ≤ fi+1(λ0) for all i = 0, 1, . . . ,∞. [P.2] The other probabilities fi (λk �=0)

of the higher eigenstates (excepting the lowest one) goes to zero with
∣∣γi,k �=0

∣∣2 < 1
when i → ∞. The proof of the latter is particularly important to guarantee that fi (λ0)

can go up to �1.
First, we provide the proof of [P.1]. To start, let us calculate

∣∣γi,k
∣∣2 from Eq. (9).

With the simple algebra, we have

∣∣γi,k
∣∣2 = 1 + 4 |Wi−1|

(
4 |Wi−1|2 − 1

)
Δi−1,k, (13)

where

Δi−1,k = |Wi−1| − cos
π (1 − τλk)

4
. (14)

By observing Eq. (13), we can know that the proof of [P.1], i.e.,
∣∣γi,0

∣∣2 ≥ 1, is
straightforward if

{
(a) |Wi−1|2 ≥ 1

2 (∀i),

(b) Δi−1,0 ≥ 0 (∀i).

(15)

Note that |Wi−1| is larger than 0. To verify Eq. (15), we give the theoretical lower and
upper bound on the value of |Wi−1|, by using Eq. (10), as

cos
π (1 − τλ0)

4
≤ |Wi−1| =

〈
cos

π (1 − τλk)

4

〉

i−1
≤ cos

π (1 − τλN−1)

4
, (16)

where ‘〈xk〉i−1 = ∑N−1
k=0 fi−1(λk)xk’, which is an expectation value of xk at (i − 1)th

step. Here, the (mathematical) condition to meet the lower bound is that fi−1(λ0) = 1
and fi−1(λk �=0) = 0, whereas the upper bound is given when fi−1(λN−1) = 1 and
fi−1(λk �=N−1) = 0. Note that Eq. (16) is always satisfied for the given eigenvalues
λk (k = 0, 1, . . . , N − 1) scaled as in Eq. (1). Thus, (a) |Wi−1|2 ≥ 1

2 (∀i) is true

(because λ0 > 0). Then, by applying the lower bound value ‘cos π(1−τλ0)
4 ’ to Eq. (14)

with k = 0, we can directly verify that (b) Δi,0 ≥ 0 (∀i) also holds. Therefore, [P.1]
is always the case.

Next, let us consider [P.2]. To proceed, we assume that the eigenvalues λk (k =
0, 1, . . . , N − 1) are divided into the two groups g1 and g2 at any (i − 1)th step, each
of which is characterized by

{
g1 : fi−1(λk) ≤ fi (λk) for λk ≤ ξi−1,

g2 : fi−1(λk) > fi (λk) for λk > ξi−1,
(17)
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where ξi−1 is a boundary factor of the (i − 1)th step. Then, by using Eqs. (13)–(15),
we can show that

∣∣γi,k
∣∣2 ≥ 1 ⇐⇒ Δi−1,k ≥ 0 ⇐⇒ λk ≤ ξi−1, (18)

where the explicit form of the boundary factor ξi−1 can be found as

ξi−1 = 1

τ

(
1 − 4

π
arccos |Wi−1|

)
. (19)

Here, noting [P.1] and the property
∑N−1

k=0 fi (λk) = ∑N−1
k=0 fi−1(λk) = 1, we can

verify that |Wi−1| ≥ |Wi | (∀i), since the increment of fi−1(λ0) necessarily results in
the decrements of any other probabilities fi−1(λk �=0). This allows us to prove that [by
using Eq. (19)]

ξi ≤ ξi−1 for all i = 1, 2, . . . ,∞. (20)

By using Eqs. (16) and (19), we can give the theoretical lower and upper bound of the
boundary factor ξi , for any i , as

λ0 ≤ ξi ≤ λN−1. (21)

We note that the theoretical lower bound in Eq. (21) is an alternative expression of
[P.1]; namely, it is true that the lowest eigenvalue λ0 always belongs to the group g1.
By using Eq. (19), we can also obtain that4

ξi−1 − ξi = 4

τπ

(
arccos |Wi | − arccos |Wi−1|

)

= 4

τπ

∞∑

l=0

(2l)!
4l(2l + 1)(l!)2

(
|Wi−1|2l+1 − |Wi |2l+1

)
. (22)

Here (mathematically), if |Wi−1| − |Wi | �→ 0, then ξi−1 − ξi �→ 0, i.e., ξi does
not converge but becomes smaller as increasing i → ∞ [as in Eq. (20)]. However,
physically, ξi must converge to a finite value larger than or equal to λ0 with |Wi−1| −
|Wi | → 0 when i → ∞. Thus, we assume that ξi is converged to a value in between
λk′ and λk′+1, where k′ is a specific (integer) number of the eigenvalue index. From
this, we assume further that, for i → ∞,

fi (λk≤k′) → uk and fi (λk>k′) → 0, (23)

where
∑

k≤k′ uk = 1. Then, by using Eq. (10), we obtain that

|Wi−1| − |Wi | →
∑

k≤k′

(
1 − ∣∣γi,k

∣∣2
)

uk cos
π (1 − τλk)

4
, for i → ∞. (24)

4 Note that arccos (x) = π
2 − arcsin (x), and arcsin (x) = ∑∞

l=0
(2l)!

4l (2l+1)(l!)2 x2l+1 (|x | ≤ 1).
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In the circumstance, we can infer that the only possible solution for the physically
reasonable condition (i.e., |Wi−1| − |Wi | → 0) is given by

∣∣γi,0
∣∣2 → 1 &

∣∣γi,k �=0≤k′
∣∣2 < 1, and, uk �=0≤k′ = 0, (25)

when i → ∞. This solution yields that (for i → ∞),

{
fi (λ0) → u0 = 1 (because

∑
k≤k′ uk = 1),

|Wi | → cos π(1−τλ0)
4 , and thus, ξi → λ0 [from Eqs. (10), and (19)], (26)

which are consistent with Eq. (25) again.5 Here, if we assume any nonzero value(s) of
uk �=0≤k′ with

∣∣γi,k �=0≤k′
∣∣2 → 1 in Eq. (23) (and hence, u0 < 1), it is in contradiction to

the assumption (for detailed proof, see Appendix 2). On the basis of the above descrip-
tion, it is certain that all the probabilities fi (λk �=0) of the higher eigenstates, excepting
the lowest one, go to zero [i.e., fi (λk>k′) → 0 from Eq. (23) & fi (λk �=0≤k′) → 0
from Eq. (25)] when i → ∞.

Therefore, we can show that the fraction fi (λ0) of the lowest energy eigenstate
only reaches close to unity after a sufficiently large number nc of the iterations [as in
Eq. (12)], whereas all other probabilities f (λk �=0) go to zero.

4 Numerical analysis

We firstly provide a numerical proof-of-principle demonstration for a simple physical
system where the energy levels are equally spaced (sometimes, called “Wannier-Stark
ladder” [25–27]). We thus consider a N -dimensional Hamiltonian Ĥ with the equidis-
tant eigenvalues λk = E0 + k

N (k = 0, 1, . . . , N − 1). Here, the ground-state energy
E0 has a finite value less than 1

N . In the simulation, we set the dimension of the
Hilbert-space as N = 104, and, for simplicity, the initial system state |ϕ0〉 is chosen
with γ0,k = 1√

N
for all k. Note that the chosen state |ϕ0〉 contains a very small fraction

of the ground state, i.e., f0(λ0) = 10−4. In Fig. 2a, we plot fi (λ0) and fi (λ1) with
increasing the iteration i , where fi (λ0) reaches from 10−4 to close to 1, and fi (λ1)

decays down to 0. For a comparison, we also include the data of fi (λ0) and fi (λ1) in
Fig. 2a, assuming that we use the DLAC method. Here, we consider, particularly, the
best ‘cooling’ available with the DLAC method (i.e., the case where the cooled results
are only appeared in the Demon’s measurements). We note that, in DLAC method,
the ‘cooling’ factor (similar to the factor γi,k in our algorithm) is given, for the system

dynamics Â(τ ) = e−i π4 Ĥτ , as [8]

1 − sin ξk ≈ e− π
4 λkτ , (27)

5 i.e., from |Wi | → cos π(1−τλ0)
4 , it is verified that Δi,0 → 0 [from Eq. (14)], and thus,

∣∣γi+1,0
∣∣2 → 1

[as in Eq. (25)].

123



A quantum algorithm 111

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

f i(
λ k

)

Iteration (x 103)

(a)

k=0 (Our method)
k=1 (Our method)

k=0 (DLAC method)
k=1 (DLAC method)

 0.9996

 0.9998

 1

 1.0002

 1.0004

 1.0006

 1.0008

 1.001

 0  5  10  15  20  25  30

|γ
i,k

|2

Iteration (x 103)

(b)

k=0

k=1

k=2

Fig. 2 a We plot fi (λ0) and fi (λ1) for N = 104. Here, we chose a specific Ĥ whose eigenvalues are
equally spaced from E0 ≤ 1

N to E0 + N−1
N . In the simulation, the initial system state |ϕ0〉 is chosen with

γ0,k = 1√
N

for simplicity. We can see that fi (λ0) reaches from 10−4 to 1 and fi (λ1) decays down to 0.

For comparison, we also draw fi (λ0) and fi (λ1), assuming that we use the DLAC method [see Eq. (27)]

and the same initial system state |ϕ0〉 is used. b The graphs of
∣∣γi,k

∣∣2 are given for k = 0, 1, 2. Here,
∣∣γi,0

∣∣2 > 1 for all i . These are consistent with our analyses

where ξk ∈ [−π
2 ,

π
2 ] is associated with the energy eigenvalues λk , and the approxi-

mation is done for small time evolution.6 Thus, we adopt the same initial state |ϕ0〉 to
make the comparison as convincing as possible. It is observed that, in this case, f0(λ0)

also grows up to 1, and the behavior is quite similar to that of our algorithm. We also
plot the coefficients

∣∣γi,0
∣∣2 and

∣∣γi,1
∣∣2 in Fig. 2b, where

∣∣γi,0
∣∣2 is always larger than 1,

whereas
∣∣γi,1

∣∣2 becomes smaller than 1 leading to the decrease of fi (λ1). These are
consistent with the above theoretical analyses in Eq. (25).

From the analyzed behaviors in the previous section and already known classical
methods [28,29], we presume here that the number nc of iterations for an accuracy
fnc (λ0) > 1−ε (ε � 1) is dominated by the difference of the two lowest eigenvalues,
D = λ1−λ0 � 1, and the tolerable error ε = 1− fnc (λ0). If we assume that λ0 and λ1
are so small that all of the higher-order terms (e.g., λ2

0, λ
3
0, . . ., and λ2

1, λ
3
1, . . .) can be

negligible, we can explicitly calculate that nc is upper bounded as nc ≤ 2
π
τ−1 D−1ε−1.

Thus, more generally, we conjecture that nc � O(cD−αε−β) with α, β ≤ 1. Here, c
is a constant factor.

With the above prediction in mind, we consider a model of randomly generated
Hamiltonian for more general analysis. We perform numerical simulations and find
nc for a given accuracy level. In the simulations, number N of energy eigenvalues
are randomly generated7 in (0, 1], but λ1 and λ0 are chosen such that the difference

6 This ‘cooling’ behavior is also similar to that of a classical method, called “imaginary time propagation
(ITP)” [19,20]. Actually, if we consider that the given Hamiltonian is diagonalized, we can associate these
two methods (see Supplementary Information of Ref. [8]).
7 Here, we construct the random Hamiltonian in such a way: Firstly, we make a diagonal matrix d̂ =
diag{λ0, λ1, . . . , λN−1} with a randomly generated energy eigenvalue λk (but, D = λ1 −λ0 is always be a
certain predetermined value). We, then, construct an Hamiltonian by rotating d̂ such that V̂ d̂ V̂ †, where the
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Fig. 3 a We give nc versus N graphs on a log-log scale for the random Hamiltonian. The iteration is
terminated when fi (λ0) ≥ 0.99, i.e., ε ≤ 0.01. We consider three different cases: D = 1/N , 1/N 2, and
1/N 3, where D = λ1 − λ0. Each data point are made by averaging 1,000 simulations. The data are well
fitted to log nc = A log N + B for D = 1/N (solid line), D = 1/N 2 (dashed line), and D = 1/N 3 (dotted
line). b We also give nc versus ε graphs on a log-log scale. In this case, D is fixed to 1/N , and we consider
three cases by taking N = 10, 50, and 100. Each data are also averaged over 1,000 simulations. The
Hamiltonian is also randomly generated in each simulation. The data are well fitted to log nc = A log ε+ B
for N = 10 (solid line), N = 50 (dashed line), and N = 100 (dotted line). (See the main text for detailed
fitting parameters)

D = λ1 − λ0 becomes a function 1/N x . Here, we consider three cases: x = 1, 2, 3.
The iterations are continued until fnc (λ0) ≥ 0.99 (or equivalently, ε ≤ 0.01). In
Fig. 3a, we present nc versus N graphs on a log-log scale. Each data are averaged
over 1,000 simulations. The data are fitted to log nc = A log N + B, and we find that
(A � 1.130, B � 0.103) when D = 1/N , (A � 2.017, B � 0.330) when D = 1/N 2,
and (A � 3.002, B � 0.358) when D = 1/N 3. Note here that the fitting parameters
A are very well matched to the parameter x . These results allow us to estimate the
value of α: i.e., α � 1.

We also perform numerical simulations for the random Hamiltonian model to inves-
tigate nc for different accuracy (i.e., 1 − ε) condition. In the simulations, we set as
D = 1/N and consider three cases by taking N = 10, 50, and 100. In Fig. 3b, we
give the graphs of nc versus ε on a log-log scale. Each data of point are also averaged
over 1,000 simulations. The data are well fitted to log nc = A log ε + B. The fitting
parameters A and B that we found are as follows: (A � −0.186, B � 0.811) when
N = 10, (A � −0.192, B � 1.605) when N = 50, and (A � −0.191, B � 1.930)
when N = 100. The parameters of A are similar to 0.19 in all the cases; thus, we
estimate β � 0.19.

Footnote 7 continued
unitary V̂ = e−ip·G is given by the randomly chosen real parameter vector p = (p1, p2, . . . , pN2−1)

T

and SU(N ) group generators G = (ĝ1, ĝ2, . . . , ĝN2−1)
T [30].
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5 Summary and discussion

We have proposed a quantum algorithm to obtain the lowest energy eigenstate of a
Hamiltonian. The process of the proposed algorithm could simply be regarded as a
finite series of the transformations that consist of quantum Householder reflections and
unitary of the system dynamics. Our algorithm is also assisted with an ancillary qubit
system, similarly to the recently proposed method called “Demon-like algorithmic
(pseudo) cooling (DLAC)”, but, in our algorithm, the measurement is performed only
once at the end of the algorithm to remove the ancillary qubit.

In the theoretical analysis of Sect. 3, we proved that our algorithm can faithfully
work for any given Hamiltonian. We also carried out numerical analyses in Sect. 4.
First, we provided a numerical proof-of-principle demonstration for a simple Hamil-
tonian whose eigenvalues were equally spaced. The results showed a good agreement
with our theoretical analysis, exhibiting the comparable behavior to the best ‘cooling’
available with the DLAC method. We then considered a random Hamiltonian model
for further analysis. We presumed that the total iterations nc required for an accuracy
fnc (λ0) ≥ 1 − ε would be proportional to O(cD−αε−β) with α, β ≤ 1, where D
was difference between the two lowest eigenvalues, and c is a constant factor. In the
simulations, we estimated that α � 1 and β � 0.19 < 1.

In addition, we may compare our algorithm with the “pseudo-cooling” method [8],
which is also aimed to increase the fractions of the lower-energy eigenstates, even
though the temperature could not be well defined in the process. In contrast to the
method described in Ref. [8] using a demon-like selective process by measurement,
our algorithm does not contain any postselection by measurement, but it requires a
measurement at the end of the algorithm to remove the ancillary qubit system (see
Appendix 3 for detailed argument).

Our algorithm may be useful to deal with many problems arising in the studies
of complex systems, which may require to reach the lowest eigenstate of a given
Hamiltonian.

Acknowledgments The authors thank Sunwhan Jo, Chanhyoup Lee, and Junghee Ryu for helpful discus-
sions. We acknowledge the support of the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2010-0018295
and No. 2010-0015059).

Appendix 1: Proof of Eqs. (8)–(10)

In order to prove Eqs. (8)–(10), let us consider the transformation T̂1 at the first step.
From Eq. (5), we can write T̂1 as

T̂1 = R̂0Û R̂0Û †

= (
1̂ − 2 |ψ0〉 〈ψ0|

)(
1̂ − 2Û |ψ0〉 〈ψ0| Û †)

= 1̂ − 2Û |ψ0〉 〈ψ0| Û † − 2 |ψ0〉 〈ψ0| + 4 〈ψ0| Û |ψ0〉 |ψ0〉 〈ψ0| Û †. (28)

Applying the above T̂1 to the composite initial state |ψ0〉 [as in Eq. (4)], the output
state |ψ1〉 = T̂1 |ψ0〉 is computed such that
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|ψ1〉 = |ψ0〉 − 2W ∗
0 Û |ψ0〉 − 2 |ψ0〉 + 4 |W0|2 |ψ0〉

=
(

4 |W0|2 − 1
)

|ψ0〉 − 2W0Û |ψ0〉

=
N−1∑

k=0

γ0,k√
2

{ [(
4 |W0|2 − 1

)
− 2W ∗

0 ei π4 τλk
]
|0, λk〉

+
[(

4 |W0|2 − 1
)

− 2W ∗
0 ei( π2 − π

4 τλk)
]
|1, λk〉

}
, (29)

where we let W0 = 〈ψ0| Û |ψ0〉. Here, we represent the complex number W0 as the
polar form,

W0 =
N−1∑

k=0

∣∣γ0,k
∣∣2

(
ei π4 τλk + ei( π2 − π

4 τλk)

2

)

=
N−1∑

k=0

∣∣γ0,k
∣∣2

(
1√
2

cos
πτλk

4
+ 1√

2
sin

πτλk

4

)(
1 + i√

2

)

=
N−1∑

k=0

∣∣γ0,k
∣∣2

[
cos

π (1 − τλk)

4

]
ei π4 . (30)

Thus, using the above Eq. (30), we rewrite the result of Eq. (29) as

|ψ1〉 =
N−1∑

k=0

γ0,k√
2

(
γ1,k |0, λk〉 + γ ∗

1,k |1, λk〉
)
, (31)

where γ1,k = (
4 |W0|2 − 1

) − 2 |W0| e−i π(1−τλ)
4 .

Based on the results, we can generalize the above-described computations to the
higher i th step (i > 1), using the Householder reflection R̂i−1 = 1̂− 2 |ψi−1〉 〈ψi−1|
and unitary Û . In such generalization, we can easily find the expression of the i th
output state |ψi 〉 [as in Eq. (8)] and the coefficients γi,k [as in Eq. (9)] with the factor
|Wi | [as in Eq. (10)].

Appendix 2: The uniqueness of the solution Eq. (25)

As mentioned in the main text, one may consider a more general situation, where

∣∣γi,k≤k′
∣∣2 → 1, and, uk≤k′ �= 0 for i → ∞. (32)

Here, it is obvious that
∑

k≤k′ uk = 1. This can yield that fi (λ0) → u0 < 1 when
i → ∞, i.e., the probability fi (λ0) of the lowest eigenstate cannot reach to � 1.
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In such a general assumption, we prove that Eq. (25) is the unique solution. To this
end, we first give [using Eqs. (10) and (23)]

|Wi | →
∑

k≤k′
uk cos

π(1 − τλk)

4
(for i → ∞). (33)

Thus, for any specific eigenvalue λl (≤ λk′ ) and i → ∞, we obtain [using Eq. (14)]

Δi,l →
∑

k≤k′
uk cos

π(1 − τλk)

4
− cos

π(1 − τλl)

4

=
∑

k �=l≤k′
uk cos

π(1 − τλk)

4
+ (ul − 1) cos

π(1 − τλl)

4

=
∑

k �=l≤k′
uk

(
cos

π(1 − τλk)

4
− cos

π(1 − τλl)

4

)

=
∑

k≤k′
uk

(
cos

π(1 − τλk)

4
− cos

π(1 − τλl)

4

)
, (34)

where we used
∑

k≤k′ = 1, or
∑

k �=l≤k′ uk + (ul − 1) = 0. Here, we note that

∣∣γi,l
∣∣2 → 1, only when Δi,l → 0 (for i → ∞), (35)

which is verified by Eqs. (13) and (16). Then, from Eq. (34), we find that the solution
in Eq. (32) is possible when all the following conditions are satisfied:

u0(c0 − c0)+ u1(c1 − c0)+ · · · +uk′(ck′ − c0) = 0 (for l = 0),

u0(c0 − c1)+ u1(c1 − c1)+ · · · +uk′(ck′ − c1) = 0 (for l = 1),
...

u0(c0 − ck′)+ u1(c1 − ck′)+ · · · +uk′(ck′ − ck′) = 0 (for l = k′), (36)

where we let ck = cos π(1−τλk )
4 (k = 0, 1, . . . , k′) just for convenience. We rewrite

the above conditions by adding all (k′ + 1) equations in Eq. (36) as

u0

⎛

⎝(k′ + 1)c0 −
∑

k≤k′
ck

⎞

⎠ + u1

⎛

⎝(k′ + 1)c1 −
∑

k≤k′
ck

⎞

⎠

+ · · · + uk′

⎛

⎝(k′ + 1)ck′ −
∑

k≤k′
ck

⎞

⎠ = 0. (37)
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Therefore, we can represent the condition for the existence of the solution Eq. (32) as

1

k′ + 1

∑

k≤k′
ck = c0 = c1 = · · · = ck′ for uk≤k′ �= 0. (38)

However, we can directly see that this Eq. (38) can never be satisfied, excepting the
case k′ = 0 and u0 = 1 as in Eq. (25) (as long as [P.1] is true).

Appendix 3: Comparison between our algorithm and “pseudo-cooling” method
in Ref. [8]

Here, we discuss that our algorithm is quite distinct from the “pseudo-cooling” method
proposed in Ref. [8], even though both methods may look similar. For example, let us
consider the overall system Hamiltonian involving the ancillary qubit with the eigen-
values Ek and their associated eigenstates |Ek〉, expressed as (for k = 0, 1, . . . , N −1)

Ek = π

4
τλk, E2N−1−k = π

2
− π

4
τλk, (39)

and

|Ek〉 = |0, λk〉 , |E2N−1−k〉 = |1, λk〉 , (40)

where E0 < E1 ≤ E2 ≤ . . . ≤ E2N−3 ≤ E2N−2 < E2N−1 [from Eq. (1)]. Using the
set {Ek, |Ek〉} (k = 0, 1, . . . , 2N − 1) described above, we rewrite Eq. (6) as

Û =
2N−1∑

i=0

eiτ Ek |Ek〉 〈Ek | , (41)

with the lowest energy E0 and the highest energy E2N−1. Then we can rewrite Eq. (29)
as

|ψ1〉 =
N−1∑

k=0

γ0,k√
2

{[(
4 |W0|2 − 1

)
− 2W ∗

0 eiτ Ek
]
|Ek〉

︸ ︷︷ ︸
(a)

+
[(

4 |W0|2 − 1
)

− 2W ∗
0 eiτ E2N−1−k

]
|E2N−1−k〉

︸ ︷︷ ︸

}

(b)

, (42)

where we just replaced π
4 τλk and π

2 − π
4 τλk in Eq. (29) to Ek [using Eq. (39)] and

did |0, λk〉 and |1, λk〉 to |Ek〉 [using Eq. (40)]. Here, the terms ‘(a)’ and ‘(b)’ in
Eq. (42) describe the amplifications of the lower and the higher energy eigenstates,
respectively, so that they may look similar to the ‘cooled’ and the ‘heated’ parts, as
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in Ref. [8]. However, we clarify that this is the case for the overall Hamiltonian (may
not be of interest here). Furthermore, we do not use any measurement to ‘cool’ the
state of the (sub-)system Hamiltonian that we are really interested in. Therefore, our
algorithm cannot be referred to as a ‘(pseudo) cooling’, and thus, the ancillary qubit
system may play a different role in our algorithm.
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