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Based on phase-space structures of quantum states, we propose a novel measure to quantify macro-

scopic quantum superpositions. Our measure simultaneously quantifies two different kinds of essential

information for a given quantum state in a harmonious manner: the degree of quantum coherence and the

effective size of the physical system that involves the superposition. It enjoys remarkably good analytical

and algebraic properties. It turns out to be the most general and inclusive measure ever proposed that it can

be applied to any types of multipartite states and mixed states represented in phase space.
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Quantum superposition is often considered the most
crucial feature of quantum mechanics. Its evidence has
been witnessed in numerous experiments using micro-
scopic physical systems. However, the question of whether
a truly macroscopic system could ever be in a quantum
superposition involves far more nontrivial issues in both
practical and philosophical aspects [1]. A macroscopic
quantum superposition is supposed to consist of two (or
more) macroscopically distinct states but still maintains
certain potential to manifest quantum interference between
the distinct component states.

Regarding the implementation of macroscopic quantum
superpositions, limited but interesting progress has been
made in atomic or molecular systems [2,3], superconduct-
ing circuits [4,5], and optical setups [6–8]. In particular,
superpositions of coherent states (SCSs) [6], multi-
mode Greenberger-Horne-Zeilinger (GHZ) states [7], and
NOON states [8] have been experimentally demon-
strated in optical systems. Interestingly, certain types of
‘‘bigger-size’’ superpositions may be useful for quantum
information processing [9]. However, even though various
types of macroscopic superpositions have been theoreti-
cally studied and some experimental success made, the
definition of their measure applicable to all those states
has remained a difficult yet urgent task.

Attempts to find a good measure for macroscopic quan-
tum superpositions date back to Leggett [10]. It has been
followed by several proposals [11–15] and each of them
has its own merit and insight. In those proposals, people
often start from considering the effective number of parti-
cles that involve the superposition [10,11,15]. It could also
be natural to take notice of the distance between the
component states [11–15]. Typically, these measures also
depend on the choice of a specific target state [11,14], or a
decomposition or observable [12,13,15].

First of all, it is crucial to note that the number of
effective particles (or distance between the component
states) cannot witness the true quantum superposition
when determining the size of a macroscopic superposition.
These factors do not allow one to conclusively discriminate

between a coherent superposition and a classical mixture,
not to mention partially mixed states. This problem was
also pointed out in Ref. [13] where a signature of a macro-
scopic superposition was studied. This is unignorable
because macroscopic superpositions typically lose quan-
tum coherence, at least to some extent, due to interactions
with their environments; this process is called decoherence
[16]. In other words, a proper measure for a macroscopic
superposition must quantify the degree of a true superpo-
sition against an incoherent mixture, together with its
effective size factor such as the effective number of
particles.
Furthermore, it should be pointed out that the choice

of a target state or of a fiducial decomposition or observ-
able, which the aforementioned measures employ, is
actually arbitrary. For example, a SCS should not be
accused of being less like a macroscopic superposition
due to the reason that it does not look like a GHZ state,
and vice versa. This problem, together with the first one
mentioned above, causes the previous measures [10–15]
to be limited to specific types of superpositions, and/or
obscures comparisons between various types of states.
For example, it would be difficult to compare a GHZ
state and a continuous-variable Gaussian state, and even
worse when both the states are somehow partially
decohered. In order to effectively compare different types
of states in terms of their sizes as macroscopic superposi-
tions, a decomposition-independent (and measurement-
independent) measure that can be commonly applied to
any given state is highly desired.
In this Letter, we propose a novel measure that satisfies

these requirements based on quantum interference in phase
space. For an arbitrary given state in phase space, it pro-
vides quantitative information about both the crucial as-
pects of macroscopic superpositions: the effective size of
the physical system that involves the superposition and the
degree of quantum coherence. The appropriateness, inclu-
siveness, and usefulness of our proposal are confirmed by
(i) its direct relation to a well-known decoherence model,
(ii) its direct relation to a previous measure [11] proposed
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for a specific type of states, (iii) its advantageousness in
computability as a practical tool, and (iv) various examples
including mixed states with sensible results.

Among the previously proposed measures, Björk et al.’s
one [12] is based on interference between component
states, while it does not distinguish a pure superposition
from a classical mixture. We attempt to consider quantum
interference of a given state in a more general framework
using a phase-space formalism. Phase-space representa-
tions such as the Wigner function are very useful to visual-
ize a quantum state, from which some crucial information
can be intuitively obtained. In terms of the Wigner
function, a macroscopic quantum superposition has two
(or more) well-separated peaks and has some oscillating
patterns between them in phase space. It is known that
these interference fringes tend to appear more frequent as
the distinguishable peaks are more separate. We pay atten-
tion to the ‘‘frequency’’ of the interference as an indicator
of a macroscopic superposition. Of course, it is a separate
problem to quantify it in the phase-space structure for a
proper measure.

The characteristic function for a density operator
� for a single-mode case is defined as �ð�Þ ¼
Trf� exp½�ây � ��â�g where â and ây are the bosonic
annihilation and creation operators, respectively. The
Wigner function Wð�Þ is the Fourier transform of

the characteristic function [17] as Wð�r; �iÞ ¼ 1
�2 �RR

d�rd�i�ð�r; �iÞe�2ið�r�i��i�rÞ, where subscript rðiÞ
denotes the real (imaginary) part of the given variable.
We notice that a frequency of a Wigner-function compo-
nent along the real (imaginary) axis is �i (�r) and its
complex amplitude for specific frequency � corresponds
to �ð�Þ.

We know that (i) the frequency of the fringes (how dense
the fringes are) reflects the ‘‘effective size’’ of the super-
position (i.e., how far the component states separate), and
(ii) ‘‘coherence’’ (i.e., the degree of genuine superposition
against its completely mixed version, say, in terms of the
‘‘pointer basis’’ [16]) relates to the magnitude of the inter-
ference fringes. In order to quantify both the features at the
same time, it is natural to take the sum over (size of
frequency)� (absolute amplitude for the given frequency).
Here, we take it in the form as

R
d2�ð�2

r þ �2
i Þj�ð�Þj2, so

that it quantifies both the frequency and the ‘‘magnitude’’
of interference fringes in the Wigner representation.

We present the formal definition of our interference-
based measure as

I ð�Þ ¼ 1

2�M

Z
d2�

XM
m¼1

½j�mj2 � 1�j�ð�Þj2 (1)

¼ �M

2

Z
d2�Wð�Þ X
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�
� @2

@�m@�
�
m

� 1

�
Wð�Þ;

(2)

where m indicates different modes, M the number of such
modes, � ¼ ð�1; �2; . . . ; �MÞ,

R
d2� ¼ R

d2�1

R
d2�2 � � �R

d2�M, and � and
R
d2� are defined in the same manner.

The form of the above definition is based on several
reasons that become clear in the remaining discussions.
Since the above definition is grounded on a general char-
acteristic of the Wigner function, it can be applied to any
bosonic or multimode state not only for superpositions
consisting of more than two components but also for any
partially or fully mixed state.
A remarkable feature of Ið�Þ is that it is directly related

to a decoherence model as

I ð�Þ ¼ �Tr½�Lð�Þ�; (3)

where Lð�Þ is the superoperator in the Lindblad form of a
vacuum-environment decoherence model [17,18]:

d�

d�
¼Lð�Þ¼ XM

m¼1

�
âm�â

y
m�1

2
�âymâm�1

2
âymâm�

�
; (4)

where � ¼ ðdecayrateÞ � ðtimeÞ is the dimensionless time.
If we let P ¼ Trð�2Þ be the purity of state �, we find

dP ð�Þ
d�

¼ �2Ið�Þ: (5)

Consequently, Ið�Þ can be interpreted as the decreasing
rate of the purity of �. This interpretation conforms exactly
with one of Dür et al.’s [11] where the authors suggested a
size measure for a specific type of superposition. The form
of superposition studied in Ref. [11] is

j�i ¼ Kðj�1i�N þ j�2i�NÞ (6)

with K being the normalization factor and jh�1j�2ij2 ¼
1� �2 � 0 with small real value �. Following Ref. [11],
we take j�1i ¼ j0i and j�2i ¼ cos�j0i þ sin�j1i with
assumptions �2 � 1 and N�2 � 1, and we obtain
Ið�Þ ’ N�2=4 for state (6). Remarkably, this result is the
same as the one in Ref. [11] only by a constant factor, even
though our measure is derived from a starting point quite
different from Ref. [11] where the effective particle
number involving the superposition was concerned.
Along these lines, it is conjectured that even though our

measure is based on the size of the frequency of interfer-
ence fringes, it is closely related to the number of particles
composing the superposition. For example, it can simply
be shown from Eq. (3) that Ið�Þ exactly gives the particle
number n for a bosonic number state jni. Besides, Ið�Þ
properly assesses the degree of a true superposition against
incoherent mixtures. The following theorem shows that
only a pure state can give the maximum value of Ið�Þ
for a given average particle number. Theorem: Ið�Þ has the
maximum value hn̂i, the average number of particles for �,
if and only if � is a pure state and is orthogonal to any one-
particle-subtracted state of itself [19]. It follows that a
mixed state always has a lower value of Ið�Þ than its hn̂i.
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It is straightforward to show that the maximum value of
Ið�Þ ¼ hn̂i is obtained for the SCS / j�i þ j � �i, where
j 	 �i are coherent states of amplitudes	�, the GHZ state
/ j0i�N þ j1i�N , and the NOON state / jnij0i þ j0ijni.
Note that the average particle number of the SCS is
related to � as hn̂i ¼ �2 tanh�2, where � was assumed
to be real without loss of generality. On the other hand, as
shown above, mixed versions of the aforementioned states
have values of Ið�Þ< hn̂i. We note that Ið�Þ ¼ 0 for fully
mixed states such as 1

d Id�d, where Id�d is a d-dimensional

identity matrix, and �/j�ih�jþj��ih��j. This means
that no matter how large the size of the system is, if the
state scarcely has potential for quantum interference, the
measure Ið�Þ gives the value close to zero.

Let us consider a partially mixed SCS under the deco-
herence effect caused by Eq. (4):

� ¼ N fjt�iht�j þ j � t�ih�t�j
þ �ðjt�ih�t�j þ j � t�iht�jÞg; (7)

where t ¼ e��=2, � ¼ exp½�2ð1� e��Þ�2�, and N
is the normalization factor. Using Eq. (1), the interference-
based measure is obtained as Ið�; �Þ ¼ hn̂ð0Þie��

sinh½2ð2e�� � 1Þ�2�= sinh½2�2� where hn̂ð0Þi denotes the
average number of particles at � ¼ 0. Here, the two crucial
factors, the effective number of particles and the degree
of true coherence, are properly measured by � and �.
In Fig. 1(a), we plot Ið�Þ for several cases of SCSs against
the normalized time r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e��
p

. While SCSs with large
amplitudes have large values of Ið�Þ, they decrease more
rapidly than SCSs with small amplitudes. This is satisfac-
torily in accordance with the well-known fact, i.e., the
rapid destruction of macroscopic quantum superpositions
[16,20]. Here, a remarkable advantage of our measure is
obvious that any fully or partially decohered superposi-
tions are effectively quantified.

Our measure also provides sensible results for single-
mode and multimode Gaussian continuous-variable states

which are useful for quantum information applications
[21]. As an example, a general form of the characteristic
function for a single-mode Gaussian state is �ð�Þ ¼
exp½�A�2

r=2� B�2
i =2�. Real positive parameters A and

B satisfy AB 
 1 and the state is pure when the equality
sign holds. Using Eq. (1), the interference-based measure

is obtained as Ið�Þ ¼ ðAþ B� 2ABÞ=½4ðABÞ3=2�, and it is
reduced to ðAþ A�1 � 2Þ=4 for pure states. Obviously, the
more ‘‘squeezed’’ pure state (A � 1 or A � 0) gives the
larger value of Ið�Þ, and it approaches infinity in the limit
of the original Einstein-Podosky-Rosen state (A ! 1 or
A ! 0). Suppose that a pure Gaussian state (A ¼ e�2s and
B ¼ e2s), where s is the squeezing parameter, is under
decoherence described by Eq. (4). The time-dependent
state is then characterized by A ¼ r2 þ e�2st2 and
B ¼ r2 þ e2st2. The measure Ið�Þ is immediately ob-
tained from the result above, which has been plotted in
Fig. 1(b). The results in Fig. 1(b) are qualitatively similar
to those of SCSs in Fig. 1(a) for the same average particle
numbers, while interestingly Gaussian states are more
robust against decoherence for large average particle
numbers.
Our results with Gaussian states may not be very clear at

first glance since Gaussuan states do not show visible
interference patterns nor negativity in the Wigner function.
From our viewpoint, one reason for these reasonable re-
sults is that shrinking of the Wigner function into a narrow
region in phase space causes large frequency components
to be dominant, which is a well-known characteristic of the
Fourier transform.
Recently, an exceptional type of macroscopic super-

position was introduced with a more realistic analogy
of Schrödinger’s cat paradox [22]. An example of such
a state is /R

d2�P ðV;dÞfj�ih�jþj��ih�jþj�ih��jþ
j��ih��jg where P ðV; dÞ ¼ exp½� 2j��dj2

V�1 �, V is the vari-

ance of a thermal mixed-state component and d the dis-
tance between those components. Such a state has
prominent quantum properties but with large mixedness
[22]. Our measure also sensibly quantifies such a peculiar
type of macroscopic superpositions as

I ðV; dÞ ¼ M2

�
e�S

�
Q� S

V2

�
þQþ S

� 8e�ðV2S=UÞRfRU� 4d2ðV þ 1Þg
U3

�
(8)

where M¼ð2þ2V�1e�ðS=2ÞÞ�1, Q¼ðR=VÞ2, R¼V�1,
S ¼ 4d2=V and U ¼ V2 þ 1. Here, Ið�Þ can be made
arbitrarily large by increasing d regardless of how large
V is. The measure Ið�Þ generally decreases by increasing
V when d � 0. However, when d ¼ 0, Ið�Þ increases and
saturates to a nonzero constant as Ið�Þ ! 0:5 for V ! 1,
for which ‘‘nonclassicality’’ is effectively evidenced even
though the Wigner function has neither a negative part nor
squeezing properties. All these results with Eq. (8) are
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FIG. 1 (color online). (a) Interference-based measure Ið�Þ
for SCSs of amplitudes � ¼ 2 (solid line), � ¼ 4 (dashed
line), � ¼ 6 (dotted line) and � ¼ 27:3 (dash-dotted line)
against the normalized time r under the decoherence effect.
The average number of particles is hn̂i � �2. (b) Ið�Þ for
single-mode Gaussian states of squeezing parameters s ¼ 1:5
(solid line), s ¼ 2:1 (dashed line ), s ¼ 2:5 (dotted line) and
s ¼ 7 (dash-dotted line), where hn̂i ¼ sinh2r. The same curve
types mean (nearly) the same average particle numbers.
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perfectly in agreement with the tendency of the Bell in-
equality violations closely investigated with this type of
state in Ref. [22].

Since the Fourier transform is invariant of any trans-
lation and rotation in the integration region, Ið�Þ is
also invariant of any translation and rotation in phase
space, i.e., IðU�UyÞ ¼ Ið�Þ, where U is such a trans-
lation or rotation. This property frustrates certain attempts
to ‘‘artificially’’ increase Ið�Þ by adding particles to the
systems. For example, a coherent state j�i displaced from
the vacuum state j0i has the same value of I ¼ 0 as j0i.
It is worth noting that having no preferred basis states is
implied as one of the necessary conditions of a measure
being a faithful size criterion for macroscopic superposi-
tions in Ref. [12] and it seems that our measure satisfies
such requirement.

We point out that Ið�Þ does not need any asymptotic
assumptions or optimization techniques as in Refs. [13,15].
From a practical point of view, it is very simple to calculate
using any of Eqs. (1)–(3) for an arbitrary quantum state.
Especially, even for an experimentally generated state,
Ið�Þ can be evaluated using definition (2) based on the
Wigner function reconstructed by the tomography tech-
nique, i.e., without the help of the fidelity with respect to a
target state, its quality can readily be assessed.

To extend our proposal to atomic or spin systems repre-
sented in a finite-dimensional Hilbert space, one needs to
apply the discrete Wigner function and Fourier transform.
In this case, the corresponding master equation is also
replaced with an appropriate one considering the under-
lying Hilbert space. We finally note that our measure does
not suggest a threshold beyond which a superposition is
‘‘macroscopic’’ but rather it provides a continuous scale to
compare sizes of different superpositions.

In summary, we have proposed a measure to quantify
macroscopic quantum superpositions. Using our measure,
true quantum coherence and the effective size of the sys-
tem that involves the superposition are simultaneously
quantified. Interestingly, it is directly connected to a
well-known decoherence model and corresponds to the
decay rate of the purity for the given state. It has been
found from this relevance that our general measure is in
accordance with Dür et al.’s designed for a specific type of
states [11]. Since Ið�Þ is based on the Wigner representa-
tion, which completely describes a quantum state, it is
decomposition independent and easy to calculate for any
states represented in phase space including mixed states,
giving definite values for direct comparison between differ-
ent types of states. All these features are hardly seen in
previously proposed measures. Our measure will be widely
useful for theoretical and experimental studies on macro-
scopic quantum systems and various related issues.
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above relation, we get Tr½�ð�âyâþ âyâ�Þ=2� �
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