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We present the experimental realization of a scheme, based on single-photon interference, for

implementing superpositions of distinct quantum operations. Its application to a thermal light field (a

well-categorized classical entity) illustrates quantum superposition from a new standpoint and provides a

direct and quantitative verification of the bosonic commutation relation between creation and annihilation

operators. By shifting the focus towards operator superpositions, this result opens interesting alternative

perspectives for manipulating quantum states.
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The superposition principle is one of the pillars upon
which the entire structure of quantum mechanics is built
[1]. A quantum system in a pure state can always be
described as a superposition of linearly independent states;
thus once one has a quantum system represented by a pure
state, the superposition is naturally there. An interbody
superposition state, the so-called entangled state, is some-
what trickier to generate than a single-body superposition
state. However, it has been demonstrated that entanglement
can be achieved by various methods, including a series of
unitary operations [2–4] or by postselection of events after
unitary operations [5]. On the other hand, the discussion
about superpositions of classical mixed states is not as
clear as for a pure state [6].

Quantum operators, besides quantum states, play a cru-
cial role in describing physical operations including uni-
tary transformations and measurements in quantum theory.
If one can implement a superposition of operators, one can
also construct state superpositions by applying the super-
posed operators to a given state, unless it is a simultaneous
eigenstate of the component operations. In fact, also the
Schrödinger’s cat paradox [7] can be understood as the
quantum-mechanical impact of the superposition of mac-
roscopically distinct operations (to kill or not to kill) on a
classical object (the cat).

Several groups have recently succeeded in applying
simple quantum operators to different quantum states.
For example, in the optical domain, basic operations,
such as single-photon addition and subtraction, have been
demonstrated to produce highly nonclassical [8–11] and
non-Gaussian states [12] even when applied to classical
states of light [13,14]. Both photon addition and subtrac-
tion are performed in a conditional way upon the detection
of a single photon in an ancillary (herald) light mode.
Sequences of photon additions and subtractions have also

been implemented to show that the two sequences âây and
âyâ, where ây and â are the bosonic creation and annihi-
lation operators, give different results when applied to the
same input light state [15]. This is an important corner-
stone for the proof of the bosonic commutation relation

½â; ây� ¼ âây � âyâ ¼ 1; (1)

which is at the heart of many important consequences of
quantum mechanics. However, the complete demonstra-
tion of the commutation relation was out of reach because
of the lack of an important element in the quantum ma-
nipulation toolbox: the possibility of superposing different

operators Â and B̂ to form the general operator superposi-

tion �Âþ �B̂, where � and � are complex amplitudes.
Since the superposition principle relies on the indistin-

guishability among different alternatives, the experimental
implementation of quantum operators heralded by a single-
photon detection offers a very convenient way to achieve
this goal. If the herald field modes of different operators are
properly mixed by means of a beam splitter, the informa-
tion about the origin of a click in the herald photodetector
is erased and a coherent superposition of the different
operators can be conditionally implemented. Somewhat
similar schemes have been recently proposed and experi-
mentally implemented for increasing the entanglement of
bipartite Gaussian quantum states by inconclusive photon
subtraction [16–18], toward the implementation of a quan-
tum repeater for long-haul quantum communication [19] in
ionic systems [20], and for the remote delocalization of a
single photon over distinct temporal modes [21].
In this Letter we present the experimental realization of

a general scheme, based on single-photon interference, for
superposing distinct quantum operations. As recently pro-
posed in Ref. [22], demonstrating the bosonic commuta-
tion relation thus reduces to realizing the balanced
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superposition âây � âyâ, and showing that it corresponds
to the identity operator 1. While most of the mathematical
structure of quantum mechanics is based on the commuta-
tion relation, this is the first time it is directly probed in an
experiment.

The primary laser source is a mode-locked Ti:Sa laser
emitting 1.5 ps pulses at a repetition rate of 82 MHz. A
rotating ground glass disk (RD) is inserted in the path of
the laser beam and a bare single-mode fiber (SMF) is used
to collect a portion of the scattered light to provide the
pulsed thermal light states [23] of mean photon numbers
around unity which have been used as the input states in the
experiment. We use a convenient modular scheme (see
Fig. 1), where one single-photon addition stage [10] (ây,
based on conditional single-photon parametric amplifica-
tion in a type-I BBO—� barium borate—nonlinear crys-
tal) is placed between two single-photon subtraction stages
[12] [â, based on the conditional removal of a single
photon by adjustable low-reflectivity beam splitters, ob-
tained with combinations of half-wave plates (HWP) and
polarizing beam splitters (PBS)].

The successful implementation of the desired superpo-
sition of operator sequences is determined by the coinci-
dence (C) between a click from the single-photon detector
heralding photon addition (Da) and one from a second
photodetector (Ds), placed after a �3 db fiber coupler
(FC) combining the herald signals from the two subtraction
modules. By a click from detector Ds we know that a single
photon has been subtracted, but we cannot identify if it was
before or after the photon addition. In these conditions, a
coincidence event heralds the application of the general
operator superposition âây � ei�âyâ with an adjustable
phase �, to any input light field. By varying the phase �
with a piezoactuated mirror, any arbitrary balanced super-
position of the two operator sequences can be obtained. In
particular, by setting � ¼ 0 or � ¼ �, one can directly
implement the commutator or the anticommutator of the
creation and annihilation operators, respectively. Note that
the present scheme, differently from the original theoreti-
cal proposal [22], where only these two possibilities were
allowed by using two detectors at both exits of the beam
splitter, allows for greater flexibility (by generating opera-
tor superpositions with arbitrary relative phases) and ex-
perimental simplicity.
Without the click from the addition module (ây), the

scheme reduces to a Mach-Zehnder-type interferometer
which can be used to verify the indistinguishability of the
two subtraction events by evaluating the visibility of the
single-photon interference in the counts at detector Ds.
Visibilities of about 97% are obtained by carefully balanc-
ing the reflectivity (�3%) of the involved beam splitters,
by fine polarization control (PC), and by a precise adjust-
ment of the delays between the corresponding herald
modes. If delays are not compensated, only a statistical
mixture of the two operator sequences with equal weights
is obtained. The Ds count rate is also used to monitor the
superposition phase� and lock it to any desired value. The
effects of experimental deviations from the ideal realiza-
tion of this scheme (such as the finite reflectivity of the
subtraction beam splitters, the possible multiple photon-
pair production in the parametric process, or the fact that
real photodetectors are not able to discern the number of
photons but only there being photons or not) have already
been shown [10,24] not to significantly affect the results of
the experiment for the present range of parameters.
The state resulting from the chosen operator superposi-

tion is analyzed by means of a high-frequency, time-
domain, balanced homodyne detector [25] yielding the
distributions of measured field quadratures. Since both
the initial thermal states and those resulting from the above
manipulations possess no intrinsic phase, the phase of the
local oscillator (LO, the reference coherent field for ho-
modyne detection) is not actively scanned, and phase-
independent marginal distributions are obtained.
However, the final states still clearly depend on the phase
� of the superposition. High experimental efficiency is

FIG. 1 (color online). Experimental setup. Pump pulses for
parametric down-conversion are obtained by frequency dou-
bling the laser output in a LBO—lithium triborate—crystal.
The conditionally prepared signal state is mixed with a strong
reference coherent field (LO, obtained from a portion of the main
laser output) on a 50-50 beam splitter whose outputs are detected
by two photodiodes (Hamamatsu PIN S3883). The balanced
homodyne detection (BHD) signal is acquired and stored by a
digital oscilloscope (Tektronix TDS7104) on a pulse-to-pulse
basis triggered by a coincidence (C) between clicks from the Da
and Ds single-photon detectors (Perkin Elmer model SPCM
AQR-14).
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obtained by minimizing all spurious losses and making
sure that all the single-photon operations are performed
in exactly the same spatiotemporal mode as the one se-
lected by the LO. This requires narrow spatial and spectral
filtering (F) in the herald mode of the parametric down-
conversion crystal, and an accurate matching of the fiber-
coupled fields reflected from the two subtracting beam
splitters to the LO spatial mode.

Figure 2(a) shows a sequence of histograms of raw
homodyne data acquired while scanning the phase of the
superposition. The remote manipulation of the state by the
implementation of different superpositions of creation and
annihilation sequences is clearly observed. The quadrature
distribution of the final state undergoes a very rapid initial
evolution from a bell-shaped curve at � ¼ 0 towards a
volcano-shaped one around � ¼ �, where the phase de-
pendence is much slower. The phase change would not
have resulted in such different output states if the opera-
tions had been statistical mixtures.
The special cases of � ¼ 0 and � ¼ � are illustrated in

more detail in Fig. 3, where the Wigner functions of the
original thermal state and those resulting from the experi-
mental realization of the commutator and anticommutator

between â and ây are presented. The fidelity F ¼
jTr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂in

p
�̂out

ffiffiffiffiffiffiffi
�̂in

pp j2 between the original thermal state
and the final one (represented by their reconstructed den-
sity operators �̂in and �̂out, respectively) is about F ¼
0:992 for the commutator case (� ¼ 0). This demonstrates
that the implemented operator superposition is essentially
equivalent to the identity operator. Wigner functions have
been obtained from the 10 diagonal density matrix ele-
ments (13 for the anticommutator case) reconstructed by
means of a maximum likelihood algorithm [26,27] without
any correction for the finite detection efficiency. If homo-
dyne detection efficiency (�d ¼ 0:7) is corrected for, the

FIG. 2 (color online). (a) Sequence of histograms correspond-
ing to about 250 000 raw quadrature data for the final state as a
function of the normalized quadrature x and of the superposition
phase �. Data have been obtained in a 16-hour measurement,
and have been binned in 9 phase intervals between 0 and �. A
thermal field with a mean photon number �n ¼ 0:9ð1Þ is used as
the initial state. (b) Histogram of raw quadrature data (solid dots)
for the anticommutator setup at � ¼ �. Also shown are theo-
retical curves calculated for the actual experimental parameters
(total efficiency � ¼ 0:61, �n ¼ 0:9) and different values of the
commutator (K ¼ 0: dashed orange; K ¼ 2: dotted green; K ¼
3: dash-dotted blue). The solid red curve is the result of the best
fit to the experimental data.

FIG. 3 (color online). Experimentally reconstructed Wigner
functions of the original thermal state and of those resulting
from the application of the commutator and anticommutator
superpositions. The state is not changed for � ¼ 0. About 104

(105) quadrature data points have been acquired in the (anti)
commutator case.
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Wigner function for the state resulting from the anticom-
mutation operator (� ¼ �) clearly attains negative values.
The existence of negative regions in the reconstructed
Wigner function is a direct signature of the fact that the
state impinging on the homodyne detector is highly
nonclassical.

Actually, it is interesting to note a fact that was not
realized in the theoretical proposal [22]: because of the
normalization of quantum states, the above results just
demonstrate the commutation relation up to a multiplica-
tive constant K; i.e., one might still have ½â; ây� ¼ K1.
However, in this case, the anticommutator setup imple-
ments the 2âyâþ K1 operator, which produces an output
state strongly depending on the exact value of the constant
K. Figure 2(b) reports the measured homodyne quadrature
distribution for the same initial thermal state after the
application of the anticommutation operator (� ¼ �).
Also reported are the theoretical distributions calculated
for the same experimental parameters but with a few differ-
ent values of the constant K. Experimental data are con-
sistent with K ¼ 1, whereas different integer values are in
evident disagreement. A best fit of the experimental ho-
modyne data gives K ¼ 1:02ð3Þ, thus quantitatively dem-
onstrating the bosonic commutation relation.

Although the present case only required a coherent
superposition of two (sequences of) quantum operators
with the same weight, the proposed scheme is much
more general and allows one, in principle, to implement
coherent superpositions of an arbitrary number of opera-
tors with arbitrary relative amplitudes and phases by a
network of beam splitters with adjustable reflectivities.
The single-photon interference as a way to produce general
operator superpositions can be straightforwardly extended
to the superposition of â and ây by letting the creation and
annihilation herald photons interfere at a beam splitter. As
a representative example, ‘‘position’’ and ‘‘momentum’’
operators in the phase space can be implemented in this
way. Our approach can even be generalized to realize
various superpositions of higher-order operators in terms
of â and ây. Any quantum state can be written asP

nCnâ
ynj0i, where Cn are complex amplitudes, and arbi-

trary states can thus be generated by applying the appro-
priate superposition of photon creation operators. In this
Letter we have experimentally demonstrated a basic build-
ing unit for such general operator superpositions on a
traveling light field for the first time.
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