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We show that failure of local realism can be revealed to observers for whom only extremely-coarse-

grained measurements are available. In our instances, Bell’s inequality is violated even up to the

maximum limit while both the local measurements and the initial local states under scrutiny approach

the classical limit. Furthermore, we can observe failure of local realism when an inequality enforced by

nonlocal realistic theories is satisfied. This suggests that locality alone may be violated while realism

cannot be excluded for specific observables and states. Small-scale experimental demonstration of our

examples may be possible in the foreseeable future.
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The development of quantum physics has revealed a
world quite different from the one depicted by classical
physics. Probably the most striking feature of the quantum
world, distinguishing it from the classical one, is failure of
local realism [1,2]. Local realism combines two reasonably
acceptable assumptions, locality and realism. The principle
of locality is that distant objects cannot have direct instan-
taneous influence on one another. Physical realism claims
that all measurement outcomes are determined by preex-
isting quantities of physical systems. The failure of local
realism is evidenced by violation of Bell’s famous inequal-
ity which should be obeyed by any local-realistic theories.

Although certain odd features of nature predicted by
quantum physics such as the failure of local realism have
been experimentally observed in laboratories [3,4], such
quantum properties are not seen in our everyday experi-
ence on a macroscopic scale. Decoherence is often consid-
ered the main reason for the appearance of the classical
world from the laws of quantum physics [5]. Quantum
systems, particularly when they are macroscopic, unavoid-
ably interact with their environments and rapidly lose their
quantum features. Recently, Kofler and Brukner suggested
a conceptually different view [6]: they attributed the ap-
pearance of the classical world to the ‘‘coarse-grained’’ (or
fuzzy) properties of the measurements, suggesting that
‘‘classical physics can be seen as implied by quantum
mechanics under the restriction of fuzzy measurements.’’

Here, we address a crucial question concerning funda-
mental tests of quantum mechanics: Can the quantum
world where local realism fails be perceived by the ob-
server even when the measurements are very unsharp? In
stark contrast with the conclusions reached in [6], here we
find that extremely-coarse-grained measurements can still
be useful to reveal the quantum world where local realism
fails. In our examples, Bell’s inequality, which is enforced
by local realism, is violated up to the maximum limit,
known as Cirel’son’s bound [7], when appropriate local
unitary transformations and states are chosen alongside the

coarse-grained measurements. Furthermore, we show that
while local realism fails, a recent version of Leggett’s
inequality [8–10], which is imposed by nonlocal realistic
theories, can still be satisfied. Failure of local realism
means that at least one between locality and realism should
be abandoned while the satisfaction of Leggett’s inequality
implies that a realistic interpretation is tenable as far as
some level of nonlocality is allowed. This suggests that
locality alone fails while realism is tenable in our specific
examples.
In order to show such instances, we first need to describe

the sort of coarse-grained measurements we consider,
which should only be able to discern differences at a
macroscopic scale [6]. As an extreme example, a ‘‘mea-
surement’’ by human eyes can notice differences between
two objects only when they are macroscopically different.
In quantum optics, homodyne measurements with low
efficiency can be considered such coarse-grained measure-
ments in the classical limit: two different states may be
distinguished only when they are sufficiently separate in
phase space. In our study, we make use of entangled
thermal states (ETSs), which have been introduced in
[11], where component states are ‘‘classical’’ thermal
states. Of course, even when local states obtained by taking
the partial trace of the total state appear classical, Bell’s
inequality can be violated if ‘‘sharp’’ measurements, such
as highly efficient photon number detection, are used as
shown in [11,12]. However, it has not been previously
found that extremely unsharp measurements can be used
to reveal failure of local realism.
In our proposal, two local parties, Alice and Bob, are

each provided with one mode of an ETS prepared by a third
party upon entangling two displaced thermal states as
described in [11]. A displaced thermal state is defined as

�thðV; dÞ ¼ R
d2�Pth

� ðV; dÞj�ih�j, where Pth
� ðV; dÞ ¼

2
�ðV�1Þ e

�ð2j��dj2=V�1Þ a Gaussian function with variance

V and center d (with respect to the origin of the phase
space). Two identical such states, �th

A ðV; dÞ and �th
B ðV; dÞ,
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are distributed to spatially separate locations. As the first
step to entangle them, a microscopic system in the super-

position state, jc im ¼ ðj0im þ j1imÞ=
ffiffiffi
2

p
, sequentially in-

teracts with the two thermal states, where, j0im and j1im are
the ground and excited states of the microscopic system
(for instance, the first two levels of a harmonic oscillator or
two energy levels of an atom). The interaction is taken to

be of the nonlinear cross-Kerr form H K
mj ¼ @�âymâmâ

y
j âj

with � the strength of the nonlinearity and j ¼ A, B.
Nonlinear media with free-traveling optical fields [13,14]
or dispersive interactions within optical/microwave cav-
ities [15] may be used to implement such interactions
[11,16]. We stress that the use of the microscopic super-
position, jc im, is not essential, and we shall later describe
an alternative method using another type of ETS produced
without it.

For simplicity, we assume that the interaction time is t ¼
�=�, while we note that an equivalent effect can be ob-
tained in principle using a (more realistic) weaker nonline-
arity (t � �=�) and a thermal state with a larger
displacement d [11,14]. When the thermal state �th

j ðV; dÞ
interacts with the ground state j0im, nothing happens. On
the other hand, when it interacts with the excited state ofm,
it evolves to �th

j ðV;�dÞ, i.e., it is ‘‘moved’’ to the opposite

location in the phase space. After the interactions repre-
sented by H K

mA �H K
mB, the microscopic system is mea-

sured out on the superposed basis ðj0i � j1iÞm=
ffiffiffi
2

p
. As the

result, the thermal states at modes A and B become en-
tangled [11,16]. From now on, we assume that the outcome

of the measurement is ðj0i þ j1iÞm=
ffiffiffi
2

p
so that the ETS

��ðþÞ
AB is shared between Alice and Bob who, as described

below, should now perform nonlinear local operations and
homodyne measurements.

The local operations required for Bell inequality tests

are composed of displacement operation D̂jð�Þ ¼
e�â

y
j ���âj (� 2 C) and single-mode Kerr nonlinearities

described by the interaction Hamiltonian H NL;j ¼
@�ðâyj âjÞ2, where � is the strength of the nonlinearity

and âj (â
y
j ) is the annihilation (creation) operator of system

j. The displacement operation D̂jð�Þ can be readily per-

formed using a beam splitter and a thermal state with a
large displacement. Nonlinear media such as optical crys-
tals can in principle be used to realize single-mode Kerr
effects. It is known that the Kerr nonlinear interaction,

ÛNL ¼ e�ði=@ÞH NLtc , where tc ¼ �=�, causes a coherent

state to evolve into the normalized state ÛNLj�i ¼
e�ið�=4Þðj�i þ ij � �iÞ= ffiffiffi

2
p

[17]. We define the local uni-

tary operations [18] V̂ jð�jÞ ¼ ÛNL;jD̂jði�j=2dÞÛNL;j,

which are applied to mode j ¼ A, B as ��ðþÞ0
AB ð�A; �BÞ ¼

V̂ Að�AÞV̂ Bð�BÞ��ðþÞ
AB V̂

y
Að�AÞV̂ y

Bð�BÞ.
An imperfect homodyne detector with efficiency �

can be modeled by a beam splitter with transmittivity �,
superimposing mode j (j ¼ A, B) with an ancilla vj pre-

pared in vacuum state, and cascaded with an ideal
homodyne detector. The beam splitter operator between

modes j and vj is defined as B̂jvj
¼ e

�=2ðâyj âvj�âjâ
y
vj
Þ
, where

cos� ¼ ffiffiffiffi
�

p
. As we discard the output state of the an-

cillae, this changes ��ðþÞ0
AB ð�A; �BÞ into ��ðþÞ0

AB ð�A; �B; �Þ ¼
TrvA;B

½B̂AvA
B̂BvB

��ðþÞ0
AB ð�A; �BÞðj00ivAvB

h00jÞB̂y
AvA

B̂y
BvB

�.
The tools described above bear some analogies with

the qubit case: states �thðV;�dÞ correspond to a qubit
basis, the ETS a two-qubit entangled state, the nonlinear
operation V jð�jÞ a single-qubit operation, and the homo-

dyne detection to discriminate between the two thermal
states a computational basis measurement. In order to test
the Clauser-Horne-Shimony-Holt (CHSH) version of
Bell’s inequality [19], we assign value þ1 to the mea-
surement outcome corresponding to a homodyne signal
larger than 0, and �1 otherwise. Then, the joint proba-
bility Pklð�A; �BÞ, where the subscripts k, l ¼ � cor-
respond to A and B’s assigned measurements outcomes

�1, respectively, can be calculated as Pklð�A; �BÞ ¼Rks
ki
dx
Rls
li
dyAhxjBhyj��ðþÞ0

AB ð�A; �B; �ÞjxiAjyiB, where jxi
and jyi are quadrature eigenstates. The Bell function
is constructed as Bð�A; �B; �0A; �0BÞ ¼ Cð�A; �BÞ þ
Cð�0A; �BÞ þ Cð�A; �0BÞ � Cð�0A; �0BÞ where Cð�A; �BÞ ¼P

k¼�Pkkð�A; �BÞ �P
k�l¼�Pklð�A; �BÞ and the Bell-

CHSH inequality [19] is jBð�A; �B; �0A; �0BÞj � 2.
Throughout this process, we have obtained the Bell’s func-
tion Bð�A; �B; �0A; �0BÞ as a function of V, d, and �. The
explicit form of Cð�A; �BÞ which composes the Bell’s
function is

Cð�A; �B; �Þ ¼ YWfe4i�Agð�AÞ½ie2d2=VYhð�BÞ	ð�B; �BÞ
þQgð�BÞs�B� þ Yhð�AÞ½ie4i�Bþ2ðV�2B=d2Þ

� gð�BÞsð�BÞ	ð�A; �BÞ
þ 4Yhð�BÞðe8i�Af�ð�BÞfþð�AÞ
þ e8i�Bf�ð�AÞfþð�BÞÞ�g (1)

Here we have defined Y ¼ ½8ð1þ V2e4d
2=VÞ��1,

hð
Þ ¼ e2ðd4þ
2Þ=d2V , W ¼ e�4ið�Aþ�BÞ�½2ð1þV2Þð�2Aþ�2BÞ=d2V�,
Q ¼ 8e4i�Bþ½2Vð�2

A
þ�2BÞ=d2�, f�ð
Þ ¼ Erfð

ffiffi
2

p
�ðd2�iV
Þ

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2ðV�1Þ

p Þ,
	ð
;�Þ¼f�ð
Þ�e8i�fþð
Þ, gð
Þ¼Erfið

ffiffi
2

p
�


d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2��2VðV�1Þ

p Þ,
and s
 ¼ sgnð
Þ with 
; � ¼ �A, �B. We have then nu-

merically optimized the Bell’s function to obtain
jBð�A; �B; �0A; �0BÞjmax, which is plotted in Figs. 1 against
the relevant parameters V, d, and �.
In Fig. 1(a), large thermal states with V ¼ 1000 have

been used in order to generate the various ETSs. The (sky-
blue) horizontal plane indicates the classical limit 2 over
which local-realistic theories fail. It is evident that the Bell-
CHSH inequality is significantly violated for large regions,
almost uniformly with respect to �. In this example, the

degree of mixedness for the ETS ��ðþÞ, quantified by the
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linear entropy SðV; dÞ ¼ 1� Tr½��ðþÞ2
AB �, is Sð1000; dÞ>

0:999, regardless of d. Here, SðV; dÞ ¼ 0 for pure states
while SðV; dÞ ¼ 1 for completely mixed ones. In spite of
nearly the maximum degree of mixedness, significant vio-
lations of Bell-CHSH inequality are revealed. In Fig. 1(b),
we choose � ¼ 0:05, which is a very low detection effi-
ciency, and again, strong violations are observed as d
increases. In other words, the Bell’s function rapidly ap-

proaches the maximum bound 2
ffiffiffi
2

p
, known as Cirel’son’s

bound [7] as d increases, regardless of values of � and V.
We have therefore shown that the Bell-CHSH inequality
can be violated nearly up to the maximum value even when
extremely-coarse-grained measurements are used, as far as
one can increase the ‘‘classical distinctness’’ d between the
local states.

It is worth noting that in a sense, a ‘‘more classical’’
method without the microscopic superposition results in
qualitatively the same conclusions: an alternative form
of ETS is given by superimposing a displaced ther-
ma mode A subjected to a single-mode Kerr nonlinear

interaction Ĥ NL;A with a vacuum mode B at a 50:50
beam splitter. The resulting state has the structure

�alt
AB ¼ R

d2�Pth
� ðV; dÞjc iABhc j with jc iAB / j� ffiffiffi

2
p

,

��=
ffiffiffi
2

p iAB þ ij � �=
ffiffiffi
2

p
; �=

ffiffiffi
2

p iAB. Here, in order to
show Bell violations in the same way as before, the third
party needs to perform an additional displacement opera-

tion D̂Aði�=8dÞ to remove the relative phase factor, i, of
the alternative form of ETS that was not present in the
previously discussed case. The state can then be shared by
Alice and Bob for the Bell inequality test, and the con-
struction of the corresponding Bell function follows the
steps described above. Although this timewe have not been
able to get a closed analytical expression for Cð�A; �B; �Þ,
a numerical calculation reveals qualitatively the same fea-

tures to those found for the case of ��ðþÞ0
AB , as shown in

Fig. 1(c). Without loss of generality, we restrict our study

to the ��ðþÞ0
AB class of states due to the convenience of

dealing with fully analytic expressions. Of course, our
results can be extended to �alt

AB.
A natural question now arises: ‘‘What causes Bell’s

inequality to be violated even when local states and mea-

surements are totally classical’’? We stress that single-
mode Kerr nonlinear interactions are important elements

of the local operation, V̂ jð�jÞ. It is straightforward to show
that the dynamics of the thermal state in a Kerr medium,
which can be observed by homodyne measurements, dif-
fers from that of the classical counterpart. The latter can be
obtained by replacing quantum mechanical operator â (ây)
with c-number � (��) [20]. In other words, Alice and Bob
can independently observe statistical distributions of ho-
modyne measurement results, even when the detection
efficiency is low, different from the distributions pre-
dicted by the classical theory of light in a Kerr medium.
Therefore, it is still questionable whether one can find a
realistic description to explain all the measurement results
for each local system. To pursue an answer to this question,
we investigate nonlocal realism as expressed by a recent
version of Leggett’s inequality [8,9]. Following the deri-
vation given in [8], one finds that

R̂ jð�j; ’jÞ ¼ sinð�j=2Þ ei’j cosð�j=2Þ
e�i’j cosð�j=2Þ � sinð�j=2Þ

 !
;

applied to the vector j�ij j � �ij
� �

T , realizes the set of

local operations needed for this task. Notice that such a set
requires out-of-plane rotations. We have thus generalized
our effective transformations by following the scheme in
[21], through which one can recognize that the sequence

D̂jð�i’j=4�ÞÛNLD̂jði�j=4�ÞÛNLD̂jði’j=4�Þ approxi-

mates R̂jð�j; ’jÞ. From now on, we identify such opera-

tions by specifying the unit vectors a 	 ð�A; ’AÞ and
b 	 ð�B; ’BÞ, determined by the corresponding set of an-
gles expressed in spherical polar coordinates. Then, we
identify the unit vectors a 	 ð�A; ’AÞ and b 	 ð�B; ’BÞ by
the set of corresponding angles in spherical polar coordi-
nates. By following the procedure described for the Bell-
CHSH inequality and through a rather lengthy calculation,
one can find the form of the correlation function CLða;bÞ
associated with nonideal detectors. However, the expres-
sion we gather is too lengthy to be reported here, and we
thus directly pass to discuss our results.
Nonlocal realism can be studied by considering the unit

vectors a1;2;3 and b1�7, each identifying a rotation that A
(B) has to perform on her (his) mode. Explicitly, a1 ¼
b5 	 ð�=2; 0Þ, a2 ¼ b6 	 ð�=2; �=2Þ, a3 ¼ b7 	 ð0; 0Þ,
b1 	 ð�=2; ’Þ, and b4 	 ð’;�=2Þ with b2 and b3 which
are found from b1 and b4, respectively, by taking ’ !
�=2þ ’. We can thus build the function

L¼jCLða1;b1ÞþCLða2;b2ÞþCLða1;b5ÞþCLða2;b6Þj
þjCLða2;b3ÞþCLða3;b4ÞþCLða2;b6ÞþCLða3;b7Þj:

Nonlocal realistic theories impose a bound on L given by is
8� 2j sinð’=2Þj [8]. Numerically, we have found that the
Leggett function defined (for convenience) as L ¼ L�
8þ j sinð’=2Þj is maximized for ’
 0:2507 radians,
which is the value we assume in our calculations. With
our notation,L � 0 is forced by nonlocal realistic theories.

FIG. 1 (color online). (a) The numerically optimized Bell
function jBjmax for the considered ETS as a function of the
displacement d and homodyne efficiency � for V ¼ 1000.
(b) The Bell function jBjmax as a function of d and the variance
of the initial thermal state V when � ¼ 0:05. (c) Same as panel
(b) but for the alternative form of ETS �alt

AB defined in the

manuscript. The horizontal plane in each figure indicates the
classical limit 2.

PRL 102, 060403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 FEBRUARY 2009

060403-3



If the inequality is satisfied, we may ‘‘retain’’ nonlocal
realistic theories to explain all the measurement results
under our assumptions [22]. To see if this is the case, we
have studied the optimized Leggett function jLjmax against
V and d. Our analysis shows that, indeed, there is a range of
values of d where the Bell-CHSH inequality is violated
while Leggett’s one is satisfied for any given value of V
and �, thus confirming our expectations. Interestingly, as
seen in Fig. 2, this range widens by going towards regimes
of increasing classicality, i.e., when V (�) is increased
(reduced).

We have shown that the quantum world, where local
realism fails, can be revealed by extremely-coarse-grained
measurements, which is in stark contrast to previous find-
ings [6]. Furthermore, Bell-CHSH inequality can be vio-
lated while a Leggett-type inequality imposed by certain
nonlocal realistic theories is satisfied. When V and d take
moderate values, the decoherence effects of the type of
states under our consideration remain in a reasonable range
[23]. A small-scale experimental demonstration of our
examples, such as one in Fig. 2(a), may be realized. In
this case, the required ETSs become pure entangled coher-
ent states (i.e., V 
 1) with d � 1:1. Such states can be
generated, using a beam splitter, from superpositions of
two coherent states with d � 1:6, which were experimen-
tally demonstrated in a recent experiment [24]. There have
been important progresses [25] in obtaining strong non-
linearities, which are demanding yet necessary to imple-

ment the local operation V̂ jð�jÞ. Our results unveil un-

known aspects of the boundary between quantum and
classical worlds, and their small-scale experimental real-
ization, although demanding, is foreseeable.
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FIG. 2 (color online). The optimized Bell function jBjmax and
the optimized Leggett function jLjmax are presented, whereM ¼
B for the solid curve andM ¼ L for the dashed curve. (a) When
V ¼ 1 and � ¼ 1 (pure entangled coherent states and perfect
detectors), there is a range of d where the Bell-CHSH inequality
is violated while the Leggett’s inequality is satisfied. (b) When
V ¼ 1000 (highly mixed ETSs), this range becomes larger.
(c) The same effect can be obtained by decreasing � to 0.03.
(d) An example with V ¼ 700 and � ¼ 0:05 is given.
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