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We study the sensitivity of phase estimation in a lossy Mach-Zehnder interferometer (MZI) using two general,
and practical, resources generated by a laser and a nonlinear optical medium with passive optimal elements, which
are readily available in the laboratory: One is a two-mode separable coherent and squeezed vacuum state at a beam
splitter and the other is a two-mode squeezed vacuum state. In view of the ultimate precision given by quantum
Fisher information, we show that the two-mode squeezed vacuum state can achieve a lower bound of estimation
error than the coherent and squeezed vacuum state under a photon-loss channel. We further consider practical
measurement schemes, homodyne detection and photon number resolving detection (PNRD), to characterize the
accuracy of phase estimation in reality and find that the coherent and squeezed vacuum state largely achieves a
lower bound than the two-mode squeezed vacuum in the lossy MZI while maintaining quantum enhancement over
the shot-noise limit. By comparing homodyne detection and PNRD, we demonstrate that quadrature measurement
with homodyne detection is more robust against photon loss than parity measurement with PNRD. We also show
that double homodyne detection can provide a better tool for phase estimation than single homodyne detection
against photon loss.
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I. INTRODUCTION

Quantum metrology aims at achieving high precision in
obtaining information about a physical system using quantum
resources and measurements [1]. One prominent example is
the detection of a gravitational wave using the Michelson inter-
ferometer, which measures a tiny variation of path length in the
interferometer signifying the existence of a gravitational wave
[2,3]. In an optical setting, it is also an important task to esti-
mate an unknown phase shift in one arm of the Mach-Zehnder
interferometer (MZI). Under the constraint of average input
energy n̄, the error �2φ of phase estimation using classical
states of light is bounded by the shot-noise limit (SNL) �2φ ∼
1/n̄. It can be enhanced up to the Heisenberg limit (HL) �2φ ∼
1/n̄2 by using quantum states of light that rely on nonclassical
resources like squeezing and quantum entanglement [1,4]. In
quantum phase estimation, one intends to minimize the vari-
ance of the estimator for a fixed value of phase below the SNL
by employing quantum resources [5,6]. It is well known that
the HL can be achieved by a NOON state in which all N pho-
tons exist in either mode a or b [3]. Within the HL, the phase
sensitivity can be further enhanced by the entangled states
generated with cat states [7,8], multiheaded cat states [9], the
generalized NOON-type states [10–12], etc. The quantum en-
hancement can be indefinitely high, e.g., some of the NOON-
type states provide an arbitrarily small quantum Cramér-Rao
bound (QCRB) even with a finite input energy [12].

From a practical point of view, however, we must further
investigate the robustness of such quantum enhancement
against inevitable noise in realistic situations. Among nu-
merous noisy models in optical interferometry [13,14], one
particularly important example is a photon-loss channel. In
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a lossy MZI using NOON-type states, it turns out that the
state with more quantum enhancement in an ideal situation
becomes more fragile against noise [9,12]. In addition to
the NOON states, there are other theoretical proposals to
achieve robustness against photon loss, including a class of
path-entangled Fock states [15], entangled states generated by
injecting twin Fock states into a 50:50 beam splitter [16], and
a general two-mode pure state with definite photon number N

[17,18]. For two-photon states, Kacprowicz et al. [19] showed
experimentally that the general two-mode entangled state with
N = 2 is more robust against photon loss than the NOON state
with N = 2. Although the proposed entangled states are more
robust against photon loss than NOON states, they are hard to
prepare in practice due to the required high nonlinearity and
controlled operations with additional modes.

Here we are interested in practical input resources which
can be readily prepared and used under photon loss. Specif-
ically, we consider two input resources generated by a laser
and a nonlinear optical medium. The first one is a two-mode
separable coherent and squeezed vacuum (CSV) state that
becomes entangled after the first beam splitter in the MZI
[4,20–27] and the second one is a two-mode squeezed vacuum
(TMSV) state [28–33]. We investigate these two classes of
states to identify their merits for phase estimation employing
two practical measurement schemes, i.e., parity measure-
ment with photon number resolving detection (PNRD) and
quadrature measurement with homodyne detection (HD). We
compare their performance in a lossy MZI in terms of not only
quantum Fisher information (QFI) characterizing the ultimate
precision but also the estimation errors directly obtained from
measurement schemes. We quantify the estimation error from
measurement Ô by

�2φÔ = 〈Ô2〉 − 〈Ô〉2

|∂〈Ô〉/∂φ|2 . (1)
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FIG. 1. Lossy Mach-Zehnder interferometer for phase estima-
tion. (a) Photon loss in all possible paths and (b) simplified photon-
loss model. Here η is the transmittance of a fictitious beam splitter
and ηa = ηpηa2ηa3ηd and ηb = ηpηb2ηb3ηd , where ηa1 = ηb1 = ηp

and ηa4 = ηb4 = ηd ; BS stands for a 50:50 beam splitter and φ a
phase shift under the unitary action Ûφ = e−iφâ† â .

Although both measurement setups provide us with the HL in
a lossless MZI, we show that the quadrature measurement is
more robust than the parity measurement in the lossy MZI.

This paper is organized as follows. In Sec. II, we introduce
a model of lossy MZI with a phase shifter. In Sec. III, we in-
vestigate the phase sensitivity of two practical input resources,
CSV and TMSV states, in terms of the ultimate precision
using QFI. We consider two specific measurement setups,
parity measurement with PNRD and quadrature measurement
with singe (double) HD, and address phase-sensitivity under
different measurement schemes. We summarize our results in
Sec. IV.

II. LOSSY MACH-ZEHNDER INTERFEROMETER

Let us first consider a lossless MZI which consists of two
50:50 beam splitters and a phase shifter. After combining
input beams at the first beam splitter, an unknown phase
is encoded into the beam by a phase shifter Ûφ = e−iφâ†â .
Then, after recombining the beams at the second beam
splitter, measurements in the output modes are performed
to obtain the phase information. Finally, the measurement
data are processed to estimate the unknown phase. The
quantum dynamics in the interferometer can be described by
transformations of mode operators as follows. The first beam
splitter changes two mode operators as â → (â + b̂)/

√
2 and

b̂ → (b̂ − â)/
√

2, while the phase shifter gives â → e−iφ â and
b̂ → b̂. The second beam splitter changes the mode operators
as â → (â − b̂)/

√
2 and b̂ → (â + b̂)/

√
2.

We now consider photon loss by inserting fictitious beam
splitters having a transmittance η (a loss rate 1 − η) in an
optimal path with a signal input beam and a vacuum state as
two modes injected into the beam splitters [34]. In Fig. 1(a),
we place the fictitious beam splitters in all possible paths to
consider photon loss for all modes. This configuration of a
lossy interferometer can be simplified by noting that a phase-

shifting operation and a photon-loss process commute [18].
Thus the evolution loss characterized by transmissivities ηa2

(ηb2 ) and ηa3 (ηb3 ) can be combined as a single loss process.
Moreover, if we assume the same preparation loss rate in each
arm (ηa1 = ηb1 = ηp) and the same detection loss rate in each
arm (ηa4 = ηb4 = ηd ), the preparation and detection losses can
also be combined with the evolution loss so that we only need
to consider two evolution losses with transmissivities ηa =
ηpηa2ηa3ηd and ηb = ηpηb2ηb3ηd . Note that we have also used
the commutativity between a photon-loss process and a 50:50
beam-splitting process. Thus, with the above assumptions, all
possible loss processes can be simplified into two evolution
losses, as shown in Fig. 1(b).

Although it is possible to consider various conditions on two
loss rates, in this paper,we focus on two different situations
for simplicity: (i) ηa = ηb = η and (ii) ηa = η and ηb = 1.
The former condition describes the case in which photon loss
occurs symmetrically and the latter describes the case in which
a noise occurs only along the paths of a phase shifter.

III. PHASE ESTIMATION WITH TWO PRACTICAL
INPUT RESOURCES

Let us consider two practical input resources for phase
estimation. The first is a CSV state

|ψCSV〉 = exp(αâ† − α∗â) exp
(

1
2ξ b̂†2 − 1

2ξ ∗b̂2
)|0〉, (2)

where α = |α|eiθc is the displacement parameter and ξ = reiθr

the squeezing one. The second practical input resource is a
TMSV state

|ψTMSV〉 = exp(ζ â†b̂† − ζ ∗âb̂)|0〉, (3)

where ζ = seiθs is the two-mode squeezing parameter. We
note here that the phases of the considered states do not
change optimal phase sensitivities but only shift the angles
of optimal observables for homodyne detection, so we assume
α, ξ , and ζ to be real for simplicity. The mean photon numbers
of the states are given by n̄CSV = α2 + sinh2 r and n̄TMSV =
2 sinh2 s, which will be used as the energy constraint. While the
two states are known to achieve the HL without photon loss
[20,30], we investigate the phase sensitivity under practical
situations with photon loss. We particularly demonstrate our
results with the mean photon number n̄ = 10, since we obtain
a similar tendency for different mean photon numbers (for
example, n̄ = 7 in Appendix A).

Note that CSV, TMSV, and coherent states that we investi-
gate are Gaussian states [35–38] such that their characteristic
function is given by

χ (ξ ) = Tr [ρ̂ exp(iξT R̂)] = exp
[ − 1

2ξT γ ξ + idT ξ
]
, (4)

where

γkl = 1
2 〈{R̂k,R̂l}〉 − 〈R̂k〉〈R̂l〉, (5)

dk = Tr (ρ̂R̂k) (6)

are the covariance matrix and the first-order moments, respec-
tively. Note that ξ ∈ R4, R̂ = (X̂a,P̂a,X̂b,P̂b)T , X̂f = (f̂ +
f̂ †)/

√
2, and P̂f = (f̂ − f̂ †)/

√
2i (f = a,b). The formulas

are widely used in our calculations.
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A. Quantum Fisher information

We first investigate the ultimate precision of the CSV and
TMSV states by calculating quantum Fisher information. It is
given by the QCRB as

�2φ � 1

MFQ

, (7)

where M is the number of trials repeated and FQ = Tr [ρ̂φL̂2
φ]

is the QFI of the state ρ̂φ containing phase information φ. Here
L̂φ is the so-called symmetric logarithmic derivative operator,
which is given by the equation ∂φρ̂φ = (L̂φρ̂φ + ρ̂φL̂φ)/2
[5]. For a single-shot measurement (M = 1), the inverse of
QFI thus represents the lower bound for phase-estimation
error. Using a phase-shifting operation Ûφ = e−iφâ†â in a
lossless MZI, we obtain the precision of a coherent state
�2φSNL = 1/2n̄, which sets the classical benchmark SNL.
Without photon loss, we derive the QFI for the CSV and
TMSV states by using the covariance matrix and the first-order
moment of the output mode (see Appendix B),

F CSV
Q = α2e2r + sinh2 r + α2 + sinh2 2r

2
α=0−−→ n̄CSV(2n̄CSV + 3), (8)

F TMSV
Q = 8 sinh2 s cosh2 s = 2n̄TMSV(n̄TMSV + 2), (9)

where F CSV
Q is maximized at α = 0 for a fixed mean photon

number [39]. The explicit expression of QFI of Gaussian states
that we have used is provided in Appendix C. The QFI shows
that both CSV and TMSV states attain the Heisenberg scaling.
Note that for the other phase shifter Ûφ = e−iφ(â†â−b̂†b̂)/2 the
QFI takes different forms [20,23,30], with the discrepancy
discussed in Ref. [22]. In our work, we compare the ultimate
bound from QFI and the achievable bounds by concrete
measurement schemes under the phase shifter Ûφ = e−iφâ†â .

In Fig. 2, we show the QCRB in the lossy MZI using the
CSV and TMSV states. The QFI in the lossy MZI is derived by
following a method similar to the lossless case (see Appendixes
B and C) and we provide the QFI of the CSV and TMSV
states in Appendix C. In the case of identical photon loss
in both arms (ηa = ηb = η), the TMSV state provides better
phase sensitivity than the CSV state, as shown in Figs. 2(a)
and 2(b). Specifically, for n̄ = 10, the phase sensitivity of the
TMSV state beats the SNL under the loss rate 1 − η < 0.46,
whereas the CSV state beats the SNL under 1 − η < 0.35. In
the case of photon loss only in one arm (ηa = η and ηb = 1),
the phase sensitivities for both states are almost the same, as
shown in Figs. 2(d) and 2(e). For n̄ = 10, both states beat the
SNL under the loss rate 1 − η < 0.46. We also compare the
QCRBs of the CSV and TMSV states with that of coherent
state under the same loss rate to verify if quantum enhancement
still exists in the lossy interferometer. In Figs. 2(a) and 2(d),
phase sensitivities of both states beat that of the coherent state
unless the loss rate is too large. We thus achieve quantum
enhancement using the CSV and TMSV states even in the
lossy MZI.

For the case of CSV state, it is worth noting the fraction of
the mean photon number of a single-mode squeezed vacuum

state to the total mean photon number given by

μ ≡ sinh2 r

α2 + sinh2 r
. (10)

In a lossless MZI, we obtain the optimal ratio as μ = 1 from
Eq. (8), i.e., injecting a single-mode squeezed vacuum state
only is the optimal choice. In a lossy MZI, the optimal ratio
becomes μ < 1 with the increment of loss rate, as shown in
Figs. 2(c) and 2(f). For a symmetric photon loss, the optimal
ratio decreases with the loss rate. On the other hand, for a
photon loss in one arm, the optimal ratio approaches μ = 1
with the increment of the total mean photon number, regardless
of the loss rate.

B. Measurement setups

In the preceding section we analyzed the ultimate theo-
retical estimation precision for the CSV and TMSV states in
the lossy MZI by calculating QFI. We consider here specific
measurement setups to examine the precision achievable in
practice.

1. Parity measurement with photon number resolving detection

The first measurement setup to consider is the parity mea-
surement with PNRD. The parity operator for the output mode
a is given by �̂a = (−1)â

†â , which distinguishes between even
and odd numbers of photons. The expectation value of the
parity operator can be readily calculated by using the value of
Wigner function at the origin, i.e., 〈�̂a〉 = πW (0,0), where
W (x,p) is the Wigner function of the output mode a [40]. The
Wigner function of a Gaussian state on the output mode a is
given by [36]

W (x,p) = exp
[ − 1

2 (X − da)T γ −1
a (X − da)

]
2π

√
det γa

, (11)

where X = (x,p)T . Here γa and da are the covariance matrix
and the first-order moment of the state of the output mode a,

γa =
(

γ11 γ12

γ21 γ22

)
, da =

(
d1

d2

)
. (12)

Thus the expectation value of the parity operator can be
expressed as

〈�̂a〉 = exp
( − 1

2dT
a γ −1

a da

)
2
√

det γa

. (13)

Using the general expression for estimation error in Eq. (1),
the phase sensitivity under parity measurement is given by

�2φ�̂a
=

〈
�̂2

a

〉 − 〈�̂a〉2

|∂〈�̂a〉/∂φ|2 = 1 − 〈�̂a〉2

|∂〈�̂a〉/∂φ|2 . (14)

In a lossless MZI, both the CSV and the TMSV states achieve
the HL by using the parity measurement at an optimal angle φ

[21,30,41],

�2φCSV
�̂a

= 1

α2e2r + sinh2 r
∼ 1

n̄2
CSV

, (15)

�2φTMSV
�̂a

= 1

n̄TMSV(n̄TMSV + 2)
. (16)
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FIG. 2. Quantum Cramér-Rao bound for CSV (brown dashed curve), TMSV (red solid curve), and coherent (green dotted curve) states,
respectively, as a function of loss rate 1 − η at n̄ = 10 (a) under symmetric photon loss (ηa = ηb = η) and (d) under photon loss in one arm
(ηa = η and ηb = 1) and as a function of n̄ at a moderate loss rate 1 − η = 0.2 (b) under symmetric photon loss and (e) under photon loss in one
arm. The shot-noise limit (blue dot-dashed lines) is given by �2φSNL = 1/2n̄. An optimal ratio μ, which represents a portion of a single-mode
squeezed vacuum state in the CSV state, is given as a function of loss rate 1 − η at n̄ = 1 (black solid curve), n̄ = 10 (black dashed curve),
and n̄ = 100 (black dotted curve) (c) under symmetric photon loss and (f) under photon loss in one arm. In (f), the dashed and dotted curves
are overlapped. In (c) and (f), the dashed (dotted) vertical line represents the loss rate to beat the SNL using the CSV state (TMSV state).

In a lossy MZI, the phase sensitivity under parity measurement
can also be calculated by inserting the photon-loss channel
in the MZI and then deriving the covariance matrix and the
first-order moment of the output state (see Appendix B). While
the parity measurement with PNRD attains the HL for the
CSV and TMSV states under the lossless condition, the parity
measurement can be extremely fragile against photon loss
because single photon loss distorts the parity information
by changing the (+ or −) sign in the parity operator. In
Fig. 3, we show that the results of the parity measurement are
significantly degraded by photon loss. Furthermore, in contrast
to the result on the QFI, the TMSV state is more fragile against
photon loss than the CSV state under parity measurement.
Although the CSV state is more robust than the TMSV state,
it is also significantly fragile so that it becomes worse than
the SNL even under a moderate loss rate 1 − η > 0.1, thus the
quantum advantage unexpected for a small photon loss under
parity measurement.

2. Quadrature measurement with homodyne detection

Although parity measurement performs well in a loss-
less phase estimation, we have shown that it is extremely
fragile against photon loss. In this section, we consider
another measurement, i.e., quadrature measurement with HD,
to examine the sensitivity of phase estimation in a lossy
interferometer. A balanced homodyne detection is used to
measure the intensity difference between the two output modes
generated by injecting a signal and a local oscillator field into
a 50:50 beam splitter. The output data are used to obtain the

expectation value of a field quadrature 〈X̂ϕ〉 = �I/
√

2|αLO|,
where X̂ϕ = 1√

2
(âe−iϕ + â†eiϕ), �I is the intensity difference,

αLO is the amplitude of the local oscillator field, and ϕ is the

FIG. 3. Phase sensitivity via parity measurement with photon
number resolving detection, as a function of loss rate 1 − η at n̄ = 10
(a) under symmetric photon loss (ηa = ηb = η) and (c) under photon
loss in one arm (ηa = η and ηb = 1) and as a function of n̄ at a loss rate
1 − η = 0.2 (b) under symmetric photon loss and (d) under photon
loss in one arm, using CSV (brown dashed curve), TMSV (red solid
curve), and coherent (green dotted curve) states. The shot-noise limit
(blue dot-dashed line and curve) is given by �2φSNL = 1/2n̄.
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phase of the local oscillator [34]. From now on we represent
two orthogonal quadratures as X̂0 = X̂ and X̂π/2 = P̂ .

First we consider a quadrature measurement only in the
output mode a by a single HD. In the lossless MZI, we find
that the observables P̂ for CSV states and X̂2 for TMSV
states, respectively, provide the best phase sensitivity among
all possible X̂ϕ and X̂2

ϕ observables. For the CSV state, the
first and the second moments of the field quadrature P̂a are
given by

〈P̂a〉CSV = d2 = α sin φ√
2

, (17)

〈
P̂ 2

a

〉CSV = γ22 + d2
2

= 1
16 (4 + 4 cos φ + 3e−2r − 4e−2r cos φ

+ e−2r cos 2φ + 2e2r sin2 φ + 8α2 sin2 φ). (18)

Here we have used the characteristic function to calculate
moments [42]

〈Ô1Ô2 · · · Ôn〉 = 1

in

∂n

∂ξÔ1
∂ξÔ2

· · · ∂ξÔn

χ (ξ )

∣∣∣∣
ξ=0

, (19)

where Ôi ∈ {X̂a,P̂a,X̂b,P̂b} and χ (ξ ) is the characteristic
function of the output state. Using Eq. (1), we obtain the phase
sensitivity optimized over the angle φ as

�2φCSV
P̂a

= 1

α2e2r
∼ 1

n̄2
CSV

. (20)

For the TMSV state, on the other hand, the first and the second
moments of the field quadrature X̂a are given by

〈X̂a〉TMSV = d1 = 0, (21)

〈
X̂2

a

〉TMSV = γ11 + d2
1

= 1
2 (cosh2 s + sinh2 s − sin2 φ sinh 2s). (22)

In contrast to the CSV state, the first-order moment of the field
quadrature X̂a does not contain any phase information, so we
choose the observable X̂2

a as our signal of interest. Using the
higher-moment relations of Gaussian states [42], we obtain the
phase sensitivity at an optimal angle φ as

�2φTMSV
X̂2

a

= 1

2e2s

(
1

sinh2 s
+ 1

cosh2 s

)
∼ 1

n̄2
TMSV

. (23)

Although both states achieve the Heisenberg scaling of
phase sensitivity in an ideal situation, the quadrature mea-
surement in one output mode only does not provide better
precision than parity detection under the lossless condition.
In contrast, for a lossy MZI, the quadrature measurement
with single HD provides a more robust phase sensitivity than
parity measurement with PNRD, as shown in Fig. 4. Note
that, in the lossy MZI, the phase sensitivity under quadrature
measurement can be calculated by replacing the characteristic
function of the output state in the lossless MZI with that in
the lossy MZI (see Appendix B). For the case of identical
photon loss in both arms, the CSV and the TMSV states
attain better sensitivity than the SNL under the loss rates
1 − η < 0.23 and 1 − η < 0.18, respectively. For the case of
photon loss only in one arm, the CSV and the TMSV states beat

FIG. 4. Phase sensitivity via quadrature measurement with single
homodyne detection as a function of loss rate 1 − η at n̄ = 10 (a)
under symmetric photon loss (ηa = ηb = η) and (c) under photon
loss in one arm (ηa = η and ηb = 1) and as a function of n̄ at a
loss rate 1 − η = 0.2 (b) under symmetric photon loss and (d) under
photon loss in one arm, using CSV (brown dashed curve), TMSV (red
solid curve), and coherent (green dotted curve) states. The shot-noise
limit (blue dot-dashed line and curve) is given by �2φSNL = 1/2n̄.

the SNL under the loss rates 1 − η < 0.34 and 1 − η < 0.3,
respectively. Furthermore, phase sensitivities of the CSV and
TMSV states with single quadrature measurement are better
than the QCRB of coherent state with the same condition
unless the loss rate is too large. Thus, quadrature measurement
with single HD enables us to achieve quantum enhancement
in a lossy interferometer.

We now consider quadrature measurements in both output
modes by double homodyne detections for further enhance-
ment of phase sensitivity. Under the lossless condition, phase
sensitivities of CSV and TMSV states can be improved by
using double HDs. It was previously proposed to use double
HD for the TMSV state to achieve the Heisenberg scaling [28].
Specifically, the scheme is a quadrature measurement of X̂ in
the output mode a and that of P̂ in the output mode b, i.e.,
Ô = X̂aP̂b. Here we find that for the TMSV state, Ô = X̂aX̂b

provides better the phase sensitivity than Ô = X̂aP̂b and it
is the optimal observable among all possible products of two
quadratures. In a lossless MZI with the TMSV state, the first
and second moments of the field quadrature X̂aX̂b are given
by [28]

〈X̂aX̂b〉TMSV = γ13 + d1d3 = 1
2 sinh 2s cos2 φ, (24)

〈
X̂2

aX̂
2
b

〉TMSV = 4d1d3γ13 + 2γ 2
13 + (

d2
1 + γ11

)(
d2

3 + γ33
)

= 1
64 [(17 + 4 cos 2φ) cosh 4s − 1 − 4 cos 2φ

+ 6 cos 4φ sinh2 2s − 16 sin2 φ sinh 4s].
(25)
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FIG. 5. Phase sensitivity via quadrature measurement with dou-
ble homodyne detection as a function of loss rate 1 − η at n̄ = 10 (a)
under symmetric photon loss (ηa = ηb = η) and (c) under photon loss
in one arm (ηa = η and ηb = 1) and as a function of n̄ at a loss rate
1 − η = 0.2 (b) under symmetric photon loss and (d) under photon
loss in one arm, using CSV (brown dashed curve), TMSV (red solid
curve), and coherent (green dotted curve) states. The shot-noise limit
(blue dot-dashed line and curve) is given by �2φSNL = 1/2n̄.

Using Eq. (1), we obtain the phase sensitivity optimized over
the angle φ as

�2φTMSV
X̂aX̂b

= 1√
2 + 2e8s − e4s − 1

s
1−−→
√

2 + 1

4n̄2
TMSV

. (26)

Thus the quadrature measurement with double HD provides
the Heisenberg scaling for the TMSV state, which shows
better performance than parity measurement with PNRD
and quadrature measurement with single HD in the lossless
MZI. On the other hand, the CSV state can also achieve the
Heisenberg scaling with a different observable, e.g., the sum
of two quadratures measured in each output mode

�2φCSV
X̂ϕa +X̂ϕb

= 1

α2(e2r + 1)
∼ 1

n̄2
CSV

, (27)

where we have chosen optimal quadratures in each output
mode.

In Fig. 5, we show the phase sensitivity in the lossy MZI
using double HDs. For the case of identical photon loss in both
arms, the CSV state beats the SNL under the loss rate 1 − η <

0.32 and the TMSV state under the loss rate 1 − η < 0.28. For
the case of photon loss in one arm, the CSV beats the SNL
under the loss rate 1 − η < 0.39 and TMSV states beat the
SNL under the loss rate 1 − η < 0.33. For the CSV and the
TMSV states, the double HD provides better robustness than
the single HD.

To confirm quantum enhancement under a photon-loss
channel, we compare the attainable precision limit under each
measurement setup with the ultimate bound of the coherent
state. In Fig. 6, we compare the phase sensitivities obtained
by QFI, parity measurement with PNRD, and quadrature mea-
surement with single (double) HD. We see that the quadrature
measurement with HD provides more robust phase sensitivity

FIG. 6. Comparison of phase sensitivity via the quantum Cramér-
Rao bound (red solid curve), parity measurement with photon number
resolving detection (brown dashed curve), quadrature measurement
with single homodyne detection (orange double-dot–dashed curve)
and double homodyne detection (blue dotted curve) at n̄ = 10, using a
CSV state (a) under symmetric photon loss and (b) under photon loss
on one arm and using a TMSV state (c) under symmetric photon loss
and (d) under photon loss on one arm. The green dot-dashed curve
represents the quantum Cramér-Rao bound for a coherent state.

than the parity measurement for both states, although it does
not saturate to the ultimate QFI. The parity measurement with
PNRD is extremely fragile in the lossy MZI. In Figs. 6(a)
and 6(b), the CSV state provides a quantum advantage using
the quadrature measurement unless the loss rate is extremely
high both under the symmetric photon loss and under the
photon loss in one arm. In Figs. 6(c) and 6(d), the TMSV
state also provides a quantum advantage using the quadrature
measurement for the loss rate 1 − η < 0.4 under the symmetric
photon loss and for the loss rate 1 − η < 0.47 under the
photon loss in one arm, respectively. The CSV state maintains
quantum enhancement better than the TMSV state both under
the symmetric photon loss and under the photon loss in one
arm. In particular, phase sensitivity via double HD is better
than that via single HD for both the CSV and the TMSV states
under the photon-loss models.

IV. CONCLUSION

In this work, we have investigated two practical input
resources, a coherent and squeezed vacuum state and a two-
mode squeezed vacuum state that are available in laboratory,
for lossy optical quantum metrology. To characterize their
usefulness for phase estimation, we considered both the
quantum Fisher information giving the ultimate precision of
phase estimation and the estimation errors directly obtained
from practical measurement schemes, homodyne detection and
photon number resolving detection. We have found that the
two-mode squeezed vacuum state provides a better resource
in view of the ultimate precision given by quantum Fisher
information than the coherent and squeezed vacuum state
under (i) a symmetric photon loss (ηa = ηb = η). For the
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coherent and squeezed vacuum state, the optimized portion
of a squeezed vacuum state against total energy of the state
decreases with the photon-loss rate. Under (ii) a photon loss in
one arm only (ηa = η and ηb = 1), we have obtained that the
coherent and squeezed vacuum state can demonstrate better
performance than the two-mode squeezed vacuum state. In
this case, the optimized portion of a squeezed vacuum state
becomes 1 regardless of the loss rate.

On the other hand, under practical measurement setups con-
sidered (homodyne detection and PNRD), it has been shown
that the coherent and squeezed vacuum state is more robust
against photon loss than the two-mode squeezed vacuum state
while maintaining quantum enhancement over the shot-noise
limit. Comparing the parity and the quadrature measurements,
we have shown that the quadrature measurement is more robust
than the parity measurement and that the double homodyne
detection exhibits better robustness than the single homodyne
detection under the photon-loss channel.

In this paper, we have fixed the total mean photon number
as n̄ = 10. Under the current technology, it is possible to
generate a two-mode squeezed vacuum state with n̄ = 10. In
experiment, the generation of 15-dB single-mode squeezed
vacuum states was reported [43], which corresponds to n̄ ≈ 7.
Injecting each single-mode squeezed vacuum state with n̄ = 7
into a 50:50 beam splitter, we can obtain the two-mode
squeezed vacuum state with n̄ = 14. Although the coherent
and squeezed vacuum state may not approach the range of
n̄ = 10, we obtain phenomena similar to the results shown in
this paper for the case of n̄ = 7 (see Appendix A).

We have considered here the quadrature observables based
on the first and the second moments. As a future work, it would
be interesting to extensively consider higher-order moments of
quadrature observable to enhance the phase sensitivity up to the
quantum Cramér-Rao bound in the lossy MZI. Moreover, we
may incorporate the adaptive phase control method to achieve
better performance under a practical measurement setting [44].
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APPENDIX A: PHASE SENSITIVITIES WITH n̄ = 7

We show phase sensitivities with the mean photon number
n̄ = 7, which is implementable with single-mode squeezed
vacuum states under the current technology [43]. Figure 7
shows phase sensitivities under symmetric photon loss and
Fig. 8 shows those under photon loss on one arm. Both figures
exhibit the similar tendency for the case with n̄ = 10, which
we presented in the main text.

FIG. 7. Phase sensitivities for CSV (brown dashed curve), TMSV
(red solid curve), and coherent (green dotted curve) states, respec-
tively, as a function of loss rate 1 − η at n̄ = 7 under symmetric
photon loss via (a) the quantum Cramér-Rao bound, (b) parity
measurement with PNRD, (c) quadrature measurement with single
homodyne detection, and (d) quadrature measurement with double
homodyne detection. The shot-noise limit (blue dot-dashed line) is
given by �2φSNL = 1/2n̄.

APPENDIX B: GAUSSIAN STATE

The MZI dynamics transforms the covariance matrix and
the first-order moment of an input Gaussian state as

γ
MZI−−→ γ ′ = MÛMZI

γMT

ÛMZI
, (B1)

d
MZI−−→ d ′ = MÛMZI

d, (B2)

FIG. 8. Phase sensitivities for CSV (brown dashed curve), TMSV
(red solid curve), and coherent (green dotted curve) states, respec-
tively, as a function of loss rate 1 − η at n̄ = 7 under photon loss in one
arm via (a) the quantum Cramér-Rao bound, (b) parity measurement
with PNRD, (c) quadrature measurement with single homodyne
detection, and (d) quadrature measurement with double homodyne
detection. The shot-noise limit (blue dot-dashed line) is given by
�2φSNL = 1/2n̄.
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where MÛMZI
= MB̂2

MP̂φ
MB̂1

is the symplectic transformation
matrix of the MZI dynamics composed of two 50:50 beam
splitters and a phase shifter. In the lossy MZI, the loss channel
is inserted between the first beam splitter and the phase
shifter as

γ
MZI−−→ γ ′ = MB̂2

MP̂φ
N

(
MB̂1

γMT

B̂1

)
MT

P̂φ
MT

B̂2
, (B3)

d
MZI−−→ d ′ = MB̂2

MP̂φ
D1MB̂1

d, (B4)

where N represents the transformation of the covariance
matrix by the photon-loss channel. A detailed analysis of
Gaussian states is given in Refs. [35–38].

For the symplectic transformation matrix of the MZI
dynamics MÛMZI

= MB̂2
MP̂φ

MB̂1
, we consider the following

formula. The symplectic matrix that corresponds to the beam
splitter is given by

MB̂(θ ) =

⎛
⎜⎝

cos θ 0 sin θ 0
0 cos θ 0 sin θ

− sin θ 0 cos θ 0
0 − sin θ 0 cos θ

⎞
⎟⎠. (B5)

The first and second beam splitters correspond to MB̂1
=

MB̂(π/4) and MB̂2
= MB̂(−π/4), respectively. Fictitious

beam splitters that describe photon loss can also be described
with the symplectic matrix with θ = arccos

√
η, where η is

a transmissivity. For the fictitious beam splitters, the first
two columns and rows represent the mode that we consider
and the last two columns and rows represent the mode of
the environment. Consequently, it can be found that the
photon-loss channel with transmissivities ηa and ηb for modes
a and b transforms the covariance matrix and the first-order
moment of two-mode Gaussian states as

γ
loss−→ N (γ ) = D1γD1 + D2/2, (B6)

d
loss−→ D1d, (B7)

where D1 = diag(
√

ηa,
√

ηa,
√

ηb,
√

ηb) and D2 = diag(1 −
ηa,1 − ηa,1 − ηb,1 − ηb) are diagonal matrices. The symplec-
tic matrix of the phase-shifter operator is given by

MP̂φ
=

⎛
⎜⎝

cos φ sin φ 0 0
− sin φ cos φ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠. (B8)

APPENDIX C: CALCULATION OF QUANTUM
FISHER INFORMATION

The Bures fidelity of two-mode Gaussian states ρ̂1 and ρ̂2

is given by [37,38]

F(ρ̂1,ρ̂2) = F0(γ1,γ2) exp
[ − 1

4δT
d (γ1 + γ2)−1δd

]
, (C1)

where {γ1,d1} and {γ2,d2} are the covariance matrices and
first-order moments of ρ1 and ρ2, respectively. Note that δd =
d2 − d1, F0(γ1,γ2) = [

√
� + √

� −
√

(
√

� + √
�)2 − �]−1/2,

� = det(γ1 + γ2), � = 24 det(�γ1�γ2 − 1/4), and � =
24 det(γ1 + i�/2) det(γ2 + i�/2). Using the covariance ma-
trix and first-order moment with a parameter φ, we calculate
the QFI as

FQ = 8[1 − F(ρ̂φ,ρ̂φ+dφ)]

dφ2
. (C2)

Using the formula (C2), we obtain the QFI of CSV and
TMSV states in the lossy MZI. For symmetric photon loss
with transmissivities (ηa = ηb = η),

F CSV
Q = η sinh2 r[4η − 1 + 2η2(3 − 2η) sinh2 r]

1 + 2η(1 − η) sinh2 r

+ 2α2η(er − η sinh r)

er − 2η sinh r
, (C3)

F TMSV
Q = 2η2 sinh2 2s

1 + 2η(1 − η) sinh2 s
. (C4)

For photon loss only in one arm with transmissivity (ηa = η

and ηb = 1) on which the phase shifter exists,

F CSV
Q = 2η

(
sinh2 r

1 + η
+ α2 cosh r

cosh r − η sinh r

+ η sinh2 2r

3 + η2 + (1 − η2) cosh 2r

)
, (C5)

F TMSV
Q = 2η2 sinh2 2s

1 + 2η(1 − η) sinh2 s
. (C6)

Note that the photon loss that occurs in the empty arm does
not change the QFI such that Eqs. (C4) and (C6) are the same.
In Fig. 1, a TMSV state is transformed to a product state of
two single-mode squeezed vacuum states after the first 50:50
beam splitter. Then the phase information is encoded only in
one of the two single-mode squeezed vacuum states. Since
the state is a product state even after loss channels, the phase-
encoded single-mode squeezed vacuum state is not influenced
by the other single-mode squeezed vacuum state. Thus, the QFI
is calculated by using one of the two single-mode squeezed
vacuum states that contains phase information.
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