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We examine the moment-reconstruction performance of both the homodyne and heterodyne (double-
homodyne) measurement schemes for arbitrary quantum states and introduce moment estimators that optimize
the respective schemes for any given data. In the large-data limit, these estimators are as efficient as the
maximum-likelihood estimators. We then illustrate the superiority of the heterodyne measurement for the
reconstruction of the first and second moments by analyzing Gaussian states and many other significant
nonclassical states. Finally, we present an extension of our theories to two-mode sources, which can be
straightforwardly generalized to all other multimode sources.
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I. INTRODUCTION

The next-generation quantum technologies introduce novel
and innovative routes to the understanding and implemen-
tation of measurements, communication, and computation.
In this respect, the manipulation of a quantum light source
using continuous-variable (CV) measurements offers many
advantages [1–5]. There exist two standard CV measure-
ment schemes. The more commonly employed homodyne
detection [6–8], which performs an approximate measurement
of rotated photonic quadratures [9], probes the marginal
distribution of the Wigner function of the unknown quantum
state [10]. The other less widely adopted double-homodyne
detection, or the heterodyne detection, involves the joint
measurement of complementary observables [11–18] that
directly samples the phase space according to the Husimi
function [19] and is connected to the conventional heterodyne
scheme [20–29]. This measurement also has fundamental
influence on quantum-mechanical uncertainties, which were
also investigated in a different context [30].

These measurement schemes, which experimentally probe
quasiprobability distributions, can also be equivalently under-
stood as practical means to directly characterize the source in
terms of the ordered moments of the quadrature operators in
phase space. Gaussian states [2], for example, which are impor-
tant in analyzing CV quantum information processing [31–34],
are conveniently described by this representation since all their
operator moments are functions of only the first and second
moments. Therefore, estimating the first and second moments
is enough to fully reconstruct the Gaussian state or verify if
the reconstructed state is accurately Gaussian [35]. Higher
moments come into play for general quantum states. On its
own right, the topic of operator moments of quantum states
draws interest in the context of generalized uncertainty rela-
tions [36,37], nonclassicality detection [38,39], entanglement
detection [40,41], and cryptography [42,43].

In Refs. [44,45], we theoretically and experimentally
compared the two measurement schemes, using a polarization-
squeezing setup [46–51] for the latter. We analyzed the
physical implications of having the unavoidable Arthurs-

Kelly–type noise that is inherent in the joint measurement
heterodyne scheme on moment reconstruction. We found
that despite this additional noise, for a single-mode central-
Gaussian source the heterodyne scheme still results in second-
moment estimators that are more accurate than the homodyne
scheme for a wide range of the squeezing strength and
temperature parameter.

In this article, we extend the theory of these two CV
measurement schemes to general quantum states and show that
the tomographic advantage in using the heterodyne scheme
carries over to other interesting and important non-Gaussian
states. This message is conveyed in five main sections.
Section II gives an overview of the fundamental elements in
first- and second-moment tomography, as well as the concept
of reconstruction accuracy. These elements are then used to
discuss the general theory of moment reconstruction for the
homodyne and heterodyne schemes in Sec. III. In that section,
we shall also introduce optimal moment estimators that asymp-
totically approach the respective Cramér-Rao bounds, which
are derived in Appendix A. In Sec. IV, we shall study the CV
schemes in first-moment estimation where it shall be shown
that heterodyne detection will always outperform homodyne
detection unless the state is of minimum uncertainty, in which
case the two schemes give equal reconstruction accuracy per
sampling event. This result shall be discussed with some
interesting classes of non-Gaussian states. Next, we study the
results for second-moment estimation in Sec. V with the same
classes of non-Gaussian states and illustrate once again the
tomographic advantages of using the heterodyne scheme in
moment tomography. Finally, Sec. VII concludes the presented
results in a summary.

II. COVARIANCE MATRIX AND
MOMENT-RECONSTRUCTION ACCURACY

In dealing with single-mode bosonic systems, such as
photons, for the pair of position X and momentum P

quadrature operators obeying [X,P ] = i (with the quantum
unit h̄ ≡ 1) that form the column RRR = (X P ) T, the covariance
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matrix can be written as

GGG = Re{〈RRRRRRT〉} − 〈RRR〉〈RRR〉 T = GGG2 − GGG1, (2.1)

where we have introduced the first-moment (GGG1 = 〈RRR〉〈RRR〉 T)
and second-moment (GGG2 = Re{〈RRRRRRT〉}) matrices. The two
independent parameters {〈X〉,〈P 〉} in GGG1 and three indepen-
dent parameters {〈X2〉, 1

2 〈{X,P }〉,〈P 2〉} in GGG2 constitute the
complete set of five parameters that characterize GGG. The well-
known class of Gaussian states possesses a Gaussian Wigner
function or any other kind of well-behaved quasiprobability
distribution. As a consequence, any Gaussian state is fully
described by only GGG1 and GGG2.

The covariance matrix for any quantum state obeys the in-
equality GGG � −i ���/2 in terms of ��� =̂( 0 1

−1 0) that is related to
the two-dimensional symplectic group, which is a recast of the
Heisenberg-Robertson-Schrödinger (HRS) uncertainty rela-
tion for position and momentum operators. This gives the equi-
valent stricter inequality det {GGG} � 1

4 in addition to the
standard positivity constraint for GGG. The reconstruction of the
full covariance matrix GGG involves the quantum tomography
of all the five independent parameters that define the first
and second operator moments of the state. Here, the figure of
merit of the reconstruction accuracy is the mean-squared error

(MSE) D = E[Tr{(ĜGG − GGG)
2}] between GGG and its estimator ĜGG.

In terms of GGG1 and GGG2,

D = E[Tr{(ĜGG1 − GGG1)2}]︸ ︷︷ ︸
= D1

+E[Tr{(ĜGG2 − GGG2)2}]︸ ︷︷ ︸
= D2

+{cross terms}. (2.2)

To illustrate the physics behind moment reconstruction, we
shall analyze both the first- and second-moment reconstruction
accuracy separately. In practice, these analyses are relevant
to the situation where the reconstructions of GGG1 and GGG2

are carried out with independent data. For this situation, the
{cross terms} in Eq. (2.2) vanish so that the total MSE is the
sum of the respective MSEs D1 and D2 of the reconstructed
moments. From hereon, to facilitate discussions, we shall
analyze the quantity rrr = 〈RRR〉 in place of GGG1, where D1 =
E[(̂rrr − rrr)2].

In unbiased statistical estimation theory [52], the MSE
D � Tr{FFF−1} is bounded from below by the inverse of
the Fisher information matrix FFF , or the Cramér-Rao bound
(CRB). Consequently, we have the respective first- and second-
moment CRBs D1 � Tr{FFF−1

1 } and D2 � Tr{FFF−1
2 }. Therefore,

the general theory of the Fisher matrices FFF 1 and FFF 2 for the
two CV schemes is in order.

Two crucial factors that affect the CRB are the type
of measurement used for reconstruction, as well as the
measurement resources or number of sampling events N

detected by this measurement. In this article, we are interested
in comparing the reconstruction accuracies of different mea-
surement types. Therefore, the important quantities of interest
are the scaled versions of the CRBs, H1 = N Tr{FFF−1

1 } and
H2 = N Tr{FFF−1

2 }, or their respective scaled Fisher matrices
F̃FF 1 = FFF 1/N and F̃FF 2 = FFF 2/N .
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FIG. 1. Schema for the (a) homodyne and (b) heterodyne setups.
Here, BS denotes the beam splitter and LO denotes the local oscillator.

III. GENERAL THEORY

A. Homodyne detection

The homodyne detection [6–8] involves a 50:50 beam
splitter that introduces an interference between the optical
source of an unknown state (signal) and the local oscillator
(coherent-state reference source), the latter of which is set to
a much larger optical intensity than the mean intensity of the
optical source of an unknown quantum state ρ [see Fig. 1(a)].
A subtraction of the output photocurrents gives a distribution
of voltage readouts −∞ < xϑ < ∞ for the local-oscillator
phase 0 � ϑ � π , which essentially corresponds to the
eigenvalue probability distribution of the quadrature operator
Xϑ = X cos ϑ + P sin ϑ . It then follows that statistically, the
expectation value 〈Xm

ϑ 〉 for any integer value m contains all
measurable information about the mth operator moments of
X and P . Since the data acquired with this scheme are the
marginals of the Wigner function, the first (m = 1) and second
(m = 2) moments, or GGG, that are reconstructed with these data
may be attributed to this quasiprobability distribution function.

In a typical homodyne experiment, the value of ϑ is set
to increase linearly. The data collected would then be binned
for all the measured ϑ values. The data bins are mutually
independent, so that the Fisher matrices FFF 1,hom and FFF 2,hom

for the respective first- and second-moment CRBs can each
be understood as a summation of Fisher matrices of every
local-oscillator phase bin according to the additivity property
of the Fisher information. In the limit of large number of
sampling events N , the central limit theorem states that the
unbiased estimator ̂〈Xm

ϑ 〉 of the mth quadrature moment 〈Xm
ϑ 〉

that is defined as an average sum of independently collected
random voltage values for the phase ϑ follows a Gaussian
distribution of data mean μ = μ(ϑ) = 〈Xm

ϑ 〉 and data variance
σ 2/N where σ 2 = σ (ϑ)2 = 〈X2m

ϑ 〉 − 〈Xm
ϑ 〉2, so that the Fisher

matrix

FFFϑ,m = N

σ 2

∂μ

∂aaa

∂μ

∂aaa
+ 1

2σ 4

∂σ 2

∂aaa

∂σ 2

∂aaa
(3.1)

for a given phase ϑ in the large-N limit follows the well-known
expression for Gaussian distributions, where in our case aaa is
the column of mth moment parameters we are interested in
reconstructing. As it is clear that only the first term of (3.1)
would survive in this limit, we thus have the scaled homodyne
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Fisher matrix

F̃FFm,hom =
∫

(π)

dϑ

π

FFFϑ,m

N
=
∫

(π)

dϑ

π

1

σ (ϑ)2

∂μ(ϑ)

∂aaa

∂μ(ϑ)

∂aaa

(3.2)

with respect to the number of sampling events N for the
complete set of homodyne quadrature-eigenstate outcomes.

1. First-moment reconstruction

All information about the first moments, aaa = rrr , of the
covariance matrix is completely encoded in the expectation
value μ(ϑ) = 〈Xϑ 〉. The variance for the data is then given
by σ (ϑ)2 = 〈X2

ϑ 〉 − 〈Xϑ 〉2. The scaled Fisher matrix for the
first-moment estimation with homodyne data is therefore given
by

F̃FF 1,hom =
∫

(π)

dϑ

π

mmmϑ〈
X2

ϑ

〉− 〈Xϑ 〉2
, (3.3)

where

mmmϑ =
(

(cos ϑ)2 sin ϑ cos ϑ

sin ϑ cos ϑ (sin ϑ)2

)
. (3.4)

The integral can be evaluated exactly, bringing us to the closed-
form expression

H1,hom = Tr{GGG} + 2
√

det {GGG}. (3.5)

With the machinery of quantum tomography (see
Appendix A 1), an observer can construct the optimal moment
estimator that achieves the scaled CRB. Suppose that the
observer collects homodyne data for N sampling events and
bins the voltage values into {xjk} according to a discrete
number nϑ of phase bins ϑk , where j labels the nx real voltage
values per phase bin ϑ = ϑk and k labels the phase bins.
Then, an unbiased estimator for any particular expectation
value 〈Xk〉 ≡ 〈Xϑk

〉 would be

〈̂Xk〉 = 1

N

nx∑
j=1

njkxjk,

nϑ∑
k=1

nx∑
j=1

njk =
nϑ∑

k=1

Nk = N.

(3.6)

Upon denoting uuuk ≡ uuuϑk
= (cos ϑk sin ϑk)T where we note

that mmmk = uuukuuu
T
k , the optimal first-moment estimator is given

by

r̂rr
(opt)
hom = WWW−1

1

nϑ∑
k=1

uuuk

Nk 〈̂Xk〉〈̂
X2

k

〉− 〈̂Xk〉2 ,

(3.7)

WWW 1 =
nϑ∑

k=1

mmmk

Nk〈̂
X2

k

〉− 〈̂Xk〉2 ,

which is immediately computable given the processed data
{〈̂Xk〉} and {〈̂X2

k〉} that are defined by

̂〈Xm
k

〉 = 1

N

nx∑
j=1

njkx
m
jk (m = 1,2, . . .). (3.8)

That this estimator achieves the scaled CRB asymptotically
is also shown in Appendix A 1. This equivalently implies that

the optimal estimator is as efficient as the maximum-likelihood
estimator for the multinomially distributed binned data {xjk}.

2. Second-moment reconstruction

To estimate GGG2, it is clear that second-moment information
is completely encoded in the second quadrature moment 〈X2

ϑ 〉,
which is a function of the three independent parameters a1 =
〈X2〉, a2 = 〈 1

2 {�X,�P }〉, and a3 = 〈P 2〉. From Eq. (3.2), the
corresponding 3 × 3 Fisher matrix for these three parameters
is

F̃FF 2,hom =
∫

(π)

dϑ

π

MMMϑ〈
X4

ϑ

〉− 〈
X2

ϑ

〉2 , (3.9)

where

MMMϑ =̂
⎛⎝ (cos ϑ)2√

2 sin ϑ cos ϑ

(sin ϑ)2

⎞⎠
× ((cos ϑ)2

√
2 sin ϑ cos ϑ (sin ϑ)2). (3.10)

The analytical answer to F̃FF 2,hom for an arbitrary state,

and its subsequent inverse H2,hom = Tr{F̃FF−1
2,hom}, is difficult

to calculate, as the denominator in the integrand generally
contains trigonometric functions in a complicated manner.
Nevertheless, the integral can be calculated explicitly for many
interesting and important quantum sources.

The optimal second-moment estimator (see Appendix A 2)
that achieves the corresponding scaled CRB can be cleanly
expressed using the vectorization operation vec(YYY ) that turns
a matrix into a column according to

YYY =̂
(

y1 y2

y2 y3

)
�→ vec(YYY ) ≡̂

⎛⎝ y1√
2 y2

y3

⎞⎠ (3.11)

in any prechosen basis, such that Tr{YYY 1YYY 2} =
vec(YYY 1) Tvec(YYY 2) for any two 2 × 2 symmetric matrices
YYY 1 and YYY 2. Given the processed data defined in Eq. (3.8),
the final operationally ready expressions for this optimal
estimator are given as follows:

ĜGG
(opt)
2,hom = WWW−1

2

nϑ∑
k=1

vec(mmmk)
Nk

〈̂
X2

k

〉
〈̂
X4

k

〉− 〈̂
X2

k

〉2 ,

(3.12)

WWW 2 =
nϑ∑

k=1

MMMk

Nk〈̂
X4

k

〉− 〈̂
X2

k

〉2 .

For accurate tomography, the value of N is typically

large enough such that ĜGG
(opt)
2,hom is a proper covariance ma-

trix and approaches the maximum-likelihood estimator that
asymptotically achieves the scaled CRB, which is strictly

speaking the correct regime where ĜGG
(opt)
2,hom is to be used for

second-moment tomography. On a separate note, optimal
estimators for overcomplete quantum-state tomography of ρ

was developed in [53] and later rederived in [54] with the
variational principle that is also used to construct the optimal
moment estimators in Appendix A.
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B. Heterodyne detection

The heterodyne detection scheme essentially uses two
homodyne setups to perform a joint measurement of two
complementary observables [see Fig. 1(b)], which are in this
case chosen to be the standard X and P quadrature pair for
convenience. It is well known [11–18] that the product of
their joint-measurement standard deviations has a larger lower
bound than the usual one-half of a quantum unit given by the
original Heisenberg relation owing to the additional quantum
noise introduced by the joint measurement.

The outcomes for this scheme are in fact the overcomplete
set of coherent states. This means that the resulting data are
direct phase-space samples of the Husimi function for the
statistical operator ρ. The technical complication of having
additional measurement noise can therefore be translated
completely into the phase-space language that is relevant
in our subsequent analysis. Given an infinite set of the
Husimi-function data, we have access to the moments xkpl

(the overline denotes the average with respect to the Husimi
function, or simply the Husimi average), with which the
corresponding “GGG” operator

GGGhet =̂
(

x2 − x2 xp − x p

xp − x p p2 − p2

)
(3.13)

can be directly constructed. One can then show that for any
quantum state,

GGGhet = GGG + 111

2
. (3.14)

The corresponding Arthurs-Kelly–type measurement uncer-
tainty relation

VarQ[x]VarQ[p] =
[
〈(�X)2〉 + 1

2

][
〈(�P )2〉 + 1

2

]
� 1,

(3.15)

which is saturated by coherent states [〈(�X)2〉 = 〈(�P )2〉 =
1
2 ], can thereafter be understood as a physical manifestation
of the Gauss-Weierstrass transform [related to Eq. (3.14)]
between the Wigner and Husimi functions if the joint-
measurement data are directly used to calculate variances (here
denoted by VarQ[y] = y2 − y2 for a complete Husimi-function
data {y}). We shall show that this additional quantum noise,
when combined with optimal tomography strategies, can still
lead to better moment-reconstruction accuracies relative to the
homodyne scheme.

1. First-moment reconstruction

From Sec. III B, we note that the data collected from the
heterodyne scheme are a scatter set of phase-space coordinates
{(xj ,pj )} that are distributed according to the Husimi function.
As Eq. (3.14) tells us that there is no difference between the
state average rrr and Husimi average of (x p)T, being a two-
parameter estimation scheme, the first-moment scaled CRB
with respect to the heterodyne data can again be found by
taking the average of the distance between the estimator

r̂rrhet =̂ 1

N

N∑
j=1

(
xj

pj

)
(3.16)

and the true column rrrT=̂ (x p):

D1,het = E[(̂rrrhet − rrr)2] = 1

N
(VarQ[x] + VarQ[p]), (3.17)

so that

H1,het = VarQ[x] + VarQ[p] = Tr{GGG} + 1. (3.18)

That ND1,het = H1,het follows in the limit of large N , where
the unbiased estimator r̂rrhet is asymptotically optimal since in
this limit, the distribution of r̂rrhet follows a bivariate Gaussian
distribution with vanishing widths, such that r̂rrhet becomes
the maximum-likelihood estimator that approaches the scaled
CRB for this Gaussian distribution.

2. Second-moment reconstruction

Similarly, to arrive at the optimal accuracy for estimating
GGG2 using heterodyne data, we define the natural second-
moment estimator

ĜGG2,het =̂ 1

N

N∑
j=1

(
x2

j xjpj

xjpj p2
j

)
, (3.19)

where {(xj ,pj )} are again the sampled Husimi-function data
collected during heterodyne detection. From Eq. (3.14), we
get

GGG2,het = GGG2 + 111

2
. (3.20)

The MSE D2,het for heterodyne detection concerning
second-moment estimation is consequently given by

D2,het = E[Tr{(ĜGG2,het − GGG2,het)
2}]

= Tr
{
E
[
ĜGG

2
2,het

]}− Tr
{
GGG2

2,het

}
= 1

N
(VarQ[x2] + VarQ[p2] + 2 VarQ[xp]). (3.21)

In the large-N limit, this MSE is essentially the scaled CRB

H2,het = VarQ[x2] + VarQ[p2] + 2 VarQ[xp] (3.22)

since ĜGG2,het again becomes the maximum-likelihood estimator.
To see this, we inspect the Fisher matrixFFF 2,het for the estimator
ĜGG2,het. If we look at the random column

xxx = vec(ĜGG2,het)≡̂ 1

N

N∑
j=1

⎛⎝ xj√
2 xjpj

pj

⎞⎠ (3.23)

that represents ĜGG2,het, we find that in the limit of large N ,
the central limit theorem again says that xxx follows a Gaussian

distribution defined by the mean μμμ = xxx =̂ (x2
√

2 xp p2)
T

and the covariance matrix (unimportant entries marked by ∗)

			 = xxxxxx T − μμμμμμ T =̂ 1

N

⎛⎝VarQ[x2] ∗ ∗
∗ 2 VarQ[xp] ∗
∗ ∗ VarQ[p2]

⎞⎠,

(3.24)

so that we eventually recover the well-known result			 = FFF−1
2,het

for Gaussian scatter data that saturates the CRB as we
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remember that Tr{			} = D2,het. Equation (3.22) then follows
tout de suite.

IV. FIRST-MOMENT ESTIMATION

A. General optimality of heterodyne tomography

As far as first-moment estimation is concerned, the general
results in Eqs. (3.5) and (3.18) imply that H1,het � H1,hom for
any quantum state. This main result hinges on the physical
HRS uncertainty relation, which is equivalent to the constraint
det {GGG} � 1

4 for the covariance matrix GGG. This constraint
means that

H1,hom = Tr{GGG} + 2
√

det{GGG} � Tr{GGG} + 1 = H1,het. (4.1)

This implies that for all quantum states, the reconstruction
accuracy of the optimal heterodyne first-moment estimator
is always higher or equal to that of the optimal homodyne
first-moment estimator in locating the average center of the
quantum state in phase space. For minimum-uncertainty states,
the accuracies of the two schemes are equal (H1,hom = H1,het).
Subsequent well-known and interesting examples merely
illustrate this fundamental fact. In terms of the first-moment
performance ratio

γ1 = H1,het

H1,hom
, (4.2)

a subunit magnitude indicates that the heterodyne scheme
outperforms the homodyne scheme.

B. Gaussian states

For a Gaussian state where the covariance matrix GGG

characterizes the spread of its Wigner function, the state
variance of Xϑ is simply〈

X2
ϑ

〉− 〈Xϑ 〉2 = uuu T
ϑ GGGuuuϑ. (4.3)

From Eqs. (3.5) and (3.18), the first-moment performance ratio

γ1 = Tr{GGG} + 1

Tr{GGG} + 2
√

det{GGG} � 1 (4.4)

clearly cannot exceed one since any physical state satisfying
the HRS uncertainty relation must take det {GGG} � 1

4 . The
maximum value of γ1 = 1 is attained for minimum-uncertainty
states.

C. Fock states

A Fock state of the ket |n〉 is always centered at the origin of
the phase space (rrr = 000). The circular symmetry of these states
imply the fact that (�X)2 = (�P )2 = n + 1/2 = (�Xϑ )2,
hence

H1,hom = 2(2n + 1) (4.5)

since such states have zero first moments. On the other hand,
for the heterodyne scheme, we get

H1,het = 2(n + 1) (4.6)

by simply using the Husimi characteristic function from Table I
in Appendix B. Therefore, we get a

γ1 = n + 1

2n + 1
(4.7)

that is always subunity unless n = 0, a result that is again
familiar from Sec. IV B. In the limit of large photon numbers,
the first-moment γ1 approaches 1

2 .

D. Even and odd coherent states

Another popular class of non-Gaussian states with inter-
esting phase-space quantum interference features are the even
and odd coherent states characterized by the ket |±; α0〉 =
(|α0〉 ± |−α0〉)N± of appropriate normalization constants
N± = 1/

√
2 ± 2 e−2|α0|2 , whose first moments rrr are all equal

to zero. Using the definitions a = 1
2 [〈(�X)2〉 − 〈(�P )2〉] =

α2
0 and b± = 1

2 [〈(�X)2〉 + 〈(�P )2〉] = α2
0[tanh(α2

0)]
±1 + 1

2 ,

H1,hom = 2(b± +
√

b2± − a2). (4.8)

For the heterodyne counterpart, one finds that

H1,het = 2
(
b± + 1

2

)
, (4.9)

which contributes to the performance ratio

γ1 = b± + 1
2

b± +
√

b2± − a2
. (4.10)

For both types of coherent-state superpositions, γ1 → 1
as α0 → ∞. For even coherent states, the performance ratio
γ1 = 1 when α0 = 0 as it should. Otherwise, this ratio is always
less than one for any positive α0. There exists a single local
minimum of γ1 ≈ 0.7577 at α0 ≈ 1.715. For odd coherent
states, γ1 < 1 for all α0 values, with the minimum value of
γ1 = 1

3 at α0 = 0. For these states, γ1 increases monotonically
to one as α0 tends to infinity.

E. Displaced Fock states

Displacement and photon addition are two important
physical procedures that are frequently discussed in quantum
physics. The different orders in which these processes are
carried out on the vacuum state give output states of a different
nature. Displacing an m-photon-added vacuum state by a
complex amplitude α0 results in displaced Fock states defined
by the ket D(α0)|m〉 can be effectively performed using a
beam splitter with a high transmissivity and a strong coherent
state [55,56].

It can be shown easily that the first-moment scaled CRBs are
indeed given by Eqs. (4.5) and (4.6), so that the performance
ratio is then completely identical to that of the usual central
Fock states in Eq. (4.7). This reflects the physical fact that
the accuracy in estimating the displacement cannot explicitly
depend on where the center of the displaced Fock states is
when full sets of CV measurement outcomes are considered,
as the tomographic coverage of the entire phase space is then
complete. This accuracy depends only on the variances, which
describe the second-order symmetry and is unaffected at all
by the displacement.
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F. Photon-added coherent states

A swap in the order of photon addition and displacement
on the vacuum state gives the photon-added coherent state of
m added photons and reference amplitude α0 is defined by the
ket |m; α0〉 = Nm,|α0|2A

†m|α0〉 with the bosonic annihilation
operator A, where the normalization constant Nm,|α0|2 =
e|α0|2/2/

√
m!1F1(m + 1; 1; |α0|2) involves the confluent hy-

pergeometric function of the first kind 1F1(a; b; y). The
integer value m denotes the extent to which the mean photon
number

〈A†A〉 = (m + 1) 1F1(m + 2; 1; |α0|2)

1F1(m + 1; 1; |α0|2)
− 1, (4.11)

which is always larger than |α0|2 + m whenever α0 �= 0, is
increased nonlinearly by the operation by A†m on the reference
coherent ket |α0〉. This particular class of quantum states is but
one of many possible kinds of photon-added states, which
are of interest to the quantum community for testing some
fundamental statements [57–59].

For these photon-added coherent states, the second-order
symmetry is now affected by the combined action of the
displacement and photon addition, so that 〈(�X)2〉 and
〈(�P )2〉 are functions of m and α0. These expressions
can be straightforwardly computed with the help of the
characteristic functions given in Table I in Appendix B. By
defining

a = − α2
0(m + 1)

2 1F1
(
m + 1; 1; α2

0

)2

[
2(m + 1) 1F1

(
m + 2; 2; α2

0

)2

− (m + 2) 1F1
(
m + 1; 1; α2

0

)
1F1

(
m + 3; 3; α2

0

)]
,

b = m + 1

2
− α2

0m 1F1
(
m + 1; 2; α2

0

)
1F1

(
m + 1; 1; α2

0

)2

[
1F1

(
m + 1; 1; α2

0

)
+m 1F1

(
m + 1; 2; α2

0

)]
, (4.12)

such that b > a, the first-moment scaled CRB for homodyne
detection is of the same form as in Eq. (4.8), namely,

H1,hom = 2(b +
√

b2 − a2). (4.13)

The first-moment scaled CRB for heterodyne detection is given
by

H1,het = 2

[
a + (m + 1)

1F1
(
m + 2; 2; α2

0

)
1F1

(
m + 1; 1; α2

0

)]. (4.14)

Clearly, when α0 = 0, the answers in Eqs. (4.5) and (4.6) for
an m-number Fock state are reproduced exactly. With m = 0,
the respective scaled CRBs of a value of 2 for all α0’s are
furthermore consistent with Sec. IV B. Otherwise, γ1 is always
subunity, and approaches unity as α0 → ∞.

V. SECOND-MOMENT ESTIMATION

A. Gaussian states

It seems fitting to commence the discussion of second-
moment estimation with the Gaussian state, for it is natural
to begin with the generalization of the results that already
appeared in Refs. [44,45] to general noncentral Gaussian
states (rrr �= 000). We suppose that the Gaussian state of the
covariance matrix GGG is centered at rrr = rrr0 = (x0 p0) T. From
Table I in Appendix B, by defining μϑ = uuu T

ϑ rrr0 and σ 2
ϑ =

uuu T
ϑ GGGuuuϑ , the variance for the second quadrature moment

reads as 〈
X4

ϑ

〉− 〈
X2

ϑ

〉2 = 2 σ 2
ϑ

(
σ 2

ϑ + 2 μ2
ϑ

)
. (5.1)

For central Gaussian states (〈X〉 = 〈P 〉 = 0), we have 〈X4
ϑ 〉 =

3〈X2
ϑ 〉2 and the scaled Fisher matrix in Eq. (3.9) turns into the

familiar form in [44,45]. For the more general situation, one
can repeat the contour-method integration in [44] to calculate
the scaled Fisher matrix in Eq. (3.9). The answer is given as

F̃FF 2,hom = −2

(c + ib)(w3 + iw2)

[
Mz=0

z1+z1−z2+z2−

+ Mz=z1−

z1−(z1− − z1+)(z1− − z2+)(z1− − z2−)

+ Mz=z2−

z2−(z2− − z1−)(z2− − z1+)(z2− − z2+)

]
(5.2)

together with the definitions

a = 1

2
Tr{GGG}, b = 1

2
(GGG11 − GGG22), c = GGG12,

w1 = a + rrr2
0, w2 = b + x2

0 − p2
0, w3 = c + 2x0p0,

z1± = −a ± i
√−a2 + b2 + c2

b − ic
, z2± =

−w1 ± i

√
−w2

1 + w2
2 + 2w2

3

w2 − iw3
, (5.3)

Mz =̂ 1

16

⎛⎝ (z + 1)4 −i
√

2(z − 1)(z + 1)3 −(z2 − 1)2

−i
√

2(z − 1)(z + 1)3 −2(z2 − 1)2 i
√

2(z + 1)(z − 1)3

−(z2 − 1)2 i
√

2(z + 1)(z − 1)3 (z − 1)4

⎞⎠.

When rrr0 = 0, we have w1 = a, w2 = b, and w3 = c and the
scaled Fisher matrix F̃FF 2,hom reduces to that for the central
Gaussian state in [44]. For the general setting, the full
expression of H2,hom is omitted here in this case due to

its complexity. On the other hand, the scaled CRB with the
heterodyne scheme for these noncentral Gaussian states can
be calculated directly from Eq. (3.22) using the characteristic
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function in Table I and is given by

H2,het = 2
(
Tr{GGGhet}2 − det{GGGhet}

+ rrr0
T GGGhet rrr0 + Tr{GGGhet}rrr2

0

)
, (5.4)

where one immediately verifies the counterpart expression
in [44] for the central Gaussian states upon setting rrr0 = 000.

At this stage, we reassure ourselves the physics of the
problem of second-moment tomography by understanding,
first, that in the case where tomography is performed on
the full covariance matrix GGG, then the scaled CRB, which
is the minimum of the MSE, should not depend on the
orientation of the two-dimensional uncertainty region (here
being an ellipse for any Gaussian state) described by the
eigenvectors of this matrix but only its eigenvalues owing to
the form of the MSE. Additionally, the accuracy should also
be independent of rrr0. When only the second-moment matrix
GGG2 is reconstructed, the scaled CRB should also not depend on
its eigenvectors but only its eigenvalues. The physics remains
the same. However, there is a difference between estimating
the full matrix GGG and estimating just GGG2. Since GGG2 is in
general an increasing function of the first moments, this means
that as the displacement of the center from the phase-space
origin for the quantum state increases, the geometric mean of
eigenvalues (GME) of GGG2 correspondingly becomes larger so
that the second-order “temperature” of the state, a terminology
borrowed from Gaussian states, as described by the GME
is now higher and this results in a stronger GGG2-“thermal”
property much like the thermal Gaussian states. So we
would expect, based on the findings in [44], that states with
large displacements give poor second-moment tomographic
accuracies for both CV schemes, and yet provide a subunit

γ2 = H2,het

H2,hom
(5.5)

performance ratio. It is also physically intuitive that the
accuracies for both schemes should also be independent of the
angle of displacement, but depend only on the magnitude of
the displacement. For non-Gaussian states, the fourth moments
arising from the structure of the MSE, which are no longer
functions of the first and second moments as is the case
for Gaussian states, also contribute to the scaled CRB, and
therefore γ2, as described in the general theory in Sec. III.

This physics, however, seems to be violated by the
noncentral-Gaussian-state expressions in (5.2) and (5.4),
namely, that H2,het depends on the explicit displacement vector
rrr0 and covariance matrix GGG, for instance. This mishap has
nothing to do with any kind of physical violation, but has only
to do with the way we specify Gaussian states. By choosing
to parametrize a multivariate Gaussian distribution using the
natural independent parameters rrr0 and GGG (the full matrix), we
inadvertently change the eigenvalues of GGG2 by changing rrr0

and fixing GGG. This becomes obvious when one finds that the
two positive eigenvalues λ± of GGG2 are given by

λ± = |α0|2 + 1
2 Tr{GGGhet} ± |α2

0 + www T GGGhet www|2, (5.6)

where www = 1√
2
(1 i) T and α0 = (x0 + ip0)/

√
2. The conse-

quence of this natural definition results in such an apparent
observation. The noncentral Gaussian states so defined form
the singular example in this article where this happens, and

μμ

μ

λλ

λ

γ2γ2

γ2

FIG. 2. Plots of γ2 surfaces for φ = 0 and different displacement
magnitudes along the x axis in phase space. The center plot refers
to the critical displacement magnitude of

√
5/32 ≈ 0.395, beyond

which γ2 < 1 for all μ and λ. The surface tip at μ = λ = 1 for the
coherent states is invariant under a displacement rotation. It is clear
from these plots that increasing the temperature reduces the value of
γ2, while increasing the squeezing strength counters this reduction.

the two other noncentral non-Gaussian states which we shall
soon visit do not have this technical issue.

To investigate the second-moment performance ratio γ2 =
H2,het/H2,hom, we may reparametrize the eigenvalues of GGG

with the squeezing strength 1 � λ < ∞ and the temperature
parameter 1 � μ < ∞ that measures how thermal the state is
relative to minimum-uncertainty states, which are commonly
adopted in describing Gaussian states. Then GGG has the spectral
decomposition

GGG =̂
(

cos φ − sin φ

sin φ cos φ

)( μ

2λ
0

0 μλ

2

)(
cos φ sin φ

− sin φ cos φ

)
,

(5.7)

where φ orientates the eigenvectors of GGG. In this parametriza-
tion, we can clearly see that a large displacement magnitude
contributes to a large temperature, so that a small value of γ2

can be anticipated for these highly displaced or GGG2-thermal
Gaussian states based on the conclusions in [44,45]. The
behavior of γ2 is very similar to that for the central Gaussian
states and is plotted in Fig. 2 for various values of |α0|.
The lowest achievable γ2 values go with the highly thermal
Gaussian states (λ = 1, μ � |rrr0|), whose covariance matrix
GGG = μ111/2 is simply a multiple of the identity. Their second
quadrature moment has a variance 〈X4

ϑ 〉 − 〈X2
ϑ 〉2 = μ2/2,

according to Eq. (5.1), that is of course independent of the
phase ϑ due to the rotational symmetry. The performance ratio
then takes the minimum value of 3

10 .
The maximum of γ2 occurs with the coherent states

(μ = λ = 1) and takes a value of 6
5 for rrr0 = 000. For larger

magnitudes of α0, the value of γ2 drops below unity beyond the
magnitude of |α0| = √

5/32, which can be obtained through
optimization. One may verify that at this critical magnitude,
H2,hom = H2,het = 63

8 . So, given a displacement magnitude

larger than
√

5/32, the heterodyne scheme always outperforms
the homodyne scheme in second-moment estimation. In the
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x0x0

x0

p0p0

p0

γ2γ2

γ2

FIG. 3. Plots of γ2 surfaces against the displacement rrr0 for
φ = 0 and different values of μ = λ. In the limit μ → ∞, γ2 � 1
approaches unity at p0 = 0. The signature peak of γ2 = 6

5 = 1.2 at
x0 = p0 = 0 for μ = 1 is consistent with the finding in Refs. [44,45]
for central Gaussian states.

limit of large μ and λ, where we may take this limit such that
μ = λ without loss of generality, if one considers the spectral
decomposition in Eq. (5.7), then γ2 for φ = 0 plotted in Fig. 3
shows the values for different μ as an indication that γ2 � 1
in this limit. Different φ values simply rotate these plots in the
x0-p0 plane.

B. Fock states

Owing to the rotational symmetry of the Fock states [GGG2 =
(n + 1/2)111], the second and fourth quadrature moments〈

X4
ϑ

〉− 〈
X2

ϑ

〉2 = 1
2

〈
X2

ϑ

〉2 + 3
8 (5.8)

are independent of the phase ϑ , so that the Fisher matrix

FFF 2,hom = 1

4(n2 + n + 1)

⎛⎝3 0 1
0 2 0
1 0 3

⎞⎠. (5.9)

It then follows that the scaled CRB is given by

H2,hom = 5 (n2 + n + 1). (5.10)

On the other hand, the Husimi characteristic function for the
Fock states in Appendix B produces the answer

H2,het = 2 (n + 1)(n + 3). (5.11)

The performance ratio

γ2 = 2 (n + 1)(n + 3)

5 (n2 + n + 1)
(5.12)

is less than one for n � 2, in which regime the Fock states
are sufficiently GGG2 “thermal”. For n = 0, we evidently obtain
the familiar answer γ2 = 6

5 for the vacuum state, whereas for
n = 1, γ2 = 16

15 . In the limit of large n, γ2 → 2
5 (see Fig. 4).

C. Even and odd coherent states

Since the eigenvalues

λ
(±)
± = 1

2 + |α0|2{[tanh(|α0|2)](±1) ± 1} (5.13)

FIG. 4. Plot of γ2 (solid blue squares) against n for Fock states.
As n increases, γ2 decreases monotonically and eventually saturates
at a subunit constant of 2

5 (dashed red line).

of GGG2 are simple functions of |α0|2 for the even and odd (±)
coherent states, we may take α0 � 0 without loss of generality.
The quadrature moments can be easily derived with the help
of Appendix B, which give the following second-moment
variance:〈

X4
ϑ

〉− 〈
X2

ϑ

〉2 = 1

2
+ 2α2

0

{
cos(2ϑ) + [

tanh
(
α2

0

)]±1}
± 4α4

0(
eα2

0 ± e−α2
0
)2 . (5.14)

By relying on the asymptotic behaviors coth y ≈ 1/y and
cosech y ≈ 1/y of the hyperbolic trigonometric functions for
small arguments, we revert to the limiting second-moment
variances for n = 0 and 1, which is consistent with the fact
that the even states approach the vacuum state and the odd
states approach the single-photon Fock state. The Fisher matrix
FFF 2,hom thus takes the simple form

FFF 2,hom =
∫

(π)

dϑ

π

MMMϑ

m± + l cos(2ϑ)

(
l = 2α2

0 < m±
)
,

(5.15)

m± = 1

2
+ 2α2

0

[
tanh

(
α2

0

)]±1 ± 4α4
0(

eα2
0 ± e−α2

0
)2 ,

hence, one obtains

H2,hom = 6m± + 4
√

m2± − l2 (5.16)

after carrying out the integration, matrix inversion, and matrix
trace. On the other hand, the Husimi-average moments of the
heterodyne data contribute to the result

H2,het = 6 + 12α2
0

[
tanh

(
α2

0

)]±1 ± 8α4
0(

eα2
0 ± e−α2

0
)2 (5.17)

for the heterodyne scaled CRB.
We once again remind the reader that the scaled CRBs

stated in Eqs. (5.16) and (5.17) are independent of the phase
of the even and odd coherent states, as this phase amounts to
a rotation in phase space that is immaterial in determining the
moment-estimation accuracy. For arbitrary complex values of
α0, the expressions are still valid after the change α2

0 → |α0|2.
The ratio γ2 is greater than one for small values of α0,

with the special limiting cases (α0 = 0) being those of the
respective Fock states, and less than one for large values of α0.
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α0

γ2

FIG. 5. Plots of γ2 for the even (solid blue curve) and odd (dashed
red curve) coherent states against the parameter α0 that characterizes
the even and odd coherent states. For the even coherent states, the
unit-γ2 crossover occurs at α0 ≈ 0.693, whereas for the odd coherent
states, this happens at α0 ≈ 1.128. Furthermore, for each type of
states, γ2 possesses a stationary global minimum. For the even states,
the minimum value of γ2,min = 0.770 96 is attained at α0 = 1.148 ≈
1. For the odd states, this optimum value is γ2,min = 0.867 96 and is
achieved with α0 = 1.980 ≈ 2.

The crossover values for which these states become sufficiently
GGG2 “thermal” such that γ2 = 1 differ for both the even and odd
states (see Fig. 5). For sufficiently large α0, γ2 approaches unity
from below. This can be clearly seen by taking the limit α0 →
∞. In this limit, we have m± → 2α2

0 = l so that H2,hom →
12α2

0 ≈ H2,het. For these class of states, γ2 has a stationary
minimum that is again different for the two types of states,
and this is elucidated in Fig. 5. At α0 ≈ 0.631, the γ2 values
for the even and odd states are equal, even though their GGG2

matrices are very different. The reason is that the combined
contributions of all the second and fourth moments give an
overall multiplicative factor of about 2.0694 to both H2,het

and H2,hom for the odd state relative to the even state.

D. Displaced Fock states

As opposed to the previous three classes of states, the
displaced Fock states (as well as the photon-added coherent
states that follow) possess a nonzero quadrature first moment.
As the only two parameters α0 = (x0 + ip0)/

√
2 and m that

characterize these displaced Fock states do not, in any way,
restrict the covariance matrix GGG, it is easy to show that the GGG2

geometry, and hence its reconstruction accuracy, depend only
on the displacement magnitude |α0|2 and not its phase. This is
done by directly inspecting the eigenvalues of GGG2, namely,

λ1 = m + 1
2 ,

λ2 = m + 2|α0|2 + 1
2 , (5.18)

one of which is an increasing function of |α0|2. As a result, we
only need to consider the case where α0 = x0/

√
2 is positive.

As α0 increases, the GME increases, which means that the
quantum state becomes more GGG2 “thermal.” We shall soon see
that an increase in |α0|2 results in a smaller performance ratio
γ2 in favor of the heterodyne scheme.

To calculate the homodyne scaled CRB, we first note that
the relevant even-order quadrature moments (see Appendix B)

supply the second-moment quadrature variance〈
X4

ϑ

〉− 〈
X2

ϑ

〉2 = m0 + l cos(2ϑ),

m0 = 1
2

[
m2 + m + α2

0 (8m + 4)
]
, (5.19)

l = 2 α2
0 (2m + 1) < m0,

which bears striking resemblance in form with that for the even
and odd coherent states, so that the scaled CRB also takes the
same closed form as Eq. (5.16) inasmuch as

H2,hom = 6 m0 + 4
√

m2
0 − l2. (5.20)

For the heterodyne scheme, we subsequently get

H2,het = 2 (m + 1)
(
m + 6 α2

0

)
(5.21)

by again referring to Table I.
The interplay between the discrete (m) and continuous

(α0) parameters gives rise to familiar cases that have al-
ready been analyzed previously for the Gaussian and Fock
states. For m = 0, we of course have the coherent state of
amplitude α0 where the maximum γ2(α0 = 0) = 6

5 and the

crossover point γ2(α0 = √
5/32) = 1 beyond which γ2 < 1

are reproduced by Eqs. (5.20) and (5.21). For m = 1, we
have the m = 1 Fock state for α0 = 0 so that the unsurprising
number γ2(α0) = 16

15 comes up from the same scaled CRB
expressions. The crossover point for γ2 = 1 is located at

α0 = 1
2

√
19/3 − 2

√
87/3 ≈ 0.1696. The performance ratio

becomes subunit for all displacements α0 for m � 2, just like
the Fock states. In the limit of large displacements α2

0 � m,
we have m0 → l and

γ2
(
α2

0 � m
) = m + 1

2m + 1
, (5.22)

which approaches 1
2 in the regime α2

0 � m � 1.
For this two-parameter quantum state, it is interesting to

look at the minimum value of γ2 over all possible displacement
magnitudes α0 for each m [see Fig. 6(a)]. To calculate the
minimum stationary points α0 = α̃0, we differentiate γ2 with
respect to α0 and set the derivative to zero. While the analytical
form for the optimal γ2 = γ2,min as a complicated function of
m exists, the approximated forms

γ2,min ≈
{

0.8504 − 0.5893 m (small-m regime),

0.3693 + 0.6565
m

(large-m regime)
(5.23)

are enough to understand the optimal-γ2 curve in terms of a
power law already for moderately large m. Interestingly, the
saturation point for γ2 is slightly lower than 2

5 , which is the γ2

for the Fock state of an infinitely large-m value. This hints that
the optimal center for the displaced Fock state of a large m

for which γ2 = γ2,min is significantly far away from the phase-
space origin. This is indeed consistent with the behavior of the
minimum point α̃0, which also has a complicated closed-form
expression [plotted in Fig. 6(a)], so that we only present the
more useful approximated forms

α̃0 ≈
{

1.2929 + 2.2060 m − 3.2976 m2 (small-m regime),

0.3993
√

m + 2.8174√
m

(large-m regime)

(5.24)
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(a)

(b)

FIG. 6. Plots of (a) the optimum (minimum) γ2 over all α0 with
m (left) and the minimum point α0 = α̃0 (right) for the displaced
Fock states, as well as those of (b) the photon-added coherent states.
For the displaced Fock states in (a), γ2,min tends to the limiting value
of 6/5 − √

69/10 ≈ 0.3693 (dashed red line), and the brown curve
representing the exact expression for α̃0 shows the quadratic behavior
for small m and the approximate square-root behavior for large m.
On the other hand, for the photon-added states in (b), the numerically
found γ2,min values (solid blue circles) are plotted with the theoretical
asymptotic power-law curve (solid dark green curve) to illustrate
the accuracy of the latter for m � 10, both of which approach the
limiting value of 2

5 (dashed red line). The γ2,min value for m = 0

(not plotted) has the analytical value of 3(6 − √
21)/5 ≈ 0.85 that

occurs at α̃0 =
√

13 + 3
√

21/4 ≈ 1.29. The approximate model [see
Eq. (5.30)] for α̃0 (green line) is compared with the numerical minima
(solid red circles) as a showcase of its remarkable fit.

that highlight the main gradient features. To summarize, the
minimum value of γ2 essentially behaves as a power law in m,
and the corresponding stationary minimum α̃0 is quadratic for
small m and goes as a square-root curve for large m.

E. Photon-added coherent states

As in the case of the displaced Fock states, the eigenvalues
of GGG2 for the photon-added coherent states,

λ1 = (m + 1) 1F1(m + 2; 2; |α0|2)

1F1(m + 1; 1; |α0|2)
− 1

2
,

λ2 = 2m + 2|α0|2 + 1

2

+m(2|α0|2 − 1) 1F1(m + 1; 2; |α0|2)

1F1(m + 1; 1; |α0|2)
, (5.25)

are also functions of |α0|2, which correctly coincides with the
physics of the second-moment estimation problem. This also
means that discussing in terms of the range α0 � 0 covers the
tomography analysis sufficiently. Moreover, the eigenvalues
are increasing functions of the displacement magnitude, so
that the GME becomes larger with α0, thereby rendering the
photon-added states more GGG2 “thermal.” This again gives
a smaller performance ratio γ2, or a better tomographic

performance for the heterodyne scheme compared to the
homodyne scheme.

Once more with the help of Table I in Appendix B, the
quadrature moments can be written in principle, but they are
represented by bulky expressions that are hardly worth any
analytical value and the Fisher-matrix integral in Eq. (3.9)
has no known closed-form expression. However, we may still
briefly discuss the important limiting cases. For α0  √

m, to
second order in α0, it can be shown that

H2,hom ≈ 5(m2 + m + 1) + 10α2
0(m + 1)(m + 2), (5.26)

where the asymptotic connection with Fock states is clear. On
the other hand, in the regime of large α0 � √

m, we find that

H2,hom = 3 + 12α2
0 + 2

√
1 + 8α2

0 ≈ 12α2
0, (5.27)

which is the second-moment homodyne-scaled CRB for
coherent states. This is also the homodyne-scaled CRB for
large-intensity even and odd coherent states. The reason is that
for large amplitudes, all these states behave like a coherent
state of amplitude α0 as far as second-moment estimation is
concerned since all their GGG2 eigenvalues are indistinguishable
in this limit.

Upon revisiting Eq. (3.22), the heterodyne-scaled CRB can
be shown to have the closed form

H2,het = 2

{
3 + 4m + 2α2

0(m + 3) − m
1F1

(
m + 1; 2; α2

0

)[
1F1

(
m + 1; 1; α2

0

)]2

× [
2
(
α4

0 − 3α2
0 − m

)
1F1

(
m + 1; 1; α2

0

)
+m

(
2α4

0 − 2α2
0 + 1

)
1F1

(
m + 1; 2; α2

0

)]}
(5.28)

for α0 > 0. The behavior to leading order in α2
0 for α0  √

m,

H2,het ≈ (
2 + 4α2

0

)
(m + 1)(m + 3), (5.29)

is evidently consistent with the known result for Fock states.
For α0 � √

m, we once again have H2,het ≈ 12α2
0 . Note also

that, as expected, the first equality in Eq. (5.27) is equal to 5,
and Eq. (5.27) gives a value of 6 for the vacuum state (m = 0).

For m � 2, the ratio γ2 < 1 for all α0. This natural extension
to the result for the Fock states means that for highly nonlinear
photon-“adding” operations, the performance of heterodyne
detection is always better than that of homodyne detection
in terms of second-moment covariance-dyadic estimation. For
m = 0, the analysis reverts to that for the coherent state, where
the crossover occurs at α0 = √

5/32 after solving for H2,hom =
H2,het = 2(3 + 6α2

0) so that γ2(α0 >
√

5/32) < 1, which is
again consistent with Sec. V A. For m = 1, the crossover point
α0 ≈ 0.2 may be obtained as the numerical solution. As α0

approaches infinity, previous arguments imply that γ2 → 1 for
any m.

In view of the behavior of γ2, another interesting limit is the
high-nonlinearity limit (m → ∞). In this case, we notice that
the value α0 = α̃0 for which γ2 is minimum approaches zero.
A good model to estimate this minimum point in this limit is
given by

α̃0 ≈ 3

2m
, (5.30)
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which can be approximated from curve fitting. Therefore, in
the large-m limit, the optimum performance ratio γ2 is that
of an intense Fock state of a large photon number and so we
expect the minimum value of γ2 to approach 2

5 as discussed in
Sec. V B. In other words, for sufficiently large m, the minimum
of γ2 follows the noncentral power law

γ2,min = γ2|α0=α̃0 ≈ 2

5
+ 6

5m
. (5.31)

Figure 6(b) succinctly highlights these observations.

VI. TWO-MODE SOURCES: A TREATISE TO
MULTIMODE MOMENT ESTIMATION

The general theory of CV measurements naturally applies
to sources of any number of independent optical modes. As
a brief yet concrete demonstration, we shall discuss matters
regarding two-mode sources. Their first-moment column

rrr =
(
rrr1

rrr2

)
, rrrl =̂

(〈Xl〉
〈Pl〉

)
(6.1)

collects all single-mode first-moment expectation values while
their second-moment matrix takes the general form

GGG2 =
(

AAA1 AAA12

AAA T
12 AAA2

)
� − i

2

(
��� 000
000 ���

)
,

AAAl =̂
( 〈

X2
l

〉
1
2 〈{Xl,Pl}〉

1
2 〈{Xl,Pl}〉

〈
P 2

l

〉 )
, (6.2)

AAA12 =̂
(〈X1X2〉 〈X1P2〉

〈X2P1〉 〈P1P2〉
)

,

where the positive single-mode AAAl’s separately obey the HRS
inequality and the, generally, nonsymmetric AAA12 accounts for
nontrivial two-mode correlations for the two-mode quantum
state ρ.

The estimation of rrr and GGG2 now involves the estimation
of both the single-mode (rrr1, rrr2, AAA1, AAA2) and two-mode (AAA12)
components. The block structures of rrr and GGG2 suggest the nat-
ural situation where these five components are estimated with
independent data, which we shall henceforth consider. In other
words, the full data are invested equally into the estimation of
all five components. Consequently, the corresponding scaled
CRBs

H1 = H (1)
1 + H (2)

1 , (6.3)

H2 = H (1)
2 + H (2)

2 + H (12)
2 (6.4)

reflect the independent additive contributions of the single-
mode and two-mode components.

For two-mode sources, one can concurrently perform two
separate CV measurements, one on each optical mode. The
resulting joint measurement has a tensor-product structure, and
it collects informationally complete data that directly probe the
full quantum state. Analysis of this type provides closed-form
expressions, which can be straightforwardly generalized to
arbitrary number of modes, albeit with a rapidly increasing
complexity. This method is by no means the only one for
characterizing multimode sources. For more complex sources,
it might be more economical to carry out tomography on linear
superpositions of all the available modes using a single-mode

measurement setup. Cross-correlation information may be
acquired by studying different kinds of such superpositions.
To this end, the general theory for single-mode sources
presented in Sec. III is all we need to understand the
accuracies in estimating moments for these superpositions.
The robustness in controlling these superpositions as well
as their high customizability are important prerequisites for
practical multimode schemes [60].

A. Homodyne detection

If the two modes of ρ are physically fed into two separate
homodyne setups, then the data collected must come from
the rank-one measurement outcomes defined by the kets
|xϑ1〉|x ′

ϑ2
〉, and the data scatter is characterized by the joint

probabilities p(xϑ1 ,ϑ1; x ′
ϑ2

,ϑ2) that are the Born probabilities
of these outcomes. The two-mode expectation values are then
given by〈

Xm
1,ϑ1

Xn
2,ϑ2

〉 = ∫
dxϑ1

∫
dx ′

ϑ2
xm

ϑ1
x ′n

ϑ2
p
(
xϑ1 ,ϑ1; x ′

ϑ2
,ϑ2

)
.

(6.5)

The single-mode 〈Xm
1,ϑ1

〉 = 〈Xm
ϑ1

⊗ 1〉 expectation values can
hence be derived easily by first setting x ′n

ϑ2
= 1 and, next,

marginalizing the joint probabilities over the second mode.
The procedure is similar for obtaining 〈Xn

2,ϑ2
〉 = 〈1 ⊗ Xn

ϑ2
〉,

so that we have〈
Xm

1,ϑ1

〉 = ∫
dxϑ1 xm

ϑ1
p(1)

(
xϑ1 ,ϑ1

)
,

(6.6)〈
Xn

2,ϑ2

〉 = ∫
dx ′

ϑ2
x ′n

ϑ2
p(2)(x ′

ϑ2
,ϑ2

)
,

where p(1)(xϑ1 ,ϑ1) = ∫
dx ′

ϑ2
p(xϑ1 ,ϑ1; x ′

ϑ2
,ϑ2), for instance.

The first and second moments can be fully characterized
by the full two-mode homodyne data. For the first moments,
〈X1,ϑ1〉 and 〈X2,ϑ2〉 are parametrized by the pairs (〈X1〉,〈P1〉)
and (〈X2〉,〈P2〉) needed to characterize rrr . For the second
moments, the joint expectation value 〈X1,ϑ1X2,ϑ2〉 contains
all the four parameters of AAA12, and their marginalized versions
〈X2

1,ϑ1
〉 and 〈X2

2,ϑ2
〉 together contain all the six parameters

of AAA1 and AAA2, all of which characterize the 10 independent
parameters in GGG2.

With careful accounting of measurement resources, argu-
ments similar to those that are responsible for Sec. III give the
scaled Fisher matrix

F̃FF
(l)
1,hom =

∫
(π)

dϑl

π

mmmϑl〈
X2

l,ϑl

〉− 〈
Xl,ϑl

〉2 (6.7)

first-moment single-mode components, and that for the
second-moment single-mode components

F̃FF
(l)
2,hom =

∫
(π)

dϑl

π

MMMϑl〈
X4

l,ϑl

〉− 〈
X2

l,ϑl

〉2 (6.8)

for l = 1,2. To figure out F̃FF
(12)
2,hom, we observe that the MSE

E[Tr{(ÂAA12 − AAA12)
T
(ÂAA12 − AAA12)}] = E [̂aaa T

12âaa12] − aaa T
12aaa12 for

the two-mode component AAA12 is identical to the MSE for the
two-mode column aaa12 = (〈X1X2〉 〈X1P2〉 〈X2P1〉 〈P1P2〉) T.
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The 4 × 4 Fisher matrix for estimating AAA12 now reads as

F̃FF
(12)
2,hom =

∫
(π)

dϑ1

π

∫
(π)

dϑ2

π

mmmϑ1 ⊗ mmmϑ2〈
X2

1,ϑ1
X2

2,ϑ2

〉− 〈
X1,ϑ1X2,ϑ2

〉2 .

(6.9)

B. Heterodyne detection

On the other hand, when the two modes are respectively
fed into two separate heterodyne setups, the resulting mea-
surement consists of all rank-one outcomes defined by product
coherent states. In effect, this separable heterodyne detection
directly samples the two-mode Husimi function. The sample
mean of the phase-space data obtained, which tends to the
two-mode Husimi function in the large-N limit, can again
be shown to asymptotically converge to a joint Gaussian
distribution, such that

r̂rr = 1

N

N∑
j=1

(̂
rrr1,j

r̂rr2,j

)
, r̂rrl,j =̂

(
xl,j

pl,j

)
(6.10)

and

ĜGG2,het = 1

N

N∑
j=1

(
ÂAA1,j ÂAA12,j

ÂAA
T

12,j ÂAA2,j

)
,

ÂAAl,j =̂
(

x2
l,j xl,jpl,j

xl,jpl,j p2
l,j

)
,

ÂAA12,j =̂
(

x1,j x2,j x1,jp2,j

x2,jp1,j p1,jp2,j

)
(6.11)

become asymptotically efficient estimators for rrr and GGG2.
The relations between single- and two-mode heterodyne

data share a similar behavior to those for the two-mode
homodyne data. The Husimi average xm

1 pn
1 , for example, can

be obtained from the joint average xm
1 pn

1 xs
2 pt

2 by simply
setting the phase-space values to 1 and marginalizing the
two-mode Husimi function over the second mode, and vice
versa. With these facts, we can immediately calculate the
expressions for H1,het and H2,het by direct evaluations of
the corresponding MSEs, as we did before in Sec. III B for
single-mode sources. One then finds that

H1,het = VarQ[x1] + VarQ[p1] + VarQ[x2] + VarQ[p2],

H2,het = VarQ

[
x2

1

]+ VarQ

[
p2

1

]+ 2VarQ[x1p1]

+ VarQ

[
x2

2

]+ VarQ

[
p2

2

]+ 2VarQ

[
x2p2

]
+ 2VarQ[x1x2] + 2VarQ[x1p2]

+ 2VarQ[x2p1] + 2VarQ[p1p2]. (6.12)

C. Optimality of heterodyne tomography
in first-moment estimations

As in Eq. (3.5) for the single-mode case, we recognize here
that H1,hom takes the explicit expression

H1,hom = Tr{GGG(1) + GGG(2)} + 2(
√

det{GGG(1)} +
√

det{GGG(2)})
(6.13)

for any two-mode state ρ, where

GGG(l) =̂
( 〈(�Xl)2〉 1

2 〈{�Xl,�Pl}〉
1
2 〈{�Xl,�Pl}〉 〈(�Pl)2〉

)
. (6.14)

Since GGG(l) also obeys the HRS uncertainty relation, one has
det {GGG(l)} � 1

4 , which again implies the universal inequality
H1,hom � H1,het, or γ1 � 1. Equality holds when both the
marginalized GGG(1) and GGG(2) are, respectively, the covariance
matrices of single-mode minimum-uncertainty states.

D. Two-mode Fock states

The first example to which we apply our two-mode theory
is the class of two-mode Fock states |n1〉|n2〉. Since they are
product states, the two-mode expectation values are product of
single-mode expectation values. As such, the expressions for
H1,hom and H1,het are easy to get, and they are

H1,hom = 4(n1 + n2 + 1),
(6.15)

H1,het = 2(n1 + n2 + 2).

When n1 = n2 = 0, ρ is a two-mode vacuum state, so that
GGG(1) and GGG(2) are identically the covariance matrix of the
single-mode vacuum state, where γ1 = 1 as it should be.
For any other values of n1 and n2, γ1 is clearly subunity.
Furthermore, since the scaled CRBs are clearly symmetric in
n1 and n2, upon examining the limit n1 = n2 → ∞, we find
that the performance ratio approaches the constant 1

2 .
Likewise, the product nature of these states and their

rotational symmetry allow us to comfortably obtain

H2,hom = 5
(
n2

1 + n2
2

)+ 21(n1 + n2) + 18,
(6.16)

H2,het = 2
(
n2

1 + n2
2

)+ 16(n1 + n2) + 20.

It turns out that although for the two-mode vacuum state,
we have γ2 = 10/9 > 1, the heterodyne scheme still beats
the homodyne scheme for all other values of n1 and n2. The
performance ratio γ2 approaches the constant 2

7 in the limit
n1 = n2 → ∞.

E. Two-mode squeezed vacuum state

The two-mode squeezed vacuum state, for a squeezing
parameter ζ � 0, is defined by the ket

|SQV〉 = 1

cosh(ζ )

∞∑
n=0

|nn〉[tanh(ζ )]n. (6.17)

This two-mode entangled state is an important basic ingredient
for many entanglement-manipulation and generation strategies
for CV settings as well as quantum interferometry studies
[61–64].

Even though this state is no longer a product state, the scaled
CRBs still have closed-form expressions. In particular, for the
first-moment scaled CRBs, we have

H1,hom = 4 cosh(2ζ ),
(6.18)

H1,het = 2 cosh(2ζ ) + 2.

We check that for ζ = 0, we recover the scaled CRBs for
the two-mode vacuum state, where again γ1 = 1. For ζ > 0,
γ < 1 and tends to 1

2 for large-ζ values.
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This time, we witness that although all first moments for this
entangled state are zero, the joint first moments need not. In
particular, 〈X1,ϑ1X2,ϑ2〉 = sinh(ζ ) cosh(ζ ) cos(ϑ1 + ϑ2) and
x1x2 = p1p2 = sinh(ζ ) cosh(ζ ). For the homodyne scheme,

the scaled Fisher matrices F̃FF
(1)
2,hom, F̃FF

(2)
2,hom, and F̃FF

(12)
2,hom can be

calculated with the respective state variance functions〈
X4

l,ϑl

〉− 〈
X2

l,ϑl

〉2 = 1
2 [cosh(2ζ )]2,〈

X2
1,ϑ1

X2
2,ϑ2

〉− 〈
X1,ϑ1X2,ϑ2

〉2 = a cos(2ϑ1 + 2ϑ2) + b,

(6.19)

with the coefficients a = 1
2 [sinh(2ζ )]2 and b = 1

4 [1 +
3 cosh(4ζ )]. The results are as follows:

H2,hom = 11

2
+ 13

2
cosh(4ζ ) + 6 cosh(2ζ )

√
cosh(4ζ ),

H2,het = 4[cosh(ζ )]2[2 + 3 cosh(2ζ )]. (6.20)

When ζ = 0, the scaled CRBs indeed give the correct values
for the two-mode vacuum state. From these formulas, we see
that γ2 is a monotonically decreasing function, starting from
γ2|

ζ=0
= 10

9 all the way to the lowest value γ2,min = 6/(13 +
6
√

2) ≈ 0.279 26.

VII. CONCLUSION

We compare the moment-reconstruction performances of
the homodyne and heterodyne measurement schemes using
optimal moment estimators that minimize the mean-squared
error. We first showed that in first-moment tomography, the
heterodyne scheme is always tomographically superior to, or
at least as good as, the homodyne scheme for all quantum
states in terms of the mean-squared error of the moment
estimators. The underlying physical reason is solely the
Heisenberg-Robertson-Schrödinger uncertainty relation for
complementary observables. For second-moment tomography,
we showed that the heterodyne scheme can often outperform
the homodyne scheme for Gaussian states and many other
interesting and important classes of non-Gaussian states. All
these states indicate a trend that a larger geometric mean
of second-moment eigenvalues (second-moment “tempera-
ture”) improves the moment-reconstruction accuracy with
the heterodyne scheme relative to the homodyne scheme.
This trend, however, is not monotonic in the second-moment
“temperature” because there is also influence from the fourth
moments originating from the form of the mean-squared
error, the combined contributions of both give interesting
features to the reconstruction accuracy, as illustrated by the
examples in this article. The general theory introduced in
Sec. III can be applied to higher-moment estimations that
are important in general operator-moment applications and
source-calibration protocols, and these shall be reported in the
future.
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APPENDIX A: OPTIMAL ESTIMATORS FOR
HOMODYNE TOMOGRAPHY

1. First-moment estimation

In this discussion, the reconstruction accuracy of the
estimator r̂rrhom for rrr shall be taken to be the usual MSE distance
measure

D1,hom = E[(̂rrrhom − rrr)2] (A1)

that is typically defined for columns. One easy way to obtain an
estimator r̂rrhom is to make use of 〈Xϑ 〉 = 〈X〉 cos ϑ + 〈P 〉 sin ϑ

to ascertain that

LLLϑrrr = rrrϑ (A2)

for an nϑ × 2 matrix LLLϑ (nϑ being the number of bins for
the phases ϑ) and a column rrrϑ of nϑ true averages 〈Xϑ 〉. The
highly overcomplete nature of the measurement thus permits
us to define, for any experimentally obtained estimates of aver-

age values rrrϑ ≡ (〈̂X1〉 〈̂X2〉 . . . ̂〈Xnϑ
〉)T

(E[〈̂Xk〉] = 〈Xϑk
〉),

r̂rr
(lin)
hom = LLL−

ϑ 〈RRRϑ 〉 (A3)

as the linear estimator of interest using the pseudoinverse LLL−
ϑ

of LLLϑ . This estimator, however, is suboptimal in the sense that
it does not minimize the MSE D1,hom.

To obtain the optimal estimator for rrr [often known as the
best linear unbiased estimator] that minimizes the MSE, we
resort to the linear optimization of

r̂rrhom =
nϑ∑

k=1

vvvk 〈̂Xk〉 (A4)

over all possible reconstruction columns vvvk for the estimates
〈̂Xk〉. Data consistency according to 〈̂Xk〉 = uuuT

k̂rrrHOM requires
these reconstruction columns, or dual columns, to satisfy the
property

nϑ∑
k=1

vvvkuuu
T
k = 111 =

nϑ∑
k=1

uuukvvv
T
k (A5)

with the measurement columns uuuk = uuuϑk
= (cos ϑk sin ϑk) T.

Logically, we must have

E [̂rrrhom] =
nϑ∑

k=1

vvvk〈Xk〉 = rrr. (A6)

The Lagrange function for the optimization is therefore

Lhom = Dhom − Tr

{
���

(
nϑ∑

k=1

uuukvvv
T
k − 111

)}
, (A7)
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where��� is the Lagrange matrix for the dual-column constraint
in (A5). In terms of the dual columns,

D1,hom =
nϑ∑

k=1

nϑ∑
k′=1

vvvT
kvvvk′(E[〈̂Xk〉̂〈Xk′ 〉] − 〈Xk〉〈Xk′ 〉)

=
nϑ∑

k=1

vvvT
kvvvkE[〈̂Xk〉2

] +
∑
k �=k′

vvvT
kvvvk′E[〈̂Xk〉] E[̂〈Xk′ 〉]

−
nϑ∑

k=1

nϑ∑
k′=1

vvvT
kvvvk′ 〈Xk〉〈Xϑk′ 〉. (A8)

Since the unbiased estimate

〈̂Xk〉 = 1

Nk

nx∑
j=1

njkxjk (A9)

is an average sum of all the measured nx voltage readings
xjk per phase that are distributed according to the multinomial
distribution of random multinomial weights

∑
j njk = Nk , the

second moment is given by

E[〈̂Xk〉2
] = 1

N2
k

nx∑
j=1

nx∑
j ′=1

E[njknj ′k]xjkxj ′k

= 1

Nk

nx∑
j=1

pjkx
2
jk + Nk − 1

Nk

nx∑
j=1

nx∑
j ′=1

pjkpj ′kxjkxj ′k

= 1

Nk

〈
X2

k

〉+ Nk − 1

Nk

〈
Xk〉2. (A10)

The final equality is valid for sufficiently large data (bins) for
all phases, as pjk → dxϑ p(xϑ,ϑ) and

nx∑
j=1

pjkx
2
jk →

∫
dxϑ p(xϑ,ϑ) x2

ϑ

=
∫

dxϑ 〈|xϑ 〉〈xϑ |〉x2
ϑ = 〈

X2
ϑ

〉
. (A11)

So, we finally get

D1,hom =
nϑ∑

k=1

vvvT
kvvvk

Nk

(〈
X2

k

〉− 〈Xk〉2
)
. (A12)

A simple variation of Lhom therefore gives

δLhom =
nϑ∑

k=1

δvvvT
kvvvk + vvvT

kδvvvk

Nk

(〈
X2

k

〉− 〈Xk〉2
)

− 1

2
Tr

{
���

nϑ∑
k=1

(
uuukδvvv

T
k + δvvvkuuu

T
k

)} ≡ 0 (A13)

or

1

2
��� = FFF

({〈Xk〉,
〈
X2

k

〉}) ≡
nϑ∑

k=1

uuukuuu
T
k

Nk〈
X2

k

〉− 〈Xk〉2
,

vvvk = Nk〈
X2

k

〉− 〈Xk〉2
FFF
({〈Xk〉,

〈
X2

k

〉})−1
uuuk. (A14)

The matrix FFF ({〈Xk〉,〈X2
k〉}) is known as the frame matrix.

The optimal estimator therefore depends on the true
moments which are certainly unavailable in the first place, for
no tomography is otherwise necessary at all. Nonetheless, one
can substitute the estimated moments for them to obtain an
asymptotically efficient optimal estimator that approximates
the optimal estimator. An unbiased estimate for the second
moment is given by

〈̂
X2

k

〉 = 1

Nk

nx∑
j=1

njkx
2
jk, (A15)

so that the asymptotically optimal estimator is given by

r̂rr
(opt)
hom = WWW−1

1

nϑ∑
k=1

uuuk

Nk 〈̂Xk〉〈̂
X2

k

〉− 〈̂Xk〉2 ,

WWW 1 =
nϑ∑

k=1

mmmk

Nk〈̂
X2

k

〉− 〈̂Xk〉2 . (A16)

It is easy to see that when the estimated moments approach
the true moments, this optimal estimator attains the scaled
CRB. Directly from Eq. (A12), we immediately know that its
corresponding MSE is given by

D
(opt)
1,hom = Tr

{
FFF
({〈Xk〉,

〈
X2

k

〉})−1}
(A17)

and all we need to realize is that for sufficiently large N and
uniformly distributed quadrature outcomes, Nk/N → dϑ/π

and the frame matrix
1

N
FFF
({〈Xk〉,

〈
X2

k

〉}) →
∫

(π)

dϑ

π

mmmϑ〈
X2

ϑ

〉− 〈Xϑ 〉2
= F̃FF 1,hom

(A18)
is nothing more than the Fisher matrix introduced in Eq. (3.3).
This also means that the optimal estimator and the asymptoti-
cally optimal estimator are both asymptotically as efficient as
the maximum-likelihood estimator.

This construction comes with a basic and important lesson.
The simple linear estimator r̂rr

(lin)
hom in Eq. (A3), which is

suboptimal, depends only on the first moments. To improve
the reconstruction accuracy, more aspects of the data that are
attributed to the figure of merit chosen to measure this accuracy
would have to be incorporated systematically. In the case of
the MSE, these are linear combinations of both the first and
second moments, or at least their estimates. Put differently, we
should always use the reconstruction estimator that optimize
the figure of merit we choose to rank the goodness of the
reconstruction.

2. Second-moment estimation

By the same token, we can construct the optimal estimator
that approximates the optimal estimator for second-moment
estimation by minimizing the MSE

D2,hom = E[Tr{(ĜGG2,hom − GGG2,hom)2}] (A19)
over the estimator that is of the linear form

ĜGG2,hom =
nϑ∑

k=1

���k

〈̂
X2

k

〉
(A20)

with respect to the second-moment estimates. This form
is a natural extension to the column estimator r̂rrhom via a
generalization of the dual columns vvvk to dual matrices ���k .
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Completely analogous to the discussion in Appendix A 1,
consistency with 〈̂X2

k〉 = uuuT
kĜGG2,homuuuk implies that

ĜGG2,hom =
nϑ∑

k=1

���kuuu
T
kĜGG2,homuuuk. (A21)

The above relation can be simplified by introducing the
vectorization notation vec(YYY ) that turns a matrix YYY into a
column. Since all two-dimensional matrices considered here
are real and symmetric, they are essentially characterized by
three real parameters. Hence, in our context, given that

YYY =̂
(

y1 y2

y2 y3

)
, (A22)

the vectorized quantity is defined as

vec(YYY ) ≡̂
⎛⎝ y1√

2 y2

y3

⎞⎠. (A23)

This operation is a variant of the usual column-stacking vec-
torization operation to apply on 2 × 2 real symmetric matrices
for our case to make contact with the property Tr{YYY 1YYY 2} =
vec(YYY 1) Tvec(YYY 2) between any pair of such matrices YYY 1 and
YYY 2. In this notation, Eq. (A21) becomes

vec(ĜGG2,hom) =
nϑ∑

k=1

vec(���k)vec(mmmk)Tvec(ĜGG2,hom), (A24)

which is equivalent to the vectorized constraint
nϑ∑

k=1

vec(���k)vec(mmmk)T = 111 =
nϑ∑

k=1

vec(mmmk)vec(���k)T. (A25)

As usual, to derive the expression for the optimal estimator,
we first calculate D2,hom in terms of the dual matrices. For this
we shall need the average of the square of the estimate 〈̂X2

k〉
defined in Eq. (A15):

E
[〈̂
X2

k

〉2] = 1

Nk

〈
X4

k

〉+ Nk − 1

Nk

〈
X2

k

〉2
, (A26)

from which gives the expression

D2,hom =
nϑ∑

k=1

vec(���)T
kvec(���)k
Nk

(〈
X4

k

〉− 〈
X2

k

〉2)
(A27)

for the MSE. Then, by carrying out the variation of the
appropriate Lagrange function similar to the calculations in
Appendix A 1 and remembering the additional association
MMMk = vec(mmmk)vec(mmmk)T, we find that the matrices for the
optimal estimator are

FFF
({〈

X2
k

〉
,
〈
X4

k

〉}) ≡
nϑ∑

k=1

MMMk

Nk〈
X4

k

〉− 〈
X2

k

〉2 ,

vec
(
���k

) = Nk〈
X4

k

〉− 〈
X2

k

〉2FFF
({〈

X2
k

〉
,
〈
X4

k

〉})−1
vec(mmmk).

(A28)

Finally, the asymptotically optimal estimator is given by

ĜGG
(opt)
2,hom = WWW−1

2

nϑ∑
k=1

vec(mmmk)
Nk

〈̂
X2

k

〉
〈̂
X4

k

〉− 〈̂
X2

k

〉2 ,

(A29)

WWW 2 =
nϑ∑

k=1

MMMk

Nk〈̂
X4

k

〉− 〈̂
X2

k

〉2 .

That this estimator asymptotically attains the scaled CRB for
second-moment estimation is again clear.

APPENDIX B: LIST OF CHARACTERISTIC FUNCTIONS

In calculating the moments for both the homodyne and
heterodyne schemes, it is extremely useful to start with
the relevant characteristic functions for both schemes. To
facilitate the discussions in the main article, we have supplied
a list of quadrature characteristic functions (〈eikXϑ 〉) for
the homodyne scheme and a list of Husimi characteristic
functions [eg∗α+gα∗

, g = (u + iv)/
√

2] for the heterodyne
scheme respectively in Table I in this appendix. Then, the
two kinds of moments can then be readily computed by the
prescriptions〈

Xm
ϑ

〉 = (
−i

∂

∂k

)m

〈eikXϑ 〉
∣∣∣∣
k=0

,

(B1)

xkpl =
(

∂

∂u

)k(
∂

∂v

)l

eg∗α+gα∗
∣∣∣∣
u,v=0

,

TABLE I. A list of characteristic functions for all the quantum states discussed. The symbols in this table are defined as α0e
−iϑ =

(xϑ + ipϑ )/
√

2 where x0 = xϑ=0 and p0 = pϑ=0, ggg =̂(−g g∗) T, MMM = HHH †GGG−1
het HHH , and HHH =̂ 1√

2

( 1 1
−i i

)
.

Class of quantum states Quadrature characteristic function Husimi characteristic function

Gaussian exp

(
−1

2

(
uuu T

ϑ GGGuuuϑ

)2
k2 + i uuu T

ϑrrr0 k

)
eg∗α0+gα∗

0 exp

(
det{GGGhet}

2
ggg†MMM ggg

)
Fock e− k2

4 Ln

(
k2

2

)
1F1(n + 1; 1; |g|2)

Even and odd coherent e− k2
4

cos(kxϑ ) ± e−2|α0|2 cosh(kpϑ )

1 ± e−2|α0|2
e−|α0|2

2 ± 2 e−2|α0|2

[
e|g+α0|2 + e|g−α0|2

±e(g∗−α∗
0 )(g+α0) ± c.c.

]
Displaced Fock e− k2

4 +ikxϑ Lm

(
k2

2

)
eg∗α0+gα∗

0 1F1(m + 1; 1; |g|2)

Photon-added coherent e
k2
4

1F1

(
m + 1; 1;

(
α0 + ik√

2
eiϑ
)(

α∗
0 + ik√

2
e−iϑ

))
1F1(m + 1; 1; |α0|2)

1F1(m + 1; 1; |g + α0|2)

1F1(m + 1; 1; |α0|2)
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which simply involves multiple differentiations with respect
to the free variables and later setting these variables to
zero. The identity 1F1(n + 1; 1; −x) = e−xLn(x) relating the

confluent hypergeometric functions and Laguerre polynomials
is particularly useful for consistency verification between two
characteristic functions of different quantum states.
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