
PHYSICAL REVIEW A 94, 062337 (2016)

Loss-resilient photonic entanglement swapping using optical hybrid states

Youngrong Lim,1 Jaewoo Joo,2 Timothy P. Spiller,3 and Hyunseok Jeong1

1Center for Macroscopic Quantum Control, Department of Physics and Astronomy, Seoul National University,
Seoul 151-742, Republic of Korea

2School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
3York Centre for Quantum Technologies, Department of Physics, University of York, York YO10 5DD, United Kingdom

(Received 17 August 2016; published 27 December 2016)

We propose a scheme of loss-resilient entanglement swapping between two distant parties via an imperfect
optical channel. In this scheme, two copies of hybrid entangled states are prepared and the continuous-variable
parts propagate through lossy media. In order to perform successful entanglement swapping, several different
measurement schemes are considered for the continuous-variable parts such as single-photon detection for
ideal cases and a homodyne detection for practical cases. We find that the entanglement swapping using hybrid
states with small amplitudes offers larger entanglement than the discrete-variable entanglement swapping in the
presence of large losses. Remarkably, this hybrid scheme still offers excellent robustness of entanglement to
the detection inefficiency. Thus, the proposed scheme could be used for the practical quantum key distribution
in hybrid optical states under photon losses.

DOI: 10.1103/PhysRevA.94.062337

I. INTRODUCTION

A distribution of entanglement at distance is one of
the essential challenges for the practical schemes of quan-
tum communication such as quantum key distribution [1,2]
and quantum secret sharing [3]. The idea of entanglement
swapping is particularly useful for long-distance quantum
communication (e.g., using quantum repeaters [4]). In an en-
tanglement swapping scheme, successful joint measurements
are used to guarantee faithful entanglement sharing between
distant parties [5,6].

We start with the assumption that two communication
parties are separated far from each other. Each of them
independently prepares a bipartite entangled state and sends
one of the two qubits (a traveling qubit) to the middle
location. After obtaining successful outcomes of a Bell-state
measurement (BSM) in the middle, an entangled state is
successfully shared by the two separate parties. In practice,
the quality of the shared entanglement degrades because of
the imperfection of channels and detections. A noise-resilient
entanglement swapping scheme is thus important for practical
quantum communication in a realistic lossy channel.

Optical implementation has provided the best platform for
practical entanglement swapping. For example, many optical
experiments have been demonstrated for discrete variables
(DVs) in photon polarization entangled states [7,8] and
vacuum-single-photon (VSP) entangled states [9], and for
continuous variables (CVs) in squeezed states [10,11] and
coherent states [12–14]. In this paper, our aim is to have the
VSP entangled state, |φ+〉 = (|0〉|1〉 + |1〉|0〉)/√2, where |0〉
is a vacuum state and |1〉 is a single-photon state, shared by two
distant parties. In fact, the VSP entangled state can be useful for
quantum teleportation [15], single-rail logic quantum compu-
tation [16,17], and single-photon nonlocality tests [18–20]. It
is also known that quantum networks based on single-photon
entanglement has advantages in resource requirements and
detection inefficiencies compared to other architectures [21].

A simple method of entanglement swapping for |φ+〉 is
performed with two VSP entangled states and an all-optical
BSM. The traveling photons arrive at the middle location and

are projected onto the VSP entangled states to build a BSM.
This creates a maximally entangled state between two distant
parties, for which we shall present details in Section II C.
However, the success probability of a BSM is bounded by 1/2
when using only linear optical elements [22]. In contrast, a
BSM based on CV qubits and entangled coherent states can
achieve a larger success probability over this limit [12,23]. We
shall thus attempt to use hybrid entanglement for entanglement
swapping to obtain VSP entangled states shared by two distant
parties.

In this paper, we are interested in utilizing hybrid entangle-
ment in the form of

|ψHE〉AB = 1√
2

(|0〉A|α〉B + |1〉A| − α〉B), (1)

where | ± α〉 are coherent states with amplitudes ±α. This
type of state can be generated using a cross-Kerr nonlinearity
[24–26] but there are fundamental limitations to implementing
this interaction [27–29]. Recently, this state was experimen-
tally generated using linear optics elements without Kerr-type
nonlinear interaction [30,31]. This kind of optical hybrid
entanglement is useful to the quantum key distribution proto-
cols [32,33], quantum repeater [34,35], quantum teleportation
[36–38], quantum computation with near-deterministic gate
operations [36], and Bell inequality tests [39]. In this hybrid
entanglement swapping, the propagating parts are both CV
qubits, and the successful entanglement swapping eventu-
ally builds a DV entangled state. Our hybrid entanglement
swapping scheme with the small α shows the advantages of
robustness in the presence of photon losses.

This manuscript is organized as follows. In Sec. II B, we
introduce background information with notation for the no-
loss DV entanglement swapping scheme. Then, we describe
how to perform hybrid entanglement swapping in a lossy
channel and investigate the ideal and practical entanglement
swapping schemes in Secs. III and IV A. In Sec. IV B, we
consider inefficient detection in the presence of losses, and we
provide the conclusion and remarks in Sec. V.
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II. BACKGROUND

A. Beam-splitter operation

The beam-splitter (BS) operation is a key element in our
scheme for BSM in the middle location. It is also useful for
the description of lossy channels. A general BS operator for
two modes is given by

B̂T (θ,φ) = exp

[
i
θ

2
(â†b̂eiφ − âb̂†e−iφ)

]
, (2)

with the transmission rate T = cos2(θ/2) [40], where â† and
b̂† (â and b̂) are the creation (annihilation) operators for each
mode. If we set the phase φ = π and θ = π/2 for a 50:50 BS
(B1/2), the single photon or vacuum states after the BS are
given by

B
1/2
A,B |1〉A|0〉B = (|1〉A|0〉B + |0〉A|1〉B)/

√
2, (3)

B
1/2
A,B |0〉A|1〉B = (|0〉A|1〉B − |1〉A|0〉B)/

√
2, (4)

B
1/2
A,B |1〉A|1〉B = (|0〉A|2〉B − |2〉A|0〉B)/

√
2, (5)

where |0〉, |1〉, and |2〉 are vacuum, single-photon, and two-
photon Fock states, respectively.

The state after B1/2 acting on the two coherent states is

B
1/2
A,B |α〉A|β〉B =

∣∣∣∣α − β√
2

〉
A

∣∣∣∣α + β√
2

〉
B

, (6)

and some cases of two input coherent states with the same
value of the absolute amplitudes are

B
1/2
A,B |α〉A|α〉B = |0〉A|

√
2α〉B, (7)

B
1/2
A,B |α〉A| − α〉B = |

√
2α〉A|0〉B, (8)

B
1/2
A,B | − α〉A|α〉B = | −

√
2α〉A|0〉B, (9)

B
1/2
A,B | − α〉A| − α〉B = |0〉A| −

√
2α〉B. (10)

B. Measurement schemes for CV BSMs

We shall consider several detection schemes such as single-
photon detection, photon on-off, and homodyne measurements
for CV BSMs. The ideal description of the photon-number de-
tection is a photon-number resolving (PNR) detector [41–43]
given by the n-photon projectors M̂PNR = {∑n P̂

j
n = |n〉j 〈n|}.

However, its implementation is in general very difficult and
the PNR measurement consists in practice of many BSs and
several photon on-off detectors given by

M̂on/off = {
P̂

j

0 , P̂
j

�=0 = 1 − |0〉j 〈0|}, (11)

for spatial mode j [44]. A single-photon detector is described
by

M̂SPD =
{

P̂
j

0 , P̂
j

1 , P̂
j

�=0,1 = 1 −
∑
n=0,1

|n〉j 〈n|
}

. (12)

Alternatively, a reliable setup of homodyne detection is
commonly used for CV photonic qubits and consists of a B1/2,

a strong coherent field |β eiθ 〉, and two photodetectors [45]. If
the homodyne measurement is performed on a input signal in
mode B1, the coherent field is injected with amplitude β in
mode B2 and the B

1/2
B1,B2 mixes the input state and the field.

The intensity difference between the two detectors located in
the output fields is given by IB1−B2 = b̂1b̂

†
2 − b̂

†
1b̂2 for creation

operator b̂
†
i in Bi,

IB1−B2 = 2|β|〈x̂θ 〉 (13)

for x̂θ = (b̂1e
iθ + b̂

†
1e

−iθ )/2 [45–48]. Note that a projection
operator in mode j is equal to

P̂
xθ

j = |xθ 〉j 〈xθ | (14)

for axis angle θ in the phase space, and the probability
amplitude is given by

〈xθ |αeiϕ〉 = 1

π
1
4

exp

[
−1

2
(xθ )2 +

√
2ei(ϕ−θ)αxθ

− 1

2
e2i(ϕ−θ)α2 − 1

2
α2

]
. (15)

C. Entanglement swapping schemes without losses

Let us describe here the details of DV entanglement
swapping using VSP entangled states. For DV entanglement
swapping, the initial state is prepared in |	DV〉ABCD =
|φ+〉AB |φ+〉CD with the traveling modes in B and D. After
the B

1/2
BD , the DV BSM should be measured by projectors

{|ψ±〉〈ψ±|,|φ±〉〈φ±|} with

|ψ±〉 = (|0〉|0〉 ± |1〉|1〉)/
√

2, (16)

|φ±〉 = (|0〉|1〉 ± |1〉|0〉)/
√

2. (17)

However, it is known that photonic DV BSM cannot be
performed with a unit success probability using only linear
optical elements in modes B and D (even without a photon
loss in the channel).

The success cases of the DV BSM are described by the two
projection operators

P̂01 = P̂ B
0 ⊗ P̂ D

1 = |0〉B〈0| ⊗ |1〉D〈1|, (18)

P̂10 = P̂ B
1 ⊗ P̂ D

0 = |1〉B〈1| ⊗ |0〉D〈0|, (19)

which can be performed by two single-photon detectors. Each
projection operator P̂01 (P̂10) brings the final state of DV
entanglement swapping as |φ+

01〉AC (|φ−
01〉AC). Therefore, the

outcome is also a maximally entangled state if the DV BSM
has been successfully performed.

On the other hand, a photonic CV entanglement swapping is
quite different from the DV case. The BSM with our CV qubits
can be performed in a nearly perfect manner if photon-number
parity measurements are possible [12,23]. We define all four
CV Bell states

|
±〉 = N±(|α〉|α〉 ± | − α〉| − α〉),
|	±〉 = N±(|α〉| − α〉 ± | − α〉|α〉), (20)
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FIG. 1. Schematic diagram of hybrid entanglement swapping
schemes (a) with single-photon detectors (SPD) and (b) with a
homodyne detector (HD) and on-off detectors (D). The hybrid
states |ψHE〉AB and |ψHE〉CD with amplitudes α are prepared and
the traveling coherent-state parts (B and D) suffer photon losses
described by BT . In scheme (a), two single-photon detectors are used
together with B1/2 for a BSM for coherent state qubits [12,23]. In
scheme (b), the part for the BSM is replaced with a homodyne detector
after B1/2, an extra coherent state with amplitude

√
2α, another 50:50

BS, and two on-off photodetectors.

where N± = (2 ± 2e−4|α|2 )
−1/2

. They can be discriminated
using a 50:50 BS and two PNR detectors because only one
of the two detectors registers photons with a definite parity
(even or odd) while the other registers no photon [12,23].
Even though there is a failure probability ≈ (2 cosh 2α2)−1

[49] for which both the detectors are silent, this probability
rapidly approaches zero as α increases. Thus, without photon
losses during the channel transmissions, the CV entanglement
swapping generally provides higher success probabilities than
the DV entanglement swapping does although both cases
can give maximum entanglement. If PNR detectors for the
CV BSM are unavailable, an efficient strategy particularly
with small amplitudes is to use single-photon detectors that
discriminate between zero, one, and two or more photons
since those were used for the teleamplification protocol
[50]. To reflect more realistic conditions, we shall em-
ploy this method with single-photon detectors for the CV
BSM for our entanglement swapping scheme as depicted
in Fig. 1(a).

When channel losses are present, the parity measure-
ment for CV qubits and the single-photon measurement
for DV qubits suffer the defects of distinguishability and
the resultant states become mixed states with less entan-
glement. To compare the degrees of entanglement of mixed
states produced by different entanglement swapping schemes,
we use an entanglement measure called negativity [51]
given by

E(ρAC) = −2
∑

i

λ−
i , (21)

where λ−
i ’s are negative eigenvalues of the partial transpose

of ρAC . Here, E = 1 is for a maximally entangled state
while E = 0 means no entanglement. More explicitly, we
perform the partial transpose for a general bipartite state
ρ = ∑

cijkl|i〉A〈j | ⊗ |k〉B〈l|, such as ρPB = ∑
cijkl|i〉A〈j | ⊗

|l〉B〈k| where PB means the partial transpose on mode B.

We then calculate eigenvalues of ρPB and collect the negative
eigenvalues to obtain the degree of entanglement.

III. ENTANGLEMENT SWAPPING SCHEMES
WITH A LOSSY CHANNEL

In this section, we consider a lossy environment and
compare the hybrid entanglement swapping with small α and
the DV entanglement swapping, noting that single-photon
detectors can be used in the BSM for both the DV and
the hybrid entanglement swapping schemes. At the end of
the section, we show that the homodyne detection, well-
established for CV qubits in quantum optics, can be also
used for the BSM of the hybrid case with assistance of
a positive-operator valued measure (POVM) as shown in
Fig. 1(b).

A. DV entanglement swapping in a lossy environment

To compare hybrid and DV entanglement swappings, we
first investigate the DV case in a lossy channel. The initial
state is |	DV〉ABCD and the photons in mode B and D travel
via photon-lossy channels modeled by BT where T is the
transmission rate of the BS. In detail, this approach is described
by the reflection rate R = 1 − T = 1 − e−γ τ where γ is the
decoherence rate and τ is the interaction time in the master
equation ∂τρ = γ âρâ† − γ (â†âρ + ρâ†â)/2. For example,
T = 1 indicates no channel decoherence while T = 0 does
full decoherence (or full reflection). After the BS in the middle
under photon losses, the total state is given by∣∣	 loss

DV

〉
ABEb CDEd

= B
1/2
B,DBT

B,EbB
T
D,Ed |φ+〉AB |0〉Eb|φ+〉CD|0〉Ed, (22)

for the presence of photon losses in modes Eb and Ed.
The lossy environment of |φ+〉AB is mimicked by adding
BT

B,Eb with an extra vacuum state |0〉Eb. Then, if the two
single-photon detections are performed at modes B and D

on |	 loss
DV 〉ABEb CDEd , the final state is given by

ρ
DV,i
AC ∝ trBDEb Ed

[
P̂i

∣∣	 loss
DV

〉〈
	 loss

DV

∣∣P̂i

]
, (23)

where i = 01,10 and P̂i’s are from Eqs. (18) and (19). The
success probability is given by pDV

i = tr[ρDV,i
AC ] for each

outcome state. To calculate negativity, we can write the
final density matrix for the measurement P̂01 and its partial
transpose,

ρ
DV,01
AC = 1 − T

2 − T
|00〉〈00| + 1

2 − T
|φ+〉〈φ+|, (24)

(
ρ

DV,01
AC

)P = 1 − T

2 − T
|00〉〈00| + 1

2 − T
(|φ+〉〈φ+|)P . (25)

For the case of P̂10, we have the same formula but with |φ−〉
instead of |φ+〉. In both the cases, the corresponding negative
eigenvalue is

λ− = (1 − T ) −
√

1 + (1 − T )2

2(2 − T )
.
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FIG. 2. (a) Success probability and (b) entanglement negativity
of hybrid entanglement swapping as a function of the channel trans-
mission rate 1 − T compared with the DV entanglement swapping
using VSP states. The hybrid scheme in Fig. 1(a) with two ideal
single-photon detectors is compared with the DV case with two ideal
single-photon detectors. For α = 0.7, entanglement negativity of the
hybrid case EHE overlaps that of the DV case EDV for small losses
(0 � 1 − T � 0.2) and the success probability PHE is smaller than
PDV. However, for small amplitudes [such as α = 0.3 in (b)], the
amount of entanglement for the hybrid scheme is much higher than
that of the DV case although it is the opposite with the success
probability.

Then the total success probability pDV and its entanglement
negativity EDV on ρDV

AC are

pDV =
∑

i

pDV
i = T

2
(2 − T ), (26)

EDV =
√

1 + (1 − T )2 − (1 − T )

2 − T
. (27)

As plotted in Fig. 2, it is interesting to note that the entan-
glement approaches EDV ≈ (

√
2 − 1)/2 for T ≈ 0 because of

ρDV
AC ≈ (|00〉〈00| + |φ±〉〈φ±|)/2 [see Fig. 2(b)].

B. Hybrid entanglement swapping
with single-photon detections

Let us reuse the measurement setup of the DV BSM
for a hybrid case since the parity measurement for small
intensity photons is approximately equal to detecting either a

vacuum or a single photon. The initial state is given by
|	HE〉ABCD = |ψHE〉AB |ψHE〉CD and the states in modes B

and D are traveling coherent states [Fig. 1(a)]. Without photon
losses, the total state after B1/2 is given by

B
1/2
B,D|	HE〉ABCD ∝

∑
s=±

[|ψs〉AC |0〉B |Cs〉D

+ |φs〉AC |Cs〉B |0〉D], (28)

where s = ± and |C±〉 = N±√
2α

(|√2α〉 ± | − √
2α〉) with

normalization factor N±√
2α

.
It shows that we achieve the unit success probability

of entanglement swapping with the maximum entanglement
for not too small α if the perfect parity measurements are
performed, which distinguish among a vacuum |0〉, |C+〉,
and |C−〉 in modes B and D. However, the ideal parity
measurements lose their distinguishability for small α due to
the overlap between |0〉 and |C+〉. Note that |C−〉 reaches
a single-photon state |1〉 for small α and the conclusive
outcomes of the BSM with small α can be used for hybrid
entanglement swapping only if |1〉 ≈ |C−〉 is measured in
one mode and |0〉 is measured in the other mode. Thus, we
examine ideal single-photon measurements for the BSM of
hybrid entanglement swapping when α is small even in the
presence of losses. Based on a similar idea of mimicking lossy
channels, the final state is given by

ρ
HE,i
AC ∝ trBDEb Ed

[
P̂i

∣∣	 loss
HE

〉〈
	 loss

HE

∣∣P̂i

]
, (29)

where i = 01,10 and∣∣	 loss
HE

〉 = B
1/2
B,DBT

B,EbB
T
D,Ed |	HE〉ABCD|0〉Eb|0〉Ed. (30)

Similar to the DV case, we get the final states and their
partial transpose explicitly,

(
ρ

HE,01
AC

)P = 1

2

∑
j=±

[|φj 〉〈φj | − e−4(1−T )|α|2 |ψj 〉〈ψj |],

(
ρ

HE,10
AC

)P = 1

2

∑
j=±

[|ψj 〉〈ψj | − e−4(1−T )|α|2 |φj 〉〈φj |],

(31)

and the corresponding negative eigenvalue of these states is
λ− = −e−4(1−T )|α|2/2. In Fig. 2, the total success probability
and entanglement for hybrid entanglement swapping in the
lossy media are depicted by

pHE = 2T |α|2e−2T |α|2 , (32)

EHE = e−4(1−T )|α|2 . (33)

The figures show the entanglement of outcome states from
EDV has rapidly dropped with respect to 1 − T while EHE

slowly decreases in the lossy channel for α = 0.3. The success
probability is relatively higher with α = 0.7 as shown in
Fig. 2(a) but the advantage of entanglement disappears in this
case as shown in Fig. 2(b).
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IV. PRACTICAL SCHEME FOR HYBRID
ENTANGLEMENT SWAPPING

We here consider a practical implementation of hybrid
entanglement swapping. The single-photon detection scheme
can be mimicked by several on-off detectors with BSs
since the photon intensity is relatively low. However, these
detection schemes still give an opportunity to have a click
with two or more photons even if α is small and the on-off
detectors are perfect. More importantly, we cannot physically
detect the vacuum itself but only assume that the vacuum
projection occurs when the detector is silent. Thus, instead
of the no-click event, we consider a physical setup of a
POVM to detect a vacuum state. In Sec. IV B, we investigate
the imperfect POVM and homodyne detections because the
detector inefficiency critically influences the performance of
entanglement swapping.

A. Hybrid entanglement swapping with POVM
and homodyne detection

As shown in Fig. 1(b), we modify the measurement setup in
mode B consisting of an additional B1/2 and an extra coherent
state |√2α〉E with two on-off detectors while a homodyne
detection is performed along x̂π/2 in mode D. From Eq. (28),
the input state is only either |C+〉B , |C−〉B , or |0〉B in mode B.
When the total state is given by |	ho

HE〉 = B
1/2
BE |	 loss

HE 〉|0〉E , the
part of the total state in mode B and E is given by

B
1/2
BE |C±〉B |

√
2α〉E ∝ |0〉B |2α〉E ± | − 2α〉E |0〉B, (34)

B
1/2
BE |0〉B |

√
2α〉E = | − α〉B |α〉E. (35)

Thus, if two on-off detectors successfully have a click in both
modes B and E, the original input state in mode B was not
|C±〉B but a vacuum state. Thus, the final state is only collapsed
into |ψ+〉AC |C+〉D + |ψ−〉AC |C−〉D .

This POVM measurement in mode B is simply described
by a set of measurements (unnormalized) given by

K̂B = {K̂1,K̂2,K̂3,K̂4}, (36)

K̂1 = |0〉〈0| + λ2|C−〉〈C−| − λ(|C−〉〈0| + |0〉〈C−|),
K̂2 = |0〉〈0| + λ2|C−〉〈C−| + λ(|C−〉〈0| + |0〉〈C−|),
K̂3 = |0〉〈0| + λ2|C+〉〈C+| + λ(|C+〉〈0| + |0〉〈C+|),
K̂4 = |0〉〈0| + λ2|C+〉〈C+| − λ(|C+〉〈0| + |0〉〈C+|), (37)

where λ = 〈C+|0〉 = 2e−α2
and K̂4 indicates the successful

detection of |0〉B . When the POVM is successful, the homo-
dyne detection along x̂π/2 in mode D provides the final state
given by

|ψho〉AC = 1√
2

(|00〉AC + e
4iαx π

2 |11〉AC). (38)

We assume that the relative phase e
4iαx π

2 can be classically
fixed by a feed-forward process given by the value α and the
result of homodyne measurement xπ

2
.

In the lossy case with homodyne detection, we should
replace the extra coherent state to |√2T α〉 in mode E that
can be determined by the channel loss rate. Then the final state
is

ρho
AC ∝ trBDE Eb Ed

[
P̂

π
2

D �̂B�̂E

∣∣	ho
HE

〉〈
	ho

HE

∣∣�̂E�̂BP̂
π
2

D

]
, (39)

where �̂ = 1 − |0〉〈0|. This projection measurement corre-
sponds to the POVM K̂4, the event that both detectors
click; all others are rejected by the postselection. The cor-
responding success probability and entanglement negativity
are

pho
HE = 1

2 (1 − e−T |α|2 )2, (40)

Eho
HE = EHE. (41)

Note that the value of entanglement with homodyne detection
is equal to that with two ideal single-photon detectors due to
the equivalence of two BSM setups, and we therefore confirm
a practical hybrid BSM model for the ideal case with two
single-photon detectors.

B. Imperfect detection

Finally, we consider detector inefficiency by putting another
BT ′

right before the ideal detector. It is found that the
modified success probabilities and entanglement negativities
are replaced by T T ′ instead of T (i.e., T ′ = 1 means a perfect
detection) and the results are given by

p′
DV = T T ′(2 − T T ′)/2, (42)

p′
HE = 2T T ′|α|2e−2T T ′|α|2 , (43)

p′ho
HE = 1

2
(1 − e−T T ′|α|2 )2, (44)

E′
DV =

√(
1 − T T ′

2 − T T ′

)2

+
(

1

2 − T T ′

)2

− 1 − T T ′

2 − T T ′ , (45)

E′
HE = E′ho

HE = e−4(1−T T ′)|α|2 . (46)

As shown in Fig. 3, pho
HE < pHE < pDV; however, the sacri-

fice of the success probability can be rewarded in entanglement
even in the presence of both photon losses and imperfect
detections. In Fig. 3(a), the inefficiency of all the detectors is
fixed by T ′ = 0.7 [52,53] and the success probability of pDV <

0.5. Figure 3(b) shows that the advantage of entanglement
quality appears with small α, therefore it is more suitable for
a practical hybrid entanglement swapping scheme.

V. REMARKS

We have investigated a scheme for entanglement swapping
using hybrid photonic states to obtain a VSP entangled state
shared by two distant parties. When compared with the scheme
using only VSP entangled states, our scheme shows the
advantage of sharing a larger amount of entanglement with
detection inefficiencies in a lossy environment. We use en-
tanglement negativity to quantify the remaining entanglement
after entanglement swapping, which is still significantly high
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FIG. 3. (a) Success probability and (b) entanglement negativity
of hybrid entanglement swapping using homodyne measurement as
a function of the transmission rate 1 − T when detection efficiency
is 70% (T ′ = 0.7). The hybrid scheme in Fig. 1(b) with a homodyne
detector and two on-off detectors is compared with the DV case with
two single-photon detectors, where the efficiency of every detector
was assumed to be 70%. In this case of imperfect detection efficiency,
entanglement of the hybrid scheme is much higher than that of the DV
case for small amplitudes such as α = 0.3 in (b). As mentioned in the
main text, the quantities of entanglement for the ideal single-photon
detection and the homodyne detection are the same (Eho

HE = EHE).

(∼0.8) even when the detection efficiency is 70% and the
photon loss rate is 50% for α = 0.3. This value outperforms
the case of DV entanglement swapping in which entanglement
is below 0.4 under the same loss rate and detection efficiency.
Moreover, our scheme gives more entanglement when α

is small, and this is suitable for practical implementation
[30] although there is a tradeoff between the amount of
entanglement and the success probability.

Since the BSM is the key operation in both teleportation and
entanglement swapping, our BSM efficiency can be compared
with other teleportation schemes in Ref. [6]. Apparently, the
success probability in our BSM is much lower even under
no-loss and perfect detection (T = T ′ = 1) while the BSM
efficiencies for teleportations seem to be better in Ref. [6].
Our success probability can be increased by applying modified
detectors for discriminating more than one photon and can in
principle increase above 1/2 [12,23], which is the intrinsic
limitation of other photonic qubit teleportations for BSMs due
to the constraint of linear optical operations [6]. For example,
if we assume modified detectors that can discriminate several
photons instead of the VSP detectors, the scheme would work
as a decent level of parity measurement in the BSM setup and
give a higher success probability.

Our scheme may be useful for long-distance quantum key
distribution. It is known that the entanglement distillation
scheme for two-qubit entangled states [4] can be successfully
performed with the mixed states having fidelity above 0.5
with one of the Bell states [54,55]. We point out that two DV
mixed states obtained using our hybrid entanglement swapping
scheme can be used to distill a new two-qubit mixed state
with larger entanglement. For example, we can perform a
distillation protocol [55] on a pair of mixed states ρho

AC in
Eq. (39) to obtain a new state with higher entanglement. From a
pair of ρho

AC with Eho
HE ≈ 0.6 when α = 0.5 and T = T ′ = 0.7,

we can create the new mixed state with E > 0.92 through one
step of the distillation protocol, which has been demonstrated
in photonic states [56]. The iteration of this protocol would
result in a highly entangled state between remote parties,
which is useful for a secure quantum communication [57,58].
A related future work may focus on the confirmation of
security for practical quantum key distribution using this
hybrid scheme.
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