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Unified view of quantum correlations and quantum coherence
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In this paper, we argue that quantum coherence in a bipartite system can be contained either locally or in the
correlations between the subsystems. The portion of quantum coherence contained within correlations can be
viewed as a kind of quantum correlation which we call correlated coherence. We demonstrate that the framework
provided by correlated coherence allows us to retrieve the same concepts of quantum correlations as defined
by the asymmetric and symmetric versions of quantum discord as well as quantum entanglement, providing a
unified view of these correlations. We also prove that correlated coherence can be formulated as an entanglement
monotone, thus demonstrating that entanglement may be viewed as a specialized form of coherence.
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I. INTRODUCTION

A fascinating property of quantum mechanics is that it
admits superpositions between different physical states [1]. A
superposition of quantum states is typically described by pure
states, which are completely different in nature to a classical
stochastic mixture of states, otherwise called mixed states.

Following the birth of quantum theory, physical
demonstrations of quantum coherence arising from superpo-
sitions of many different quantum systems such as electrons,
photons, atoms, mechanical modes, and hybrid systems have
been achieved [2–4].

Recent developments in our understanding of quantum
coherence have come from the burgeoning field of quantum
information science. One important pillar of the field is the
study of quantum correlations. It turns out that in a multipartite
setting, quantum mechanical effects allow remote laboratories
to collaborate and perform tasks that are otherwise impossible
using classical physics [5]. Historically, the most well-studied
quantum correlation is perhaps quantum entanglement [6–8].
Subsequent developments of the idea led to the formulation
of quantum discord [9,10], and its symmetrized version [11–
13] as more generalized forms of quantum correlations.
The development of such ideas of the quantumness of
correlations has led to a plethora of quantum protocols such
as quantum cryptography [14], quantum teleportation [15],
quantum superdense coding [16], quantum random access
codes [17], remote state preparation [18], random number
generation [19], and quantum computing [20,21], among
others. Quantum correlations have also proven useful in the
study of macroscopic quantum objects [22].

Meanwhile, quantitative theories of entanglement [23,24]
have been formulated by characterizing and quantifying
entanglement as a resource to achieve certain tasks that
are otherwise impossible classically. Building upon this,
Baumgratz et al. [25] recently proposed a resource theory
of quantum coherence. Recent developments have since
uncovered interesting connections between quantum coher-
ence and correlation, such as their interconversion with each
other [26,27] as well as trade-off relations [28].
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In this paper, we demonstrate that quantum correlations can
be understood in terms of the coherence contained entirely
between subsystems. In contrast to previous studies which
established more indirect relationships between quantum
correlation and coherence [26–28], our study establishes a
direct connection between the two and provides a unified view
of quantum correlations which includes quantum discord and
entanglement using the framework of quantum coherence.

II. PRELIMINARIES

We will frequently refer to a bipartite quantum state which
we denote ρAB , where A and B refer to local subsystems held
by different laboratories. Following convention, we say the
subsystems A and B are held by Alice and Bob, respectively.
The local state of Alice is obtained by performing a partial
trace on ρAB , and is denoted by ρA = TrB(ρAB), and {|i〉A} is
a complete local basis of Alice’s system. Bob’s local state
and local basis are also similarly defined. In general, the
systems Alice and Bob hold may be composite, such that
A = A1A2 · · · AN and B = B1B2 · · · BM , so the total state may
identically be denoted by ρA1A2···ANB1B2···BM

.
We will adopt the axiomatic approach for coherence

measures as shown in Ref. [25]. For a fixed basis set
{|i〉}, the set of incoherent states I is the set of quantum
states with diagonal density matrices with respect to this
basis. Then a reasonable measure of quantum coherence
C should satisfy the following properties: (C1) C(ρ) � 0
for any quantum state ρ and equality holds if and only if
ρ ∈ I. (C2a) The measure is nonincreasing under incoherent
completely positive and trace-preserving maps (ICPTP) �, i.e.,
C(ρ) � C(�(ρ)). (C2b) Monotonicity for average coherence
under selective outcomes of ICPTP: C(ρ) �

∑
n pnC(ρn),

where ρn = K̂nρK̂
†
n/pn and pn = Tr [K̂nρK̂

†
n] for all K̂n

with
∑

n K̂
†
nK̂n = 1 and K̂nIK̂

†
n ⊆ I. (C3) Convexity, i.e.,

λC(ρ) + (1 − λ)C(σ ) � C(λρ + (1 − λ)σ ), for any density
matrix ρ and σ with 0 � λ � 1. Here, we will employ
the l1-norm of coherence, which is defined by C(ρ) :=∑

i �=j |〈i|ρ|j 〉|, for any given basis set {|i〉} (otherwise called
the reference basis). It can be shown that this definition satisfies
all the properties mentioned [25].

In addition, we will also reference local operations and
classical communication (LOCC) protocols in the context of
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the resource theory of entanglement. LOCC protocols allow
for two different types of operation. First, Alice and Bob are
allowed to perform quantum operations, but only locally on
their respective subsystems. Second, they are also allowed
classical, but otherwise unrestricted, communication between
them. LOCC operations are especially important in the
characterization of quantum entanglement, which typically
does not increase under such operations. Measures of entan-
glement that do not increase under LOCC-type operations are
referred to as LOCC monotones [29].

III. MAXIMAL COHERENCE LOSS

Before establishing the connection between quantum
correlation and coherence, we first consider the measurement
that leads to the maximal coherence lost in the system of
interest. For a monopartite system, the solution to this is trivial.
For any quantum state ρ = ∑

i,j ρi,j |i〉〈j | with a reference
basis {|i〉}, it is clear that the measurement that maximally
removes coherence from the system is the projective mea-
surement �(ρ) = ∑

i |i〉〈i|ρ|i〉〈i|. This measurement leaves
behind only the diagonal terms of ρ, so C(�(ρ)) = 0, which
is the minimum coherence any state can have.

A less obvious result for a bipartite state is the following
statement (proof in Appendix A).

Proposition 1. For any N -partite state ρA1A2...AN
where the

coherence is measured with respect to the local reference
bases {|i〉Ak

} and k = 1,2, . . . ,N , the projective measurement
on subsystem Ak that induces maximal coherence loss is the
projective measurement onto the local basis {|i〉Ak

}.
As we shall see in the subsequent sections, the maximal

coherence loss will play a role in defining the set of quantum
correlations from the point of view of quantum discord and
quantum entanglement.

IV. LOCAL AND CORRELATED COHERENCE

Now consider a bipartite state ρAB , with total coherence
C(ρAB) with respect to local reference bases {|i〉A} and {|j 〉B}.
Then C(ρA) and C(ρB) can be interpreted as the coherence that
is local to A and B, respectively. In general, the sum of the
total local coherences is not necessarily the same as the total
coherence in the system. It is therefore reasonable to suppose
that a portion of the quantum coherences are not stored locally,
but within the correlations of the system itself. This motivates
the following definition.

Definition 1 (correlated coherence). With respect to local
reference bases {|i〉A} and {|j 〉B}, the correlated coherence for
a bipartite quantum system is the local coherences subtracted
from the total coherence,

Ccc(ρAB) := C(ρAB) − C(ρA) − C(ρB),

where ρA and ρB are the reduced density matrices of A and B,
respectively.

Further reinforcing the idea that the local coherences form
only a portion of the total coherence present in a quantum
system, we have the following property (proof in Appendix B).

Theorem 1. For any bipartite quantum state ρAB ,
Ccc(ρAB) � 0 (i.e., correlated coherence is always non-
negative).

V. CORRELATED COHERENCE AND QUANTUM
DISCORD

Of particular interest to the study of quantum correlations
is the idea that certain correlations are quantum and certain
correlations are classical. Here, we will demonstrate that
correlated coherence is able to unify many of these concepts
of quantumness under the same framework.

First, note that in our definition of correlated coherence, the
choice of reference bases is not unique, while most definitions
of quantum correlations are independent of specific basis
choices. However, we can retrieve basis independence via a
very natural choice of local bases. For every bipartite state
ρAB , the reduced density matrices ρA and ρB have eigenbases
{|αi〉} and {|βi〉}, respectively. By choosing these local bases,
ρA and ρB are both diagonal so the local coherences are zero.
The implication of this is that for such a choice, the coherence
in the system is stored entirely within the correlations. Since
this can be done for any ρAB , correlated coherence with respect
to these bases becomes a state-dependent property. In the case
where there may be degenerate eigenbases available, we will
choose the eigenbasis that minimizes correlated coherence so
the quantity remains basis independent. For the rest of this
paper, unless otherwise stated, we will assume that the choice
of local bases for the calculation of correlated coherence will
always be the local eigenbases of Alice and Bob.

We first consider the definition of a quantum correlation
in the symmetrized version of quantum discord. Under the
framework of symmetric discord, a state contains quantum
correlations when it cannot be expressed in the form ρAB =∑

i,j pi,j |i〉A〈i| ⊗ |j 〉B〈j |, where {|i〉A} and {|j 〉B} are sets
of orthonormal vectors. Any such state has zero symmetric
discord by definition.

We prove the following theorem.
Theorem 2 (correlated coherence and symmetric quantum

discord). For a given state ρAB , Ccc(ρAB) = 0 if and only if
ρAB = ∑

i,j pi,j |i〉A〈i| ⊗ |j 〉B〈j |.
Proof. If {|i〉A} and {|j 〉B} are the the eigenbases

of ρA and ρB , then Ccc(ρAB) = 0 implies C(ρAB) =
0, which implies ρAB only has diagonal terms,
so ρAB = ∑

i,j pi,j |i〉A〈i| ⊗ |j 〉B〈j |. Therefore, Ccc(ρAB) =
0 ⇒ ρAB = ∑

i,j pi,j |i〉A〈i| ⊗ |j 〉B〈j |.
Conversely, if ρAB = ∑

i,j pi,j |i〉A〈i| ⊗ |j 〉B〈j |, then the
state clearly has zero coherence, which implies Ccc(ρAB) = 0,
so the converse is also true. This proves the theorem. �

This establishes a relationship between correlated coher-
ence and symmetric discord. We now consider the asymmetric
version of quantum discord. Under this framework, a state con-
tains quantum correlations when it cannot be expressed in the
form ρAB = ∑

i pi |i〉A〈i| ⊗ ρi
B , where ρ

j

B is some normalized
density matrix and {|i〉A} is some set of orthonormal vectors.

We prove the following.
Theorem 3 (correlated coherence and asymmetric quantum

discord). For a given state ρAB , let {|i〉A} and {|j 〉B} be
the the eigenbases of ρA and ρB , respectively. Define the
measurement on A onto the local basis as �A(ρAB) :=∑

i(|i〉A〈i| ⊗ 1B)ρAB(|i〉A〈i| ⊗ 1B). Then, with respect to
these local bases, Ccc(ρAB) − Ccc(�A(ρAB)) = 0 if and only
if ρAB = ∑

i pi |i〉A〈i| ⊗ ρi
B , where ρi

B is some normalized
density matrix and {|i〉A} is some set of orthonormal vectors.
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Proof. First, we write the state in the form ρAB =∑
i,j,k,l ρijkl|i,j 〉AB〈k,l|. We can always write the state in

block matrix form such that ρAB = ∑
i,k |i〉A〈k| ⊗ ρ

i,k
B , where

ρ
i,k
B := ∑

j,l ρijkl|j 〉B〈l|. If {|i〉A} and {|j 〉B} are the the
eigenbases of ρA and ρB , then Ccc(ρAB) − Ccc(�A(ρAB)) =
0 implies that when i �= k, ρ

i,k
B = 0. This implies

ρAB = ∑
i |i〉A〈i| ⊗ ρ

i,i
B . By defining ρi

B = ρ
i,i
B /pi where

pi := Tr ρ
i,i
B , we get ρAB = ∑

i pi |i〉A〈i| ⊗ ρi
B . Therefore,

Ccc(ρAB) − Ccc(�A(ρAB)) = 0 ⇒ ρAB = ∑
i pi |i〉A〈i| ⊗ ρi

B .
For the converse, if ρAB = ∑

i pi |i〉A〈i| ⊗ ρi
B , then clearly,

�A(ρAB) = ρAB , so Ccc(ρAB) − Ccc(�A(ρAB)) = 0. �
Note that the above relationship with asymmetric quantum

discord is expressed as a difference between the correlated
coherence of ρAB and the postmeasurement state �A(ρAB).
While this characterization of quantum correlations may at
first appear to diverge from the one given in Theorem 2, they
are actually similar since Ccc(�A�B(ρAB)) = 0 so Ccc(ρAB) =
Ccc(ρAB) − Ccc(�A�B(ρAB)). It is therefore possible to in-
terpret quantum discord as the correlated coherence loss
when either party performs a maximally coherence destroying
measurement only their subsystems (see Appendix A). When
the projective measurement is performed only on one side,
one retrieves the asymmetric version of quantum discord,
and the symmetrized version is obtained when the coherence
destroying measurement is performed by both parties. An
immediate implication of Theorems 2 and 3 can be found in,
for instance, the no-broadcasting theorem (see Refs. [30–32]),
where it is known that zero discord (and hence zero cor-
related coherence) is necessary and sufficient for quantum
broadcasting. From our results, we now gain an additional
interpretation that local broadcasting is impossible because of
the presence of coherence that cannot be locally destroyed
through measurements.

Furthermore, it is interesting to note the formal similarity
of correlated coherence in Definition 1 with the definition
of quantum mutual information, which is given by S(ρA) +
S(ρB) − S(ρAB), where S(·) is the von Neumann entropy of a
quantum state. Indeed, in Ref. [13], it is demonstrated that the
total correlation, as measured by mutual information, minus
the locally observable correlations, defines quantum discord.
Despite starting from very different initial assumptions, both
approaches (correlated coherence and mutual information) are
able to identify similar sets of classical quantum states.

This similarity notwithstanding, correlated coherence and
mutual information are nonetheless very different measures.
In Ref. [33], it was shown that the computation of quantum
discord in the sense of Refs. [9,13] is a NP-complete problem,
so direct computation of quantum discord even for moderately
sized systems is impossible. In comparison, the computation
of correlated coherence requires only the eigenbasis for
the reduced systems, which is likely much more efficiently
computable. We therefore propose correlated coherence as a
more natural candidate for the study of quantum correlations
in the macroscopic quantum regime.

VI. CORRELATED COHERENCE AND ENTANGLEMENT

Under the framework of entangled correlations, a state
contains quantum correlations when it cannot be expressed

as a convex combination of product states
∑

i pi |αi〉A〈αi | ⊗
|βi〉B〈βi |, where |αi〉 and |βi〉 are normalized but not neces-
sarily orthogonal vectors that can repeat. It is also possible
to extend our methodology to entangled quantum states. In
order to do this, we consider extensions of the quantum
state ρAB , which were also considered in Ref. [34]. We say
that a state ρABC is an extension of ρAB if TrC(ρABC) =
ρAB . For our purpose, we will consider extensions of the
form ρAA′BB ′ .

Theorem 4. Let ρAA′BB ′ be some extension of a bipartite
state ρAB and choose the local bases to be the eigenbases
of ρAA′ and ρBB ′ , respectively. Then with respect to these
local bases, min Ccc(ρAA′BB ′ ) = 0 if and only if ρAB =∑

i pi |αi〉A〈αi | ⊗ |βi〉B〈βi | for some set of normalized vectors
|αi〉 and |βi〉 that are not necessarily orthogonal and may
repeat. The minimization is over all possible extensions of
ρAB of the form ρAA′BB ′ .

Proof. If min Ccc(ρAA′BB ′) = 0, then ρAA′BB ′ must have
the form

∑
i,j pi,j |μi〉AA′ 〈μi | ⊗ |νj 〉BB ′ 〈νj | (see Theorem 2).

Since ρAA′BB ′ is an extension, TrA′TrB ′ (ρAA′BB ′) =∑
i,j pi,j TrA′(|μi〉AA′ 〈μi |) ⊗ TrB ′ (|νj 〉BB ′ 〈νj |) = ρAB . Let

ρi
A := TrA′(|μi〉AA′ 〈μi |) and ρ

j

B := TrB ′(|νj 〉BB ′ 〈νj |). Then,

ρAB = ∑
i,j pi,j ρ

i
A ⊗ ρ

j

B . This is equivalent to saying
ρAB = ∑

i pi |αi〉A〈αi | ⊗ |βi〉B〈βi |, for some set of (non-
necessarily orthogonal) vectors {|αi〉} and {|βi〉}. This proves
min Ccc(ρAA′BB ′) = 0 ⇒ ρAB = ∑

i pi |αi〉A〈αi | ⊗ |βi〉B〈βi |.
For the converse, suppose ρAB = ∑

i pi |αi〉A〈αi | ⊗
|βi〉B〈βi |, and consider the purification of ρAB of the
form |ψ〉ABA′B ′C ′ = ∑

i

√
pi |αi〉A|βi〉B |i〉A′ |i〉B ′ |i〉C ′ . {|i〉A′ }

is a set of orthonormal vectors, similarly for B ′ and C ′.
Since this is a purification, ρAA′BB ′ = TrC ′(|ψ〉ABA′B ′C ′ 〈ψ |)
is clearly an extension of ρAB . Furthermore, the eigen-
bases of ρAA′ and ρBB ′ are {|αi〉A|i〉A′ } and {|βi〉B |i〉B ′ },
respectively. Since ρAA′BB ′ = ∑

i pi |αi〉A|i〉A′ 〈αi |A〈i|A′ ⊗
|βi〉B |i〉B ′ 〈βi |B〈i|B ′ , Ccc(ρAA′BB ′) = 0 with respect to the
eigenbases of ρAA′ and ρBB ′ . Therefore, min Ccc(ρAA′BB ′) = 0,
which completes the proof. �

Theorem 4 is sufficient to characterize the set of separable
(and hence also entangled) quantum states through correlated
coherence. In the following, we will demonstrate that the
relationship between entanglement and coherence can be
pushed further still. We now construct an entanglement
monotone using the correlated coherence of a quantum state.
In order to do this, we first define the symmetric extensions
of a given quantum state.

Definition 2 (unitarily symmetric extensions). Let ρAA′BB ′

be an extension of a bipartite state ρAB . The extension ρAA′BB ′

is said to be unitarily symmetric if it remains invariant up to
local unitary operations on AA′ and BB ′ under a system swap
between Alice and Bob.

More formally, let {|i〉AA′ } and {|j 〉BB ′ } be complete
local bases on AA′ and BB ′, respectively. Define
the SWAP operator USWAP|i,j 〉AA′BB ′ := |j,i〉AA′BB ′ .
Then ρAA′BB ′ is unitarily symmetric if there exists
local unitary operations UAA′ and UBB ′ such that
UAA′ ⊗ UBB ′ (USWAPρAA′BB ′U

†
SWAP)U †

AA′ ⊗ U
†
BB ′ = ρAA′BB ′ .

Following from the observation that the minimization of
coherence over all extensions is closely related to the the
separability of a quantum state, we define the following.
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Definition 3. Let ρAA′BB ′ be some unitarily symmetric
extension of a bipartite state ρAB and choose the local bases
to be the eigenbases of ρAA′ and ρBB ′ , respectively. Then the
entanglement of coherence is defined to be

Ecc(ρAB) := min Ccc(ρAA′BB ′).

The minimization is over all possible unitarily symmetric
extensions of ρAB of the form ρAA′BB ′ .

It can be verified that Ecc satisfies the following elementary
properties (proofs in Appendix C):

1. A bipartite quantum state ρAB is separable if and only if
Ecc(ρAB) = 0.

2. For a bipartite quantum state ρAB , Ecc(ρAB) is invariant
under local unitary operations on A and B.

3. Ecc(ρAB) is convex and nonincreasing under mix-
ing, i.e., λEcc(ρAB) + (1 − λ)Ecc(σAB) � Ecc(λρAB + (1 −
λ)σAB) for any two bipartite quantum states ρAB and σAB ,
and λ ∈ [0,1].

4. Consider the bipartite state ρAB where A = A1A2 is
a composite system. Then the entanglement of coherence
is nonincreasing under a partial trace, i.e., Ecc(ρA1A2B) �
Ecc(TrA1 (ρA1A2B)).

5. Ecc(ρAB) is nonincreasing under local projective opera-
tions by Alice and Bob..

6. Ecc(ρAB) is invariant under classical communication
between Alice and Bob.

7. Ecc(ρAB) is nonincreasing under LOCC-type operations.
The following theorem says that Ecc(ρAB) is a reasonable

measure of entanglement (i.e., it is an entanglement mono-
tone).

Theorem 5 (entanglement monotone). The entanglement of
coherence Ecc is an entanglement monotone in the sense that
it satisfies:

i. Ecc(ρAB) = 0 if and only if Ecc(ρAB) is separable.
ii. Ecc(ρAB) is invariant under local unitaries on A and B.
iii. Ecc(ρAB) � Ecc(�LOCC(ρAB)) for any LOCC procedure

�LOCC.
Proof. It follows directly from properties 1, 2, and 7 above.�

VII. CONCLUSION

To conclude, we defined a quantity we call correlated
coherence of quantum states which can be interpreted as
the portion of the total coherence that is shared between
two subsystems. The framework of the correlated coherence
identifies the same nonclassical correlations as those of (both
symmetric and asymmetric) quantum discord and quantum
entanglement. We also provide a direct proof that entanglement
can be viewed as a type of coherence by constructing an
entanglement monotone through correlated coherence.

We stress that correlated coherence is not the definition
of a new type of quantum correlation. Instead, it operates
entirely within the existing framework of coherence where the
coherence is in this case measured using some “proper” ref-
erence frame. The results presented demonstrate that through
the proper choice of reference frames, we are able to retrieve
other well-understood quantum correlated sets, such quantum
discord and quantum entanglement, thus strongly suggesting
that the quantum properties of correlations originate from the
quantum properties of coherence. It also suggest that multiple,

separate approaches may not be necessary in the study of
quantum correlated sets, and that the theory of coherence
is sufficiently rich enough to encompass the study of both
single systems as well as correlated, multipartite systems.
The relationship between coherence and other nonclassical
measures of correlations, such as nonlocality, is an area that
warrants further investigation in the future.

The implications of this are of fundamental significance
to our current understanding of quantum correlations. This
connection may eventually allow for the development of a set
of common tools in the treatment of various forms of quantum
correlations and quantum coherence.
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APPENDIX A: MAXIMAL COHERENCE LOSS

In this Appendix, we prove that the local projective
measurement that induces maximal coherence loss is the
projection onto the local basis that defines the coherence of
the system. Formally:

Proposition. For any bipartite state ρAB = ∑
i,j,k,l

ρi,j,k,l|i,j 〉AB〈k,l| where the coherence is measured
with respect to the local reference bases {|i〉A} and
{|j 〉B}, the projective measurement on subsystem B

that induces maximal coherence loss is �B(ρAB) =∑
j (1A ⊗ |j 〉B〈j |)ρAB(1A ⊗ |j 〉B〈j |).
Proof. We begin by using the spectral decomposition of

a general bipartite quantum state ρAB = ∑
n pn|ψn〉AB〈ψn|.

Assume that the subsystems have local reference bases
{|i〉A} and {|j 〉B} such that ρAB = ∑

n

∑
i,j,k,l pnψ

n
i,j (ψn

k,l)
∗

|i,j 〉AB〈k,l|. The coherence of the system is measured with
respect to these bases. To reduce clutter, we remove the
subscripts pertaining to the subsystems AB for the remainder
of the proof. Unless otherwise stated, it should be clear from
the context which subsystem every operator belongs to.

Consider some complete basis on B, {|λm〉}, and
corresponding projective measurement �B(ρ) = ∑

m(1 ⊗
|λm〉〈λm|) ρ (1 ⊗ |λm〉〈λm|). Computing the matrix elements,
we get

〈i,j |�B(ρ)|k,l〉 : = [�B(ρ)]i,j,k,l

=
∑

n

∑
p,q

pnψ
n
i,p

(
ψn

kq

)∗

×
∑
m

〈j |λm〉〈λm|l〉〈q|λm〉〈λm|p〉.

Note that minimizing the absolute sum of all the matrix
elements will also minimize the coherence, since the diagonal
elements of any density matrix always sum to 1 and are
non-negative. Consider the absolute sum of all the matrix
elements of �B(ρ):
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∑
i,j,k,l

∣∣[�B(ρ)]i,j,k,l

∣∣ =
∑
i,j,l,k

∣∣∣∣∣
∑

n

∑
p,q

pnψ
n
i,p

(
ψn

k,q

)∗ ∑
m

〈j |λm〉〈λm|l〉〈q|λm〉〈λm|p〉
∣∣∣∣∣

�
∑
i,k

j = l

∣∣∣∣∣
∑

n

∑
p,q

pnψ
n
i,p

(
ψn

k,q

)∗ ∑
m

〈j |λm〉〈λm|l〉〈q|λm〉〈λm|p〉
∣∣∣∣∣

=
∑
i,k,j

∣∣∣∣∣
∑

n

∑
p,q

pnψ
n
i,p

(
ψn

k,q

)∗ ∑
m

〈j |λm〉〈λm|j 〉〈q|λm〉〈λm|p〉
∣∣∣∣∣

�
∑
i,k

∣∣∣∣∣∣
∑

n

∑
p,q

pnψ
n
i,p

(
ψn

k,q

)∗ ∑
m

∑
j

〈j |λm〉〈λm|j 〉〈q|λm〉〈λm|p〉
∣∣∣∣∣∣

=
∑
i,k

∣∣∣∣∣
∑

n

∑
p,q

pnψ
n
i,p

(
ψn

k,q

)∗ ∑
m

〈q|λm〉〈λm|p〉
∣∣∣∣∣ =

∑
i,k

∣∣∣∣∣
∑

n

∑
p,q

pnψ
n
i,p

(
ψn

k,q

)∗
δq,p

∣∣∣∣∣

=
∑
i,k

∣∣∣∣∣
∑
n,p

pnψ
n
i,p(ψn

k,p)∗
∣∣∣∣∣.

The first inequality comes from omitting non-negative terms
in the sum, while the second inequality comes from moving
a summation inside the absolute value function. Note that the
final equality is exactly the absolute sum of the elements when
|λj 〉 = |j 〉 since

∑
j

(1A ⊗ |j 〉B〈j |)ρAB(1A ⊗ |j 〉B〈j |)

=
∑
i,j,k

∑
n

pnψ
n
i,j

(
ψn

k,j

)∗|i,j 〉〈k,j |.

This proves the proposition. �
Since any N -partite state ρA1A2···AN

, is allowed to per-
form a bipartition such that ρA1A2···AN

= ρA′AN
where A′ =

A1 · · · AN−1, we also get the following as a straightforward
corollary.

Corollary. For any N -partite state ρA1A2···AN
where the

coherence is measured with respect to the local reference bases
{|i〉Ak

} and k = 1,2, . . . ,N , then the projective measurement
on subsystem Ak that induces maximal coherence loss is the
projective measurement onto the local basis {|i〉Ak

}.

APPENDIX B: NON-NEGATIVITY OF CORRELATED
COHERENCE

In this Appendix, we prove the non-negativity of correlated
coherence mentioned in the main text.

Theorem 6. For any bipartite quantum state ρAB ,
Ccc(ρAB) � 0 (i.e., correlated coherence is always non-
negative).

Proof. Let ρAB = ∑
n

∑
i,j,k,l pnψ

n
i,j (ψn

k,l)
∗|i,j 〉AB〈k,l|,

then

Ccc(ρAB) = C(ρAB) − C(ρA) − C(ρB) =
∑
(i,j )

�= (k,l)

∣∣∣∣∣
∑

n

pnψ
n
i,j

(
ψn

k,l

)∗
∣∣∣∣∣ −

∑
i �=k

∣∣∣∣∣∣
∑

n

pn

∑
j

ψn
i,j

(
ψn

k,j

)∗
∣∣∣∣∣∣
−

∑
j �=l

∣∣∣∣∣
∑

n

pn

∑
i

ψn
i,j

(
ψn

i,l

)∗
∣∣∣∣∣

�
∑
(i,j )

�= (k,l)

∣∣∣∣∣
∑

n

pnψ
n
i,j

(
ψn

k,l

)∗
∣∣∣∣∣ −

∑
j

i �= k

∣∣∣∣∣
∑

n

pnψ
n
i,j

(
ψn

k,j

)∗
∣∣∣∣∣ −

∑
i

j �= l

∣∣∣∣∣
∑

n

pnψ
n
i,j

(
ψn

i,l

)∗
∣∣∣∣∣

=

⎛
⎜⎜⎜⎝

∑
(i,j )

�= (k,l)

−
∑
j = l

i �= k

−
∑
i = k

j �= l

⎞
⎟⎟⎟⎠

∣∣∣∣∣
∑

n

pnψ
n
i,j

(
ψn

k,l

)∗
∣∣∣∣∣.

The inequality comes from moving a summation outside of the absolute value function. Since
∑

(i,j )
�= (k,l)

=
∑

j �= l

i �= k

+∑
j = l

i �= k

+∑
i = k

j �= l

, the final equality above is always a sum of non-negative values, which completes the proof. �

022329-5



TAN, KWON, PARK, AND JEONG PHYSICAL REVIEW A 94, 022329 (2016)

APPENDIX C: ELEMENTARY PROPERTIES OF THE
ENTANGLEMENT OF COHERENCE

In this Appendix, we will prove useful elementary proper-
ties of the entanglement of coherence. The proofs are presented
in the same order as they are mentioned in the main text.

Property 1 (EOC of separable states). If a bipartite quantum
state ρAB is separable, Ecc(ρAB) = 0.

Proof. The proof is nearly identical to Theorem 4 in the
main text, with the additional observation that ρAA′BB ′ =∑

i,j pi,j |μi〉AA′ 〈μi | ⊗ |νj 〉BB ′ 〈νj | is unitarily symmetric.
To see this, define UAA′ := ∑

i |νi〉AA′ 〈μi | and UBB ′ :=∑
i |μi〉AA′ 〈νi |. It is easy to verify that is satisfies

UAA′ ⊗ UBB ′(USWAPρAA′BB ′U
†
SWAP)U †

AA′ ⊗ U
†
BB ′ = ρAA′BB ′ ,

where USWAP is the same SWAP operator as in the main text so
it is unitarily symmetric. �

Property 2 (invariance under local unitaries). For a
bipartite quantum state ρAB , Ecc(ρAB) is invariant under local
unitary operations on A and B

Proof. Without loss in generality, we only need to prove it
is invariant under local unitary operations on A.

For some bipartite state ρAB , let ρ∗
AA′BB ′ be the

optimal unitarily symmetric extension such that Ecc(ρAB) =
Ccc(ρ∗

AA′BB ′). Let |i〉AA′ and |j 〉BB ′ be the eigenbases of ρ∗
AA′

and ρ∗
BB ′ , respectively. With respect to these bases, ρ∗

AA′BB ′ =∑
ijkl ρijkl|i,j 〉AA′BB ′ 〈k,l|.
Suppose we perform a unitary U = UA ⊗ 1A′BB ′ on A

such that so U |i,j 〉 = |αi,j 〉, where {|αi〉} is an orthonormal
set. Since Uρ∗

AA′BB ′U † = ∑
ijkl ρijkl|αi,j 〉AA′BB ′ 〈αk,l|, it is

clear that the off-diagonal matrix elements are invariant under
the new bases |αi,j 〉AA′BB ′ so Ecc(ρAB) = Ecc(Uρ∗

AA′BB ′U †),
which proves the proposition. �

Property 3 (convexity). Ecc(ρAB) is convex and nonincreas-
ing under mixing:

λEcc(ρAB) + (1 − λ)Ecc(σAB) � Ecc(λρAB + (1 − λ)σAB).

For any two bipartite quantum states ρAB and σAB , and λ ∈
[0,1].

Proof. Let ρ∗
AA′BB ′ and σ ∗

AA′BB ′ be the optimal unitarily
symmetric extensions for ρAB and σAB , respectively, such that
Ecc(ρAB) = Ccc(ρ∗

AA′BB ′ ) and Ecc(σAB) = Ccc(σ ∗
AA′BB ′).

Consider the state τAA′A′′BB ′B ′′ := λρ∗
AA′BB ′ ⊗

|0,0〉A′′B ′′ 〈0,0| + (1 − λ)σ ∗
AA′BB ′ ⊗ |1,1〉A′′B ′′ 〈1,1| for λ ∈

[0,1]. Direct computation will verify that with respect to
the eigenbases of τAA′A′′ and τBB ′B ′′ , Ccc(τAA′A′′BB ′B ′′) =
λCcc(ρ∗

AA′BB ′ ) + (1 − λ)Ccc(σ ∗
AA′BB ′) = λEcc(ρAB) + (1 − λ)

Ecc(σAB). However, as TrA′A′′B ′B ′′ (τAA′A′′BB ′B ′′) =
λρAB + (1 − λ)σAB , it is an extension of λρ∗

AB + (1 − λ)σ ∗
AB .

It remains to be proven that the extension above
is also unitarily symmetric. Let �SWAP

X↔Y denote the
SWAP operation between X and Y . Let the opera-
tors UAA′ , UBB ′ , VAA′ , VBB ′ satisfy ρ∗

AA′BB ′ = UAA′ ⊗
UBB ′�SWAP

AA′↔BB ′(ρ∗
AA′BB ′ )U

†
AA′ ⊗ U

†
BB ′ and σ ∗

AA′BB ′ = VAA′ ⊗
VBB ′�SWAP

AA′↔BB ′ (σ ∗
AA′BB ′ )V

†
AA′ ⊗ V

†
BB ′ , respectively. It can

be verified that the local unitary operators WAA′A′′ :=
UAA′ ⊗ |0〉A′′ 〈0| + VAA′ ⊗ |1〉A′′ 〈1| and WBB ′B ′′ := UBB ′ ⊗
|0〉B ′′ 〈0| + VBB ′ ⊗ |1〉B ′′ 〈1| satisfy τ ∗

AA′A′′BB ′B ′′ = WAA′A′′ ⊗

WBB ′B ′′�SWAP
AA′A′′↔BB ′B ′′ (τAA′A′′BB ′B ′′)W †

AA′B ′′ ⊗ W
†
BB ′B ′′ , so it is

also unitarily symmetric.
Since Ecc is a minimization over all unitarily sym-

metric extensions, we have λEcc(ρAB) + (1 − λ)Ecc(σAB) =
Ccc(τAA′A′′BB ′B ′′) � Ecc(λρAB + (1 − λ)σAB), which com-
pletes the proof. �

Property 4 (contraction under partial trace). Consider the
bipartite state ρAB where A = A1A2 is a composite system.
Then the entanglement of coherence is nonincreasing under a
partial trace:

Ecc(ρA1A2B) � Ecc(TrA1 (ρA1A2B)).

Proof. Let ρ∗
A1A2A′BB ′ be the optimal unitarily symmetric

extension of ρA1A2B such that Ecc(ρA1A2B) = Ccc(ρ∗
A1A2A′BB ′).

It is clear that TrA1A′B ′(ρ∗
A1A2A′BB ′) = TrA1 (ρA1A2B) = ρA2B so

ρ∗
A1A2A′BB ′ is an unitarily symmetric extension of TrA1 (ρA1A2B).

Since Ecc is a minimization over all such extensions,
Ecc(ρA1A2B) � Ecc(TrA1 (ρA1A2B)). �

Property 5 (contraction under local projections). Let πi
A

be a complete set of rank 1 projectors on subsystem A such
that

∑
i π

i
A = 1A, and define the local projection �A(ρA) :=∑

i π
i
AρAπi

A. The entanglement of coherence is contractive
under a local projections,

Ecc(ρAB) � Ecc(�A(ρAB)),

or, if A is a composite system, A = A1A2,

Ecc(ρAB) � Ecc(�A1 (ρA1A2B)).

Proof. First, we observe that any projective measurement
can be performed via a controlled-NOT (CNOT) type operation
with an ancilla, followed by tracing out the ancilla:

TrX

⎡
⎣UCNOT

XY

⎛
⎝|0〉X〈0| ⊗

∑
i,j

ρij |i〉Y 〈j |
⎞
⎠(

UCNOT
XY

)†
⎤
⎦

=
∑
i,i

ρii |i〉Y 〈i|. (C1)

The unitary performs the operation UCNOT
XY |0,i〉XY = |i,i〉XY .

Since adding an uncorrelated ancilla does not increase Ecc,
we have Ecc(|0〉A3

〈0| ⊗ ρA1A2B) = Ecc(ρA1A2B). As Ecc is
invariant under local unitaries (Proposition 2) and contractive
under partial trace (Proposition 4), this proves the property. �

Property 6 (invariance under classical communication).
For a bipartite state ρAB , suppose that on Alice’s side, A =
A1A2 is a composite system and A1 is a classical registry
storing classical information. Then Eeqc remains invariant if a
copy of A1 is created on Bob’s side.

More formally, let ρA1A2B2 = ∑
i pi |i〉A1

〈i| ⊗ |ψi〉A2B2
〈ψi |

be the initial state, and let σA1A2B1B2 = ∑
i pi |i〉A1

〈i| ⊗
|ψi〉A2B2

〈ψi | ⊗ |i〉B1
〈i| be the state after Alice communicates

a copy of A1 to Bob, then

Ecc(ρA1A2B2 ) = Ecc(σA1A2B1B2 ).

Proof. Let �SWAP
X↔Y denote the SWAP operation

between X and Y . Let ρ∗
A1A2A′B1B2B ′ be the optimal

unitarily symmetric extension of ρA1A2B2 such
that Ecc(ρA1A2B2 ) = Ccc(ρ∗

A1A2A′B1B2B ′). Note that
Ccc(ρ∗

A1A2A′B1B2B ′ ) = Ccc(|0〉A′′ 〈0| ⊗ ρ∗
A1A2A′B1B2B ′ ⊗ |0〉B ′′ 〈0|).
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Define a CNOT type operation between A1 and B ′′ such that
UCNOT

A1B ′′ |0,i〉A1B ′′ = |i,i〉A1B ′′ . Ordinarily, such an operation
cannot be done by Bob locally unless he has access to
subsystem A1 on Alice’s side. However, since ρ∗

A1A2A′BB ′
is unitarily symmetric, there exist local unitaries UA1A2A′

and UB1B2B ′ such that �SWAP
A1A2A′↔B1B2B ′(ρ∗

A1A2A′B1B2B ′) =
UA1A2A′ ⊗ UBB ′ρ∗

A1A2A′BB ′U
†
A1A2A′ ⊗ U

†
BB ′ . This implies that

the Bob can effectively perform UCNOT
A1B ′′ locally by first

performing the SWAP operation through local unitaries, gain
access to the information in A1, copy the classical registry
to B ′′ by performing UCNOT

B1B ′′ locally, and then undo the SWAP

operation via another set of local unitary operations.
This means there must exist VA1A2A′A′′ and VB1B2B ′B ′′ such

that

VA1A2A′A′′ ⊗ VB1B2B ′B ′′ (|0〉A′′ 〈0| ⊗ ρ∗
A1A2A′B1B2B ′

⊗|0〉B ′′ 〈0|)V †
A1A2A′A′′ ⊗ V

†
B1B2B ′B ′′ (C2)

is a unitarily symmetric extension of UCNOT
A1B ′′

(ρA1A2B2 ⊗ |0〉B ′′ 〈0|)UCNOT
A1B ′′

†. However, because this state
is equivalent to σA1A2B1B2 as defined previously, it is also
a unitarily symmetric extension of σA1A2B1B2 . Since Ccc is
invariant under local unitary operations, we have

Ecc(ρA1A2B2 ) = Ecc(ρ∗
A1A2A′BB ′)

= Ecc(|0〉A′′ 〈0| ⊗ ρ∗
A1A2A′BB ′ ⊗ |0〉B ′′ 〈0|)

= Ccc

[
VA1A2A′A′′ ⊗ VBB ′B ′′

(|0〉A′′ 〈0| ⊗ ρ∗
A1A2A′BB ′

⊗|0〉B ′′ 〈0|)V †
A1A2A′A′′ ⊗ V

†
BB ′B ′′

]

� Ecc(σA1A2B1B2 ),

where the last inequality comes from the fact that the
entanglement of coherence is a minimization over all unitarily
symmetric extensions. On the other hand, a unitarily sym-
metric extension of σA1A2B1B2 is also an unitarily symmetric
extension of ρA1A2B2 so Ecc(ρA1A2B2 ) � Ecc(σA1A2B1B2 ). This
implies that Ecc(ρA1A2B2 ) = Ecc(σA1A2B1B2 ), which completes
the proof. �

Property 7 (contraction under LOCC). For any bipartite
state ρAB and let �LOCC be any LOCC protocol performed
between A and B. Then Ecc is nonincreasing under such
operations:

Ecc(ρAB) � Ecc(�LOCC(ρAB)).

Proof. We consider the scenario where Alice performs a
positive-operator valued measure (POVM) on her subsystems,

communicates classical information of her measurement out-
comes to Bob, who then performs a separate operation on his
subsystem based on this measurement information.

Suppose Alice and Bob begin with the state ρA1B1 .
By Naimark’s theorem, any POVM can be performed
through a unitary interaction between the state of interest
and an uncorrelated pure state ancilla, followed by a
projective measurement on the ancilla and finally trac-
ing out the ancillary systems. In order to facilitate Al-
ice and Bob’s performing of such quantum operations,
we add uncorrelated ancillas to the state, which does not
change the entanglement of coherence so Ecc(ρA1B1 ) =
Ecc(|0,0〉MAA2

〈0,0| ⊗ ρA1B1 ⊗ |0,0〉MBB2
〈0,0|). For Alice’s

procedure, we will assume the projection is performed on MA,
so MA is a classical register storing classical measurement
outcomes.

In the beginning, Alice performs a unitary operation on
subsystems MAA1A2, followed by a projection on MA which
makes it classical. We represent the composite of these two
operations with �A, which represents Alice’s local operation.
Since Ecc is invariant under local unitaries (Property 2) but
contractive under a projection (Property 4), �A is a contractive
operation.

The next part of the procedure is a communication of
classical bits to Bob. This procedure is equivalent to the
copying of the state of the classical register MA to the register
MB . However, Ecc is invariant under such communication
(Property 6). We represent this operation as �A→B . The next
step requires Bob to perform an operation on his quantum
system based on the communicated bits. He can achieve this
by performing a unitary operation on subsystems MBB1B2.
We represent this operation with �B , which does not change
Ecc. The final step of the procedure requires tracing out the
ancillas, TrMAA2MBB2 , which is again contractive (Property 4).

Since every step is either contractive or invariant, we have
the following inequality:

Ecc(ρA1B1 ) = Ecc(|0,0〉MAA2〈0,0| ⊗ ρA1B1 ⊗ |0,0〉MBB2〈0,0|)
� Ecc[TrMAA2MBB2 ◦ �B ◦ �A→B ◦ �A

× (|0,0〉MAA2〈0,0| ⊗ ρA1B1 ⊗ |0,0〉MBB2〈0,0|)].

Any LOCC protocol is a series of such procedures from
Alice to Bob or from Bob to Alice, so we must have
Ecc(ρAB) � Ecc(�LOCC(ρAB)), which completes the proof. �
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