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Macroscopic entanglement in many-particle quantum states
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We elucidate the relationship between Schrödinger-cat-like macroscopicity and geometric entanglement and
argue that these quantities are not interchangeable. While both properties are lost due to decoherence, we show
that macroscopicity is rare in uniform and in so-called random physical ensembles of pure quantum states,
despite possibly large geometric entanglement. In contrast, permutation-symmetric pure states feature rather low
geometric entanglement and strong and robust macroscopicity.
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I. INTRODUCTION

Quantum entanglement entails two important conse-
quences: On the one hand, it is the “characteristic trait of
quantum mechanics” [1] that thoroughly thwarts our every
day’s intuition, most bizarrely when applied to macroscopic
objects, as illustrated by the famous paradox of Schrödinger’s
cat [2]. On the other hand, entanglement is the very ingredient
that makes the simulation of quantum many-body systems
extremely challenging: A separable system of N qubits
requires only 2N parameters for its description, whereas an
entangled state comes with ∼2N variables. This curse of
dimensionality in the context of simulating quantum systems
becomes a powerful resource when it comes to the speedup of
quantum computers over classical architectures. Although the
two aspects of entanglement are two sides of the same medal,
they are quantified differently: Measures of macroscopicity [3]
reflect the degree to which a quantum state resembles a
Schrödinger’s cat; the complexity of a quantum state is
reproduced by the geometric measure of entanglement [4],
defined via the largest overlap to separable states. Macro-
scopicity can increase under local operations combined with
classical communication (LOCC) [3] in contrast to geometric
entanglement, e.g., the modestly macroscopic cluster state
can be converted via LOCC into a highly macroscopic GHZ
state [5].

In nature, macroscopic entanglement does not occur [6,7]
outside artificially tailored situations [8]. Its empirical absence
contrasts with its immediate appearance in the formalism of
quantum physics, which raises the question whether some un-
avoidable mechanism jeopardizes macroscopically entangled
quantum states. The decoherence program [9] explains the
emergence of classical behavior in our everyday world and how
macroscopic quantum superpositions decohere on overwhelm-
ingly short time scales [10–13]: The interaction between any
quantum system and its surrounding environment destroys
the coherence between macroscopically distinct alternatives—
such as the dead and the living cat. Even if the environment
were shielded off perfectly, however, it remains unlikely that
macroscopic entanglement be observed in nature, due to the
unavoidable coarse graining of any measurement [14–16].
In other words, there are powerful mechanisms that quickly
deteriorate macroscopic entanglement.

But the decoherence program does not make any statement
on the likelihood that a macroscopic quantum superposition

may form, only that, when it appears, it decoheres on a
time scale so short that any attempt for observation is
vain. Would a hypothetical decoherence-free world then host
cohorts of Schrödinger’s cats? In other words, how likely are
macroscopically entangled quantum states before the onset of
decoherence?

In order to ease our intuition for these questions, let us
propose a classical analogy, which is meant here in a qual-
itative and metaphorical sense: Consider the microcanonical
ensemble of a gas of N particles in a box with total energy
E, illustrated in Fig. 1. In classical statistical mechanics, all
microstates (specified by the positions and momenta of the gas
particles {�x1, . . . ,�xN ; �p1, . . . , �pN }) that are compatible with
the total energy E are assigned the same probability [17].
How likely is it to find all particles in the left half of the box,
as illustrated in Fig. 1(b)? In the first place, we can adopt a
dynamical explanation: If we prepared the particles in such
a state, the system would relax to a homogenous distribution
[Fig. 1(a)] on a very short time scale—just like decoherence
dynamics destroy any macroscopic quantum superposition.

This explanation for the absence of the strongly inhomoge-
neous situation is, however, not the commonly adopted one:
The spontaneous occurrence of the macrostate sketched in
Fig. 1(b) is by itself extremely unlikely, and the relaxation
described above is in fact not required to explain its rarity.
There are overwhelmingly more microstates that correspond
to a homogeneous distribution (a) than for a distribution with
all particles on one side (b) [17]. That is, it is eventually
a statistical argument that allows us to safely neglect the
inhomogeneous macrostate and focus on the macrostate with a
homogeneous distribution of particles—which is the very basis
of statistical mechanics [17]. In other words, even though there
is a powerful dynamical mechanism to restore the homogeneity
of the gas, this mechanism is not required to explain the
absence of inhomogenous distributions: These macrostates are
sufficiently unlikely to occur to be safely neglected.

Quite similarly, anticipating our results below, despite
decoherence being a powerful dynamical mechanism to
explain the disappearance of macroscopic quantum super-
positions [10,12], these states are a priori extremely rare
in many ensembles of pure states. As a consequence, the
absence of macroscopic superpositions can be understood
from a statistical argument.

While mixed states already include the effect of deco-
herence and feature little macroscopicity [3], we focus here
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(a) (b)

FIG. 1. Two microstates of the microcanonical ensemble of 2000
particles in a box. (a) Typical states feature a rather homogeneous
distribution of particles, while (b) states with large inhomogeneities
are artificial and rare. We argue in this article that the rarity of
macroscopically entangled pure quantum states can be understood in
close analogy: Macroscopically entangled states play the role of states
with large inhomogeneities (b), and therefore form only extremely
seldom.

on pure states. The typicality of macroscopic entanglement
then depends on the actual choice of the pure-state ensemble.
We find analytical and numerical evidence that macroscopic
superpositions are untypical among random pure states in
different ensembles. This finding may appear paradoxical
at first sight, since macroscopicity leads to multipartite
entanglement [18] and entanglement, as quantified by the
geometric measure [4,19] (tantamount to a large distance to
separable states), is common in random pure states [20,21]
and macroscopicity is bound from above by a monotonically
increasing function of geometric entanglement [22]. We
resolve this ostensible paradox by showing that geometric
entanglement is actually adverse for macroscopicity: Random
states are very entangled, and hence nonmacroscopic.

We review measures of macroscopic and geometric en-
tanglement in Sec. II, where we also present some technical
results. Since both quantities are defined via a maximization
procedure, their relationship is intricate. We elucidate their
connection qualitatively in Sec. III, in order to gain a good
understanding of the statistics of macroscopic entanglement
evaluated in different pure-state ensembles in Sec. IV. We
conclude in Sec. V, where we propose an extension of our
study to other ensembles and sketch its consequences for the
preparation of macroscopic states in the experiment.

II. QUANTIFYING MACROSCOPIC AND GEOMETRIC
ENTANGLEMENT

In order to address our central question—whether macro-
scopicity is typical in ensembles of pure quantum states—we
need to establish a quantitative measure for macroscopicity.
Our system of interest is a collection of N qubits, which,
for the purpose of illustration, we treat as spin 1/2 particles.
That is, we focus on pure quantum states living in the Hilbert
space H = (C2)

N
. While no consensus exists on how to

rigorously quantify macroscopicity for mixed states [3,23–28],
this debate is not crucial in our context, since we focus on pure
states, for which most measures agree. We will adapt a well-
established measure for macroscopic entanglement [3,29] and
propose a sensible way for its normalization. To set the

context, we are interested in the typicality of macroscopic
entanglement within quantum theory; a general benchmark
of macroscopic quantum superpositions will require concepts
that draw beyond this realm [30,31], and may be tailored for
specific applications [32].

A. Measure of mascroscopicity

Macroscopicity manifests itself in disproportionally large
fluctuations of some additive multiparticle observable [3,33],
i.e., of some operator of the form,

Ŝ(�α1, . . . �αN ) =
N∑

j=1

�αj · �σj , (1)

where �σj is the vector of three Pauli matrices that act on the j th
qubit and the local orientation of the measurement operator �αj

is normalized,

|�αj |2 = 1. (2)

The operator Ŝ describes the total spin of the system with
respect to locally adjusted spin directions, defined by �αj =
(αx

j ,α
y

j ,αz
j ). Given a pure quantum state |�〉, the maximally

obtainable variance of this additive operator,

〈�Ŝ2(�α1, . . . �αN )〉 = 〈�|Ŝ2|�〉 − (〈�|Ŝ|�〉)2, (3)

defines the unnormalized macroscopicity M̃ [3],

M̃ = max�α1,...,�αN
〈�Ŝ2(�α1, . . . �αN )〉. (4)

Quite naturally, we find

N � M̃ � N2. (5)

The lower bound is saturated, e.g., for separable states, for
which we maximize fluctuations by choosing the measure-
ment directions �αj to be unbiased with respect to the local
spin directions. The upper bound is reached, e.g., for the
Greenberger-Horne-Zeilinger (GHZ) state [34],

|GHZ〉N = 1√
2

(|0〉⊗N + |1〉⊗N ), (6)

which comes closest to modeling a coherent superposition of
a living and a dead cat: The two superimposed alternatives
(all spins pointing up, all spins pointing down) are maximally
different, leading to maximal fluctuations.

In order to compare the macroscopicity of systems of
different sizes N , we normalize M̃:

M(|�〉) =
√
M̃(|�〉) − N

N (N − 1)
, (7)

such that 0 � M � 1 for all N , where the upper (lower) bound
is saturated for M̃ = N2 (N ).

Strictly speaking, the normalized macroscopicity M is not
a degree of quantum macroscopicity such as those studied
in Refs. [3,23–28]. It should be understood as a degree of
macroscopic quantum coherence normalized by the size of the
physical system under consideration.
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B. Additivity and basic properties

The unnormalized macroscopicity M̃ is additive in the
sense that any product state |�〉 ⊗ |�〉 yields

M̃(|�〉 ⊗ |�〉) = M̃(|�〉) + M̃(|�〉), (8)

because the separability of |�〉 ⊗ |�〉 excludes additional
fluctuations by choosing a direction of spins other than the
optimal ones for |�〉 and |�〉.

Any family of states for which the size of nonseparable
components does not scale with the system size has vanishing
normalized macroscopicity in the limit of many particles. For
example, a tensor product of N/2 Bell states, a two-producible
state [35], is not macroscopic:

M̃(|�−〉⊗N/2) = 2N, (9)

M(|�−〉⊗N/2) = 1√
N − 1

N→∞→ 0, (10)

which agrees with the upper bound on the quantum Fisher
information found in Ref. [36].

C. Relation to index p

Our measure of macroscopicity can be directly related to
the index p [37], the exponent that defines the scaling of M̃
with N ,

M̃ ∝ Np. (11)

The scaling properties of macroscopic entanglement can be
investigated for state families, i.e., “prescriptions that assign to
any system size a quantum state |�〉” [33]. Any state family for
which M > δ > 0 with δ independent of N can be considered
macroscopic: In the limit N → ∞, M is then related to the
index p as follows:

M = 0 ⇔ p = 1, (12)

M > δ > 0 ⇔ p = 2. (13)

In other words, for p = 2, we have macroscopically large
fluctuations that do not vanish in the limit of many particles;
the index p, however, does not yield any information about
the actual fraction of particles participating in a macroscopic
superposition. The normalized macroscopicity M is more fine
grained and offers such insight: For the family of states,∣∣�(N1,N2)

〉 = |GHZ〉N1 ⊗ |1〉⊗N2 , (14)

we have

M̃(|�〉) = N2
1 + N2, (15)

and, thus,

M(|�〉) N1,N2�1≈ N1

N1 + N2
. (16)

In this case M reflects the fraction of particles in the system
that takes part in a quantum superposition of macroscopically
distinct alternatives. The proportionality of M with the size of
the macroscopic subsystem represents our motivation to apply
a square root in the definition ofM(|�〉) in Eq. (7), besides M̃
being of square order due to its relation to the variance (1). On

the other hand, for large N , we also have NM ≈
√
M̃ (with an

additive error of the order ∼√
N ), which quantifies the absolute

size of the macroscopic superposition. In the following, we
will therefore focus on the macroscopicity M, as defined in
Eq. (7).

D. Evaluation of macroscopicity

1. Generic states

The definition of the unnormalized macroscopicity M̃ in
Eq. (4) entails an optimization problem over 2N variables,
which evidently complicates its evaluation for large systems.
As an alternative to multivariable optimization, it was pro-
posed [38] to evaluate the unnormalized macrocopicity M̃
using the variance-covariance matrix,

Vγk,βj = 〈�|�σ̂
γ

k �σ̂
β

j |�〉, (17)

where �σ̂
γ

l = σ̂
γ

l − 〈σ̂ γ

l 〉, γ = x,y,z. The resulting 3N × 3N

matrix V then stores the fluctuations of all observables that are
sums of Pauli matrices, and we have [38]

〈�Ŝ2(�α1, . . . ,�αN )〉 =
N∑

j,k=1

∑
γ,β=x,y,z

α
γ

j Vαj,βkα
β

k . (18)

The expectation value 〈�Ŝ2(�α1, . . . ,�αN )〉 is maximized by
choosing the �αj as the eigenvector �v1 of V corresponding to
the largest eigenvalue λ1 of V , such that

�αj =
√

N

⎛
⎜⎝

v1,3(j−1)+1

v1,3(j−1)+2

v1,3(j−1)+3

⎞
⎟⎠. (19)

However, the �αj chosen this way are only constrained by

N∑
l=1

|�αl|2 = N, (20)

which is a much weaker constraint than our Eq. (2): Instead of
N unit-normalized Bloch vectors �αj , only the sum of the norm
of all Bloch vectors is fixed in Eq. (20). Colloquially speaking,
the �αj chosen according to Eq. (19) [38] allow us to weight
the importance of individual spins in the system differently,
and give those featuring large fluctuations a larger impact. We
can therefore only state that

M̃(|�〉) � Nλ1. (21)

Admittedly, the scaling of λ1 with the system size N for a
given family of states is inherited by M̃ evaluated via Eq. (4),
such that coarse-grained quantities such as the index p can be
evaluated using λ1. In particular, the eigenvalues of V only take
the values 1 and 0 for separable states, which are clearly—and
not surprisingly—not macroscopic at all. For a quantitative
understanding of macroscopicity, however, the optimization
inherent to (4) is crucial: For example, consider the state,

|�c〉 = |�+〉 ⊗ |0〉⊗N−2, (22)

with N � 3, where the first two qubits are in a maximally
entangled Bell state, but remain completely separable from
the rest of the system. The unnormalized macroscopicity of
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|�c〉 fulfills

M̃ = N + 2 < 2N = λ1N, (23)

i.e., the largest eigenvalue λ1 is related to the eigenvector �v1,
with

�α1 =
√

N

2
(1,0,0), (24)

�α2 =
√

N

2
(1,0,0), (25)

�αk�3 = (0,0,0), (26)

which is not compatible with Eq. (2) and entirely ignores the
separable qubits 3, . . . ,N , while the two entangled qubits are
over-weighted. This example being admittedly artificial, we
have nevertheless experienced a substantial difference between
the exact calculation and the value extracted via the VCM
for the nonsymmetric ensembles of random states considered
below in Sec. IV.

On the other hand, given a set of orientations obtained
via (19) and |�αj |2 > 0 for all j , we can normalize the �αj to
find a candidate spin orientation that promises to yield a large
variance,

�βj = �αj√|�αj |2
. (27)

The resulting value 〈�Ŝ2( �β1, . . . , �βN )〉 then provides a lower
bound on the actual unnormalized macroscopicity, since we
are not guaranteed that the choice of local spin orientations
given by (27) is the optimal one:

〈�Ŝ2( �β1, . . . , �βN )〉 � M̃. (28)

In other words, even though the precise value of M̃ requires
a numerical optimization, computationally inexpensive lower
and upper bounds [Eqs. (28) and (21), respectively] to this
quantity can be established straightforwardly.

2. Symmetric states

In the case of permutation-symmetric states, V assumes
a structure with repeated 3 × 3 blocks, and the eigenvectors
�vj reflect this symmetry. As a consequence, the optimal
local spin orientations all coincide, �αl = �αk for all k,l, and,
consequently, �βj = �αj . The optimization inherent to Eq. (4)
becomes unnecessary, since the lower bound (28) and the upper
bound (21) on the unnormalized macroscopicity coincide. We
can therefore safely adopt the method introduced in Ref. [38]
to compute M.

Specifically, the variance-covariance matrix V then consists
of two different 3 × 3 blocks,

Aγ,β = Vγ 1,β1, (29)

Bγ,β = Vγ 1,β2, (30)

which contain all variances and covariances, respectively, and
assumes the structure,

V =

⎛
⎜⎜⎝

A B . . . B

B A . . . B
...

...
. . .

...
B B . . . A

⎞
⎟⎟⎠. (31)

By writing V = 1 ⊗ A + M ⊗ B, one can show that the largest
eigenvalue λ1 of the above block matrix V coincides with the
largest eigenvalue of the 3 × 3 matrix,

Vsym = A + (N − 1)B, (32)

such that

M̃(|�sym〉) = Nλ1. (33)

This greatly facilitates the computation of the macroscopicity
for permutation-symmetric states. To obtain the matrices A

and B, we use the efficient techniques for the computation
of reduced density matrices of symmetric states presented in
Ref. [39].

E. Geometric measure of entanglement

We will relate macroscopicity to the geometric measure of
entanglement [4,40], which is defined via the maximal overlap
η of |�〉 with any separable state |�sep〉 = |φ1,φ2, . . . ,φN 〉,

EG(|�〉) ≡ − log2 η = − log2 sup
|�sep〉

|〈�sep|�〉|2. (34)

The geometric measure of entanglement of N qubits naturally
vanishes for separable states, and is bounded from above by
N − 1. High geometric entanglement is tantamount to a large
generalized Schmidt measure [41], which reflects the number
of separable terms required to express the state; the geometric
measure of entanglement, thus, is reciprocal to the complexity
of the quantum state, and thereby represents the “other side of
the medal” of quantum entanglement.

Since we will face the statistics of geometric entanglement
in Sec. IV, we discuss its evaluation in practice. In general,
the computation of the geometric measure of entanglement re-
quires an optimization over the 2N free parameters x1, . . . ,xN

and y1, . . . ,yN that define the separable state,

|�sep〉 = ⊗N
j=1(cos xj |0〉 + eiyj sin xj |1〉), (35)

entailing significant computational expenses. Alternatively,
candidate solutions for the closest separable state can be
computed via the probabilistic iterative algorithm presented
in Ref. [19].

For permutation-symmetric states, the evaluation of the
geometric measure is facilitated considerably. A permutation-
symmetric state of N qubits can be written in the Majorana
representation,

|�sym〉 = 1√
N

∑
σ∈SN

⊗N
j=1

∣∣εσj

〉
, (36)

where

N = N !perm(〈εj |εk〉) (37)
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is a normalization constant, and perm(〈εj |εk〉) is the perma-
nent [42] of the N × N Gram matrix that contains all mutual
scalar products 〈εj |εk〉. The permanent is, in general, a function
that is exponentially hard in the matrix size N , but for a Gram
matrix with only two nonvanishing singular values, as given
here by construction, an efficient evaluation is possible [42].
For this purpose, the representation of symmetric states in the
Dicke basis is valuable,

|�sym〉 =
N∑

j=0

cj

∣∣D(j )
N

〉
. (38)

The Dicke states are defined as

∣∣D(j )
N

〉 =
(

N

j

)−1/2 ∑
σ∈S{1,...,1,0,...,0}

⊗N
j=1|σj 〉, (39)

where the summation includes all possibilities to distribute
j particles in |1〉 and N − j particles in |0〉 among the N

modes. The quantitative relationship between the expansion
coefficients in the Dicke basis cj and the N states |εk〉
that define the Majorana representation (36) is presented in
Ref. [43].

Since the closest separable state to a symmetric state is itself
symmetric [44], the optimization problem over 2N variables
implicit in Eq. (34) reduces to a merely two-dimensional
setting. Given the Majorana representation |ε1〉, . . . ,|εN 〉, we
need to find the single-qubit state |φ〉 that maximizes

1

N

N∏
j=1

|〈εj |φ〉|2. (40)

Besides standard numerical optimization strategies, we can
adapt the iterative algorithm of Ref. [19] to symmetric states:
For that purpose, we choose a random single-particle state
|φ0〉. We then iteratively generate states |φk〉 as follows:

|φ̃k+1〉 =
N∑

j=1

|εj 〉
〈εj |φk〉 , (41)

|φk+1〉 = |φ̃k+1〉√
〈φ̃k+1|φ̃k+1〉

. (42)

The results of Ref. [19] can be translated to a wide extent to
the current setting with symmetric states, and |φk〉 becomes
a good candidate for the closest separable state for large k,
although the algorithm is prone to return a local instead of a
global maximum.

III. RELATIONSHIP BETWEEN MACROSCOPICITY AND
GEOMETRIC ENTANGLEMENT

Having established the two pertinent main characteristics
of a quantum many-body state |�〉—its macroscopicity M
[Eq. (7)] and its geometric entanglement EG [Eq. (34)]—we
can now explore the relationship between these two quantities.

The behavior of entanglement measures and macroscopic-
ity was analyzed in Ref. [18], where the author finds that “a
state which includes superposition of macroscopically distinct
states also has large multipartite entanglement in terms of
the distance-like measures of entanglement.” Here, we will

confirm that geometric entanglement is indeed necessary for
nonvanishing macroscopicity; however, we will also show that
the general relationship between macroscopicity and geomet-
ric entanglement is rather involved. In particular, nonvanishing
geometric entanglement is not sufficient for macroscopicity:
There are entangled states with strictly vanishing macroscop-
icity. On the other hand, very large geometric entanglement
implies small macroscopicity, i.e., the maximal value of
macroscopicity is reached for finite geometric entanglement.
As a consequence, the two quantities should not be used
synonymously.

A. Close-to-separable states

We first focus on states |�〉 for which the largest squared
overlap with a separable state η is larger than or equal to 1/2,
i.e., the geometric measure of entanglement EG(|�〉) [Eq. (34)]
is smaller than or equal to unity.

To this end, we explore the transition between the separable
state |0, . . . ,0〉, which carries neither macroscopicity nor
entanglement, to the maximally macroscopic GHZ state (6),
described by

|�(θ,ε)〉 = cos θ |0〉⊗N + sin θ (cos ε|0〉 + sin ε|1〉)⊗N√
1 + cosN ε sin(2θ )

,

(43)

with 0 � ε � π/2 and 0 � θ � π/4. The state |�(θ,ε)〉 is a
superposition of two separable components in which all qubits
populate the very same states, with weights depending on θ .
The distinguishability of the two alternatives is defined by ε.
The parametrization in ε for fixed θ = π/4 was introduced
in Ref. [23] and explored in Refs. [3,45]. Since the state is
permutation symmetric, we can use the methods of Sec. II D 2
to evaluate its macroscopicity.

Several limiting cases are reached for particular values of
the parameters θ,ε: For (θ,ε) = (π/4,π/2), we recover the
GHZ state (6); for θ = 0 or ε = 0, we deal with a separable
state. For ε > π/2, the destructive interference between the
two amplitudes associated with the component |0〉⊗N can lead
to geometric entanglement larger than unity. In particular, we
obtain the W state,

|W 〉 ≡ ∣∣D(1)
N

〉 = 1√
N

(|1,0, . . . ,0〉 + |0,1,0, . . . ,0〉 . . . ),

(44)

in the limit ε → π,θ → π/4, for odd N .
We parametrize the closest separable state as

|�sep(α)〉 = (cos α|0〉 + sin α|1〉)⊗N, (45)

the overlap with |�(θ,ε)〉 becomes

|〈�sep(α)|�(θ,ε)〉|2 = (cos θ cosN α + sin θ cosN (ε − α))2

1 + cosN ε sin(2θ )
,

(46)

which needs to be maximized with respect to α to obtain the
geometric measure of entanglement. For large N , the overlap
is maximized for α = 0 (since θ � π/4); for finite N , the
maximum can conveniently be found numerically, since the
overlap (46) does not oscillate fast as a function of α.
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FIG. 2. Macroscopicity as a function of geometric entanglement
for the family of states |�(θ,ε)〉. The two extremal cases are given by
ε = π/2 (black dashed) and θ = π/4 (solid red), which take turns as
the upper bound on macroscopicity for given geometric entanglement.
The blue line is the upper bound of Eq. (47).

We show the behavior of geometric and macroscopic
entanglement in Fig. 2, for different numbers of qubits N .
Although macroscopicity increases with geometric entangle-
ment as a general tendency, the relationship is ambiguous,
especially for large numbers of qubits N . Based on extensive
numerical evidence, we conjecture that the general maximum
macroscopicity for a given value of geometric entanglement
is attained by the value obtained for |�(θ = π/4,ε)〉 or
|�(θ,ε = π/2)〉, in the range EG � 1. We could not find a
proof for this conjecture, which implies a tighter bound on M
than the inequality,

M �
√

6
√√

(1 − 2−EG )N
√

N − 1
, (47)

which we adapted from Eq. (8) of Ref. [22], shown in Fig. 2
as a blue line.

1. Geometric entanglement without macroscopicity

We first consider the family of states parametrized by ε =
π/2,0 � θ � π/4 (black dashed lines in Fig. 2); the pertinent
variance-covariance matrix Vsym in Eq. (32) then becomes

Vsym =

⎛
⎜⎝

1 0 0

0 1 0

0 0 N sin2 2θ

⎞
⎟⎠, (48)

which yields the macroscopicity,

M =
√

max(1,N sin2 2θ ) − 1

N − 1
. (49)

The geometric entanglement takes the value

EG = − log2(cos2 θ ). (50)

As a consequence, for 0 < θ � 1
2 arcsin

√
1/N , the geometric

entanglement remains finite, yet the macroscopicity vanishes.
In other words, there are states that are entangled, but the
fluctuations in any additive observable do not surpass those
that can be achieved for separable states. This explains the

steplike behavior observed in Fig. 2, best visible for small
N . However, the range of EG > 0 for which M = 0 shrinks
with increasing N , which poses the general question of which
is the lower bound to M in terms of EG, i.e., whether a
threshold �(N ) can be found such that EG > �(N ) implies
nonvanishing macroscopicity.

On the other hand, even though geometric entanglement
is not sufficient for macroscopicity, it is necessary: For a
separable state, all nonvanishing eigenvalues of the variance-
covariance matrix (17) are unity.

2. Close-to-unity geometric entanglement and small
macroscopicity

The most macroscopic state, the GHZ state (6), pos-
sesses geometric entanglement EG(|�GHZ〉) = 1. Anticipating
Sec. III B, close-to-maximal macroscopicity (very close to
unity) naturally comes with geometric entanglement EG ≈ 1,
in general. The criterion EG ≈ 1 is, however, not sufficient to
ensure large macroscopicity: Consider the family of states
parametrized by θ = π/4,0 � ε � π/2. By evaluating the
largest eigenvalue of the matrix Vsym, we obtain the macro-
scopicity,

M =
√

sin2 ε

1 + cosN ε
. (51)

The maximal overlap to separable states is bounded from
below by the overlap with the separable test-state (45) setting
α = 0; the geometric measure of entanglement therefore
fulfills

EG(|�(θ = π/4,ε)〉) � − log2
(1 + cosN ε)

2
. (52)

That is, for a wide range of ε � π/2, we retain a geometric
measure of entanglement of around unity, but quickly lose
macroscopicity. In Fig. 2, the red lines quickly dive into low
values of macroscopicity, while remaining close to EG = 1, a
trend that becomes more and more clear for larger values of N .
This stands in stark contrast to the black dashed lines, which
retain macroscopicity for decaying geometric entanglement.

This behavior can be understood intuitively via the de-
composition of the state into Dicke states [Eq. (38)], shown
in Fig. 3. The largest overlap with any separable state is at
least as large as the coefficient in the Dicke-state expansion
related to |D(0)

N 〉, since the latter is separable. For decreasing
ε ≈ π/2, we continuously lose macroscopicity, because the
average directions of the spins become similar and the
two superimposed alternatives less and less macroscopically
distinct. However, the closest separable state remains the
Dicke state |D(0)

N 〉 for a wide range of ε � π/4, i.e., the
geometric measure of entanglement remains close to unity.
In contrast, for the family parametrized by ε = π/2, the loss
of geometric entanglement is directly accompanied by a loss
of macroscopicity (upper panel of Fig. 3).

B. Far-from-separable states

Let us now move into the domain of strongly geometrically
entangled states and assume that we are given a maximal
overlap with separable states η < 1/2, i.e., a geometric
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FIG. 3. Decomposition of |�(θ,ε)〉 for N = 24 into Dicke-state
components [Eq. (39)], for the two extremal families of states
characterized by ε = π/2 (upper panels) and θ = π/4 (lower panels).
For ε = π/2, only the very first and very last Dicke components
are populated, while a binomial distribution of components slowly
shifts to the highest Dicke component for θ = π/4. Consequently,
the behavior in the EG-M plane (Fig. 2) is very different for the
two families of states. In the lower right panel, the black dashed line
shows the upper bound to EG given in Eq. (52).

measure of entanglement EG = − log2 η > 1. We construct
a state |�η〉 that maximizes the macroscopicity under this
constraint. Since local rotations do not affect the geometric
measure of entanglement, we can assume that the optimal
values of the spin orientations all point into the z direction
(αj = (0,0,1)), and we expand |�〉 in eigenstates of the total
spin operator Ŝ, which has eigenvalues −N,−N + 2, . . . ,N .
Each eigenvalue is

(
N

(N + S)/2

)
-fold degenerate; the state can

therefore be written as

|�η〉 =
∑

S=−N,−N+2,...N

(
N

(S + N)/2

)
∑
λ=1

cS,λ|S,λ〉, (53)

where λ labels the degenerate states, and we choose the |S,λ〉 to
be separable. The expectation value of powers of the collective
spin becomes

〈�|Ŝk|�〉 =
∑

S=−N,−N+2,...N

Sk

(
N

(S + N)/2

)
∑
λ=1

|cS,λ|2. (54)

Under the constraint that the maximal overlap to any separable
state be fixed to η,

|cS,λ|2 � η, (55)

we maximize the variance (3) by setting cN,1 = c−N,1 =√
η and subsequently distributing the probability amplitude√
1 − 2η among the remaining coefficients, i.e., we set as

many pairs of coefficients to cS,k = c−S,k = √
η as possible,

proceeding from large to small total spins S. Effectively, we
set � 1

η
� coefficients to the maximal overlap

√
η, choosing these

pairwisely to yield as large as possible a contribution to 〈S2〉
without any contribution to 〈S〉, and a last pair of coefficients

to
√

1 − η� 1
η
�/√2. This way, we maximize the contribution

to the expectation value of S2, while the expectation value of
S remains 0. The last pair cS,k = c−S,k is set to accommodate
the remaining amplitude, typically smaller than

√
η. Formally,

the state reads

|�η,max〉 =
∑

S=−N,−N+2,...,−mod(N,2)

×
(

N

(N − S)/2)∑
k=1

√
η(eiφS,k |S,k〉 + eiφ−S,k | − S,k〉), (56)

where the sum only runs over so many terms such that the state
is normalized to unity; one term may possibly be weighted by
a factor smaller than

√
η.

The obtained bound is shown in Fig. 4 for different values of
N , as a function of geometric entanglement. The maximally
achievable macroscopicity grows as a function of N for a
fixed overlap η, but, for a fixed number of qubits N , a
small overlap η, equivalent to large geometric entanglement,
causes a reduced macroscopicity. While we have normalized
the macroscopicity to 0 � M � 1, allowing a comparison
of different system sizes, the maximal value of geometric
entanglement N − 1 depends on N ; hence a normalized
version of the geometric entanglement (lower panel of Fig. 4)
exhibits a more homogeneous decay. The expansion into
separable states Eq. (53) is, however, not necessarily the
optimal generalized Schmidt decomposition [41], i.e., it is
often possible to find a separable state with overlap larger
than η. We can therefore not expect the bounds to be
tight.

We can repeat the argument for symmetric states, for which
we impose that the amplitude of each Dicke-state component
|D(k)

N 〉 is constrained by η, leading to a state of the form,

|�η,max〉 =
∑

k=0...�N/2�

√
η
[
eiφk

∣∣D(k)
N

〉 + eiφN−k
∣∣D(N−k)

N

〉]
. (57)

Due to the strict symmetry constraint on the state, we obtain
smaller maximal values of macroscopicity for given geometric
entanglement (dashed lines in Fig. 4) than for general states.

IV. STATISTICS OF MACROSCOPIC AND GEOMETRIC
ENTANGLEMENT

Having established the relationship between geometric
and macroscopic entanglement, we proceed to numerical
investigations of pure states in different ensembles.

A. Random physical states

1. State generation

As a first ensemble of pure states, we consider random
physical states, introduced in Refs. [46,47] and sketched in
Fig. 5(a). To generate a random physical state |�k〉, we assume
that the qubits are aligned in spin-chain configuration and
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FIG. 4. (Upper panel) Maximal value of normalized macroscop-
icity as a function of the upper bound on EG, − log2 η, evaluated
using the argument of Sec. III B, for general states (solid lines) and
symmetric states (dashed lines), for N = 3,6,10,20,30 (blue, red,
black, green, and orange, respectively). The horizontal dotted line
indicates the limiting value 1/

√
3 for symmetric states (Sec. IV C).

For N = 3, the bounds for general and for symmetric states coincide.
Note that the geometric entanglement EG does not surpass N − 1.
(Lower panel) Same relationship as above, but for the ad hoc–
normalized EG/(N − 1). While the decay of M with EG becomes
weaker with larger N on an absolute scale (upper panel), this is due
to the N -dependent range of EG.

that only pairwise interactions take place. We apply k times
a random two-particle unitary onto a randomly chosen pair
of two neighboring qubits. That is, for k < N − 1, the state
remains at least 1-separable (the first qubit in the chain has
never directly or indirectly interacted with the last one), while
we obtain Haar-random states in the limit k � N , which we
will discuss separately in Sec. IV B below. To obtain a better
intuition for this ensemble, we compare random physical states
to random linear chains |�k〉, which are generated by applying
a binary unitary between the first k � N − 1 pairs of qubits,
starting from a separable state [Fig. 5(b)]. As the authors
of [46,47] argue, the ensemble of random physical states can
be regarded as typical for physical systems that obey some
locality structure. A variant of random physical states for
which the binary interactions are chosen to be not necessarily
between adjacent neighbors but between any two randomly
chosen qubits does not exhibit qualitative differences to the
locality-preserving model here.

FIG. 5. (a) Random physical states. We apply k times a random
unitary between two randomly chosen adjacent sites (closed boundary
conditions). For k � N , we have a fully connected system with high
probability, i.e., the state is typically 0 separable; for k → ∞, we
reach the limit of Haar-uniform states. (b) Random linear chain. We
apply random unitary binary gates between the first k � N − 1 pairs
of adjacent qubits. For k = N − 1, we have a fully connected system.
Geometric entanglement (c) and (d) and normalized macroscopicity
(e) and (f) for random physical states and random linear chains,
for k random two-body unitaries, respectively. In (d), the geometric
entanglement coincides for all numbers of qubits N . To compare
different system sizes, we plot the entanglement and the normalized
macroscopicity as a function of the N -base logarithm of k in (c) and
(e), and as a function of the normalized number of applied gates in (d)
and (f). Sample size is 200; error bars show one standard deviation.

2. Numerical results

Geometric and macroscopic entanglement for random
physical states are shown in Figs. 5(c) and 5(e) as a function
of the number of applied binary gates k, which can be
confronted to the behavior of random linear chains [Figs. 5(d)
and 5(f)]. Between k ≈ N and k ≈ N2, we observe a steep
increase in the geometric entanglement of random physical
states: For this range of numbers of binary interactions k,
the state typically becomes fully inseparable. For k ≈ N3,
we observe a saturation of both macroscopicity and geometric
entanglement. While geometric entanglement increases mono-
tonically with the number of applied gates, macroscopicity
develops a peaked structure for N � 6. Consequently, the
trajectories of random physical states as a function of k in
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FIG. 6. Average trajectories of random physical states |�k〉 in the
EG-M plane for N = 4,6,13,20. The solid lines start at k = 1 and
proceed to k = N 3 (blue disks).

the (M,EG) plane (Fig. 6) proceed from low geometric and
macroscopic entanglement (k = 1) over a maximum to the
asymptotic value with large geometric and low macroscopic
entanglement. The maximum value of macroscopicity is
reached for N � k � N2: In this range, the states can very
probably not be decomposed into separable components, while
it remains moderately complex by construction—these are the
very requirements for high macroscopicity. Random linear
chains feature a linear increase of geometric entanglement
with the number of applied gates, for which the curves for
all particle numbers coincide [Fig. 5(d)], and a monotonic
increase of macroscopicity for k, peaking at lower and lower
values as we increase the number of particles [Fig. 5(f)].

Macroscopicity as a function of the particle number N

is plotted in Fig. 7(a). The maximum value in random
physical states decreases with increasing N (red diamonds),
albeit slower than the saturated value of the macroscopicity
(k = N3, black circles). The former also remains slightly
lower than the macroscopicity reached for a saturated random
linear chain (i.e., after k = N − 1 binary gates)—choosing
the interacting qubits randomly is disadvantageous for large

FIG. 7. (a) Normalized macroscopicity M after one random gate
(k = 1, green squares) and after k = N3 random gates (black disks);
maximal attained macroscopicity for random physical states (red
diamonds) and normalized macroscopicity for a binary chain with
k = N − 1 random interactions (blue triangles), as a function of the
number of qubits N . (b) Scaled macroscopicity NM ≈ M̃ for the
same ensembles of states as in (a). Error bars show one standard
deviation.

macroscopicity, which gives an advantage to saturated linear
chains. Complexity is adverse to macroscopicity: For N � 15,
one randomly chosen binary interaction onto two qubits in an
initially separable state (k = 1, green squares) results in a
larger macroscopicity than the limiting case k → N3.

The different types of decay raise the question of whether,
albeit the fraction of particles participating in macroscopic
superpositions decreases, the absolute number may in fact be
constant or increase. In Fig. 7(b), we plot the absolute size of
the macroscopic component NM ≈

√
M̃—the approxima-

tion is justified for N � 1—, which resolves the qualitative
differences between the ensembles: The absolute number of
particles participating in a GHZ-like state remains constant
for states into which exactly one random gate has been applied
(green squares); it decreases for k = N3 (black circles), but
it increases with N for the maximally achieved value in
random physical states and for saturated random linear chains
(k = N − 1).

In conclusion, starting from a separable state and applying
random binary gates, we first explore the region in which
geometric and macroscopic entanglement are synonymous
(Sec. III A), such that both quantities initially grow with
k. When the spin chain is fully inseparable, additional
interactions contribute to larger geometric entanglement, but
simultaneously destroy its macroscopicity ensuring that the
latter decreases (Sec. III B). Even though the absolute size of
the macroscopic component increases with N [Fig. 7(b)], the
fraction of particles participating in a macroscopic superposi-
tion does not. To come back to our classical analogy (Fig. 1),
just like there are no concerted forces that spontaneously
push all gas particles to one side of the box, random
evolutions are unlikely to force all spins into a macroscopic
superposition.

B. Haar-random states

1. State generation

In the limit k → ∞, random physical states converge to
Haar-random states, i.e., the ensemble of pure quantum states
that are uniformly distributed on the unit sphere in Hilbert
space [48]. Instead of applying many binary gates, one can
construct Haar-random states by randomly generating the real
and imaginary part of each state coefficient cj1,...,j2N

following
a zero-mean unit-variance normal distribution; the resulting
unnormalized vector �c is then normalized in a second step.
This procedure yields a “chaotic” ensemble [49] that remains
invariant under local basis rotations and re-partitioning of the
Hilbert space into subsystems [50]. Random states also result
from the application of a Haar-random unitary matrix on any
constant pure state [51].

2. Macroscopicity is rare in Haar-random states

Random states feature the concentration of measure phe-
nomenon, i.e., most states on the high-dimensional Bloch
sphere lie close to the equator [52,53]. Given a Lipschitz-
continuous function f (|�〉), the function values remain close
to the average value 〈f 〉 for the vast majority of states, reflected
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by the probability for a deviation larger than ε [54],

P [|f (|�〉) − 〈f 〉| > ε] � 4e
− (n+1)ε2

24π2η2 , (58)

where η is the Lipschitz constant. The variance defined
in Eq. (3) is Lipschitz continuous, since it is a sum of
bounded operators. The maximization procedure in Eq. (7)
does not affect Lipschitz continuity, hence the unnormal-
ized macroscopicity M̃ remains Lipschitz continuous. The
geometric measure of entanglement inherits Lipschitz con-
tinuity from the distancelike measure it is based on [52].
Hence, most Haar-random states are very similar, both when
characterized by their geometric entanglement and by their
unnormalized macroscopicity M̃. Applying the normalization
to the macroscopicity via the square root in Eq. (7), we
lose Lipschitz continuity; strictly speaking, thus, M does
not need to exhibit typical behavior. When restricted to a
range with fixed lower bound, M � εM > 0, M is again
Lipschitz continuous, such that, eventually, most uniformly
randomly chosen quantum states will not only share the same
unnormalized macroscopicityM̃ but also the same normalized
macroscopicity M.

Using random matrix theory [55], one can estimate the
typical magnitudes of the elements of the variance-covariance
matrix (17) [49]. In the limit N → ∞, the VCM approaches
the unit matrix and, as the largest eigenvalues converge to
unity, by the upper bound (21), the normalized macroscopicity
vanishes. Qualitatively, this result also follows from the
following complementary argument: Random states that are
chosen according to the Haar measure possess large geometric
entanglement [20,21]. With probability greater than 1 − e−N2

,

we have for N � 11 [20],

EG(|�random〉) � N − 2 log2 N − 3. (59)

The upper bound on macroscopicity in Sec. III B then implies
that the typical macroscopicity is necessarily small: Strongly
geometrically entangled states cannot be macroscopic. The
lower bound on EG (59) and the upper bound on macro-
scopicity as a function of geometric entanglement within the
construction of Sec. III B are, however, not sufficiently tight
to make this argument quantitative.

3. Numerical results

The expected behavior is reproduced by our numerical data,
shown in Fig. 8. In agreement with the previous argument,
the geometric entanglement increases as a function of the
number of qubits N (c), while the normalized macroscop-
icity decays (b). This decay is approximately exponential
[logarithmic inset of Fig. 8(b)], and we can safely state that
even the unnormalized macroscopicity M̃ [Eq. (4)], which
reflects the absolute size of the macroscopic component,
decreases. The variances of both normalized macroscopicity
and geometric entanglement decrease as well. The histogram
in Fig. 8(d) shows the distribution of states for N = 4 in the
(M,EG) plane, together with the bounds in the regime EG � 1
and the conjectured bounds in the realm EG � 1.

In conclusion, both the relative and the absolute size of
the largest macroscopic superposition in Haar-random states
decreases with N . As a consequence, Haar-random states are
very geometrically entangled and feature little macroscopicity.

FIG. 8. Macroscopicity of Haar-random states. Error bars show one standard deviation. (a) Average macroscopicity and geometric
entanglement for N = 3, . . . ,23; no error bars shown. (b) Macroscopicity as a function of the number of qubits. (Inset) Logarithmic plot with
fit by an exponential decay. (c) Geometric entanglement. (Blue solid line) Maximally possible value of geometric entanglement EG = N − 1.
(Dashed black line) Lower bound on geometric entanglement of random states [Eq. (59)]. Error bars are not visible. Sample sizes (a)–(c)
N = 3 − 10,105; N = 11 − 15,104; N = 16 − 23,103. (d) Histogram for 105 Haar-random states of N = 4 qubits, together with the upper
bound of Sec. III B (red solid line, EG � 1) and the state |�〉 parametrized as in Fig. 2 (red solid line and black dashed line, EG � 1).
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C. Random symmetric states

Colloquially speaking, Haar-random states are extremely
complex and do not allow any efficient description [56]. A
state with large macroscopicity, on the other hand, can be
approximated by a superposition of eigenstates of the total
spin operator [Eq. (53)], and thereby permits an efficient
description. Hence, complexity and macroscopicity are mu-
tually exclusive properties, and we cannot expect to encounter
macroscopic superpositions in structureless ensembles.

On the other hand, ensembles of random pure states that
are less complex may feature higher values of macroscopicity.
In particular, permutationally symmetric states constitute
an ensemble of states with rather low geometric entangle-
ment [39,43,57,58]:

EG(|�sym〉) � log2(N + 1), (60)

due to the vastly reduced dimensionality N + 1 of the space
of symmetric N -qubit states in contrast to the full Hilbert
space of size 2N . We choose the following ensemble of
symmetric states: In the Dicke-state representation [Eq. (38)],
the coefficients cj are chosen to be normally distributed
random variables (with normal real and imaginary parts), and
the resulting states are normalized. Following this prescription,
the ensemble is invariant under permutation-symmetric local
unitary operations.

The very different behavior of geometric entanglement for
Haar-random and random symmetric states is evident compar-
ing Figs. 8(c) and 9(c). Consistent with their low geometric

entanglement, symmetric states feature exceptionally high and
robust macroscopicity.

Expectation values of observables read

〈�s |σ̂k ⊗ σ̂l|�s〉 =
N∑

p,q=0

c∗
pcq

〈
D

(p)
N

∣∣σ̂k ⊗ σ̂l

∣∣D(q)
N

〉
. (61)

Since the cp are chosen randomly and independently, only
the summands with p = q will contribute to the average
in the limit of many qubits N → ∞. The only nontrivial
expectation values that do not vanish on average are the
two-qubit correlations along the same axis,

〈�s |σ̂k ⊗ σ̂k|�s〉 = 1
3 . (62)

Consequently, the matrix Vsym in Eq. (32) converges to

Vsym =
(

1 + N − 1

3

)
1, (63)

with obvious eigenvalues, and, in the limit N → ∞, we
therefore expect that the macroscopicity approaches

M(|�s〉) → 1√
3
. (64)

For finite N , off-diagonal nonvanishing correlations may
contribute further to the fluctuations, which is why the average
macroscopicity converges to 1/

√
3 from above. This behavior

is confirmed empirically in Figs. 9(a) and 9(b), where the
average value of macroscopicity for symmetric states is plotted

FIG. 9. Macroscopicity of random symmetric states for a sample of 3000 random states. Error bars show one standard deviation.
(a) Normalized macroscopicity against geometric entanglement, for N = 2, . . . ,128. (b) Average normalized macroscopicity as a function of
the number of qubits N , the dashed black line shows the limiting value 1/

√
3. (c) Average geometric entanglement as a function of N , the

solid line shows the theoretical maximum log2(N + 1) [Eq. (60)]. (d) Average normalized largest and smallest eigenvalues λ/(1 + (N − 1)/3)
of the matrix Vsym for randomly chosen symmetric states. The largest eigenvalue is directly related to the macroscopicity via Eq. (33). The
smallest eigenvalue solves the minimization problem that consists in finding the additive observable with the weakest fluctuations. For large
N , the local spin orientation is rather irrelevant for experiencing large fluctuations, as long as all local spin measurements are performed along
the same axis.
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against the average geometric entanglement (a) and the number
of qubits (b).

Moreover, not only does the macroscopicity converge to a
finite value, it is also very robust with respect to misalignment
of spin orientations: Since the smallest and largest eigenvalues
of Vsym [Eq. (32)] converge to the same value 1 + (N − 1)/3
[Fig. 9(d)], the spin orientation becomes irrelevant in the limit
N → ∞: Almost every additive observable for which the
local spin orientations are all identical features macroscopic
fluctuations on a random symmetric state. The equality of
local spin orientations is crucial here: If these orientations
were chosen randomly and independently, the expectation
value would hardly fluctuate, since most eigenvalues of the
full variance-covariance matrix V Eq. (17) are typically small.

V. CONCLUSIONS AND OUTLOOK

Many different approaches to entanglement eventually
turn out to be equivalent, motivating the powerful concepts
of entanglement monotone and entanglement measure [59].
Our results emphasize that macroscopic entanglement, as
quantified by Eq. (7), should never be treated as a synonym
for a measure of entanglement: In particular, there are entan-
gled states that feature vanishing macroscopic entanglement
(Sec. III A 1).

Random physical states reflect this intricate relationship by
their trajectory in the (EG,M) plane (Sec. IV A), converging to
Haar-random states, which feature large geometric and small
macroscopic entanglement. The typical size of macroscopic
superpositions of random physical states grows, but not
as fast as the system size—consequently, the normalized
measure of macroscopicity converges to 0 in the limit N →
∞. Symmetric states are naturally much less geometrically
entangled and much more macroscopic, and it remains to be
studied whether there are ensembles beyond symmetric states
for which the actual spin orientations in the definition of the
additive observables [Eq. (1)] are irrelevant. Such ensembles
would be experimentally valuable due to their robustness.

A recent study [22] put forward a bound on the quan-
tum Fisher information in terms of geometric entanglement
[Eq. (47)]. The quantum Fisher information translates es-
sentially to the unnormalized macroscopicity in our context.
Our study corroborates further the irrelevance of geometric
entanglement for the quantum Fisher information, since
large geometric entanglement implies small quantum Fisher
information.

A general bound on macroscopicity as a function of
geometric entanglement that features the decrease of

macrocopicity with increasing geometric entanglement be-
yond unity seems hard to obtain, since both quantities are
defined via a maximization procedure. We believe nevertheless
that our bound in Sec. III B can be improved considerably, and
that a proof for the extremality of |�(θ,ε)〉 can be found. We
did not find any relationship between the closest separable
state |φ1,φ2, . . . ,φN 〉 and the maximizing spin orientation
{�α1, . . . ,�αN }; such deeper connection would be valuable.

Control schemes that optimize multipartite entanglement
implicitly exploit the typicality of entangled states within the
ensemble of pure states [60]. Our results suggest that control
strategies that aim at a macroscopically entangled target state
will not only be affected by decoherence, but the unitary
evolution also needs to be tailored in a much more precise way:
While the manifold of states that feature high geometric entan-
glement is very large, this is not true for macroscopic states.

Finally coming back to our proposed analogy (Fig. 1),
our results suggest that macroscopically entangled states play
the role of four-leaf clover: They do not appear sponta-
neously after some random process, but only as the result
of some meticulously designed artificial evolution, such as
in a quantum computer [61]. In other words, while the
dynamical decoherence remains a pillar for the understanding
of the emergence of classicality, already a purely statistical
explanation satisfactorily explains the absence of macroscopic
superpositions. On the other hand, the prevalence of macro-
scopicity in random symmetric states (Sec. IV C) underlines
the importance of the choice of the ensemble for (un)typicality.
Hence, further investigations of other ensembles of pure
quantum states, such as canonical thermal pure states [62]
and random matrix product states [63,64], will eventually
rigorously confirm or dismiss the analogy.
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[33] F. Fröwis, N. Sangouard, and N. Gisin, Opt. Commun. 337, 2

(2015).
[34] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s

Theorem, Quantum Theory and Conceptions of the Universe,
edited by M. Kafatos (Kluwer, Dordrecht, 1989).

[35] O. Gühne, G. Tóth, and H. J. Briegel, New J. Phys. 7, 229 (2005).
[36] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W.

Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Phys. Rev.
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