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We present a detailed analysis of the Bell measurement scheme proposed in Lee et al. [Phys. Rev. Lett.
114, 113603 (2015)] based on a logical qubit using Greenberger-Horne-Zeilinger entanglement of photons. The
success probability of the proposed Bell measurement can be made arbitrarily high using only linear optics
as the number of photons in a logical qubit increases. We compare our scheme with all the other proposals,
using single-photon qubits, coherent-state qubits, or hybrid qubits, suggested to enhance the efficiency of the
Bell measurement. As a remarkable advantage, our scheme requires only photon on-off measurements, while
photon number resolving detectors are necessary for all the other proposals. We find that the scheme based on
coherent-state qubits shows the best performance with respect to the attained success probability in terms of the
average number of photons used in the process, while our scheme outperforms the schemes using single-photon
qubits. We finally show that efficient quantum communication and fault-tolerant quantum computation can be
realized using our approach.
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I. INTRODUCTION

Bell measurement is a crucial element of quantum commu-
nication and quantum computation protocols. It discriminates
between four entangled states known as Bell states,

|�±〉 = 1√
2

(|0L〉|0L〉 ± |1L〉|1L〉),

|�±〉 = 1√
2

(|0L〉|1L〉 ± |1L〉|0L〉),
(1)

where |0L〉 and |1L〉 are the logical qubit bases. In optical
implementations, single photons with their polarization degree
of freedom are typically employed to construct logical qubits
[1–3]. For a single-photon qubit, the Bell measurement can
be implemented using linear optics and photodetectors [4,5],
which we shall refer to as the standard Bell-measurement
scheme. This scheme, in effect, projects two photons onto a
complete measurement basis of two Bell states and two product
states so that only two of the Bell states can be unambiguously
identified. Due to this reason, the success probability of the
standard Bell measurement is limited to 50% [4,5], and it
has been a fundamental hindrance to the implementation of
a deterministic quantum teleportation and scalable quantum
computation with linear optics [1,2].

In order to enhance the success probability of the Bell
measurement, several schemes have been proposed based on
single-photon qubits using either ancillary entangled states
[6,7] or additional squeezing operations [8]. Instead of using
single photons, different types of physical degrees of freedom
of light can also be employed to construct logical qubits,
for example, using superpositions of coherent states [9,10]
or hybrid entanglement of single photons and coherent states
[11,12]. Although each of these schemes has its own merit,
there exist several features to overcome in the implementation
of those schemes, such as the requirement of ancillary

resource entanglement [6,7] or the limited success probabil-
ities [8]. Moreover, all aforementioned schemes suffer from
the requirement of photon number resolving detection [6–11].

In this paper, we discuss a scheme for implementing a
nearly deterministic Bell measurement with linear optics and
photon on-off measurements [13]. The logical qubit is defined
as a Greenberger-Horne-Zeilinger (GHZ)-type multiphoton
entangled state. It is shown that the logical Bell states can be
efficiently discriminated by performing N times of standard
Bell measurements, where N is the number of photons in a
logical qubit. The limited success probability of the standard
Bell measurement 1/2 is overcome by the fact that each of
the four logical Bell states is characterized by the number of
contributions from two Bell states of single-photon qubits, that
can be identified by the standard Bell measurement performed
on photon pairs. As a result, the logical Bell measurement
fails only when none of the N pairs is a detectable Bell
state, resulting in a success probability of 1 − 2−N that rapidly
approaches unity as N increases. A detailed review of our
scheme will be presented in Sec. II.

In Sec. III, we compare our scheme with other well-known
Bell measurement schemes proposed based on linear optics;
our scheme outperforms the previous proposals employing
single-photon qubits [6–8] in its efficiency against the number
of photons used in the measurement process. The other
schemes employing coherent state [9,10] or optical hybrid
qubits [11,12] enable us to achieve even higher success
probability than ours with the same average photon number
usage. However, all the other schemes except ours require
photon number resolving detection, while our scheme can be
performed with linear optics and photon on-off measurements
only.

In Sec. IV, we discuss the applications of our scheme to
quantum communication and computations. We will show
that a qubit in an N photon GHZ-type entanglement can be
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teleported with an arbitrarily high success probability with
a 2N photon GHZ-type entangled channel as N becomes
large. It will be shown that in our approach a complete set of
universal gate operations can be constructed using only linear
optics, on-off measurements, and multiphoton entanglement.
We investigate the effect of photon losses, a major factor of
errors, and demonstrate a fault-tolerant quantum computation
in our approach. We expect our scheme to be a competitive
approach to photonic quantum-information processing.

II. LINEAR OPTICAL BELL MEASUREMENT SCHEME
WITH MULTIPHOTON ENCODING

A. Standard Bell measurement scheme

We first consider the standard Bell measurement technique
for single-photon qubits. The logical basis of single-photon
qubits are typically defined with the photon polarization degree
of freedom, in terms of either the horizontal and vertical
polarization states, i.e., {|H 〉,|V 〉}, or the diagonal states
|±〉 = (|H 〉 ± |V 〉)/√2. Here we assume the Bell states of
single-photon qubits in the diagonal basis,

|�±〉 = 1√
2

(|+〉|+〉 ± |−〉|−〉),

|�±〉 = 1√
2

(|+〉|−〉 ± |−〉|+〉).
(2)

The standard Bell measurement scheme for single-photon
qubits employs linear optic elements such as polarizing beam
splitter (PBS), wave plates, and photon detection [5]. It projects
two photons onto a complete measurement basis of two Bell
states and two product states so that only two of the Bell
states can be identified. For example, one can identify |�−〉
and |�−〉 using three PBS and four on-off photodetectors as
illustrated in Fig. 1(a). For |�−〉 or |�−〉 states, two photons
are separated into different modes at the first PBS, resulting
in one click from the upper two and another from lower two
detectors. If the separated clicks have the different polarization
output, i.e., (H,V ) or (V,H ), the result is |�−〉, while for
the same polarization output, i.e., (H,H ) or (V,V ), the result
is |�−〉. On the other hand, two photons of the state |�+〉
or |�+〉 proceed together via the first PBS either way to
the upper or lower two detectors. All possible clicks at the
detectors from |�+〉 can equally be yielded from |�+〉 so that
it is impossible to discriminate them. Therefore, the success

FIG. 1. (Color online) (a) Standard Bell measurement Bs for
single-photon qubits using linear optical elements and photon on-off
detectors. (b) Logical Bell measurement for the qubits encoded with
two photons. (c) Logical Bell measurement for N -photon qubits
through N times of Bs measurements.

probability of the standard Bell measurement scheme is limited
to 1/2 [4,5]. Which two Bell states are successfully identified
can be selected by putting appropriate wave plates at the input
modes of the first PBS. We will refer to the standard Bell
measurement in Fig. 1(a) as Bs hereafter.

B. Our proposal: Bell measurement with multiphoton encoding

Here we introduce a scheme for discriminating four Bell
states by using linear optics and qubits with multiphoton
encoding [13]. We define the logical basis of qubits with N

photons as

|0L〉 ≡ |+〉⊗N = |+〉1|+〉2|+〉3 · · · |+〉N,

|1L〉 ≡ |−〉⊗N = |−〉1|−〉2|−〉3 · · · |−〉N .
(3)

Thus, a logical qubit is generally written in the form of a GHZ-
type state as α|+〉⊗N + β|−〉⊗N . The encoding of a logical
qubit into N photons can be realized, for example, by the
teleportation scheme between an encoded single photon and
N photons. For this purpose, the GHZ state of N + 1 photons
is used as the teleportation channel and the encoded single
photon as the input state.

Let us first explain our proposal with the simplest case, i.e.,
two-photon encoding (N = 2), where the logical qubit bases
are |0L〉 ≡ |+〉 ⊗ |+〉 and |1L〉 ≡ |−〉 ⊗ |−〉. The logical Bell
states in this encoding are written by

|�±
(2)〉 = 1√

2
(|+〉1|+〉2|+〉1′ |+〉2′ ± |−〉1|−〉2|−〉1′ |−〉2′ ),

(4)

|�±
(2)〉 = 1√

2
(|+〉1|+〉2|−〉1′ |−〉2′ ± |−〉1|−〉2|+〉1′ |+〉2′ ),

where the first logical qubit is of photonic modes 1 and 2 while
the second is of 1′ and 2′. If we simply rearrange the order of
photon modes 1′ and 2, and by using the fact that |±〉|±〉 =
(|�+〉 ± |�−〉)/√2 and |±〉|∓〉 = (|�+〉 ± |�−〉)/√2, these
Bell states can be represented in terms of the Bell states in
Eq. (2) as

|�±
(2)〉 = 1√

2
(|�+〉11′ |�±〉22′ + |�−〉11′ |�∓〉22′ ),

|�±
(2)〉 = 1√

2
(|�+〉11′ |�±〉22′ + |�−〉11′ |�∓〉22′ ).

(5)

Interestingly, these four Bell states can be thus identified by
means of two independent standard Bell measurements for
single-photon qubits (Bs) performed on two photons; one
is from the first and the other from the second qubit as
illustrated in Fig. 1(b). Note that the photons in each qubit
are indistinguishable so that any single photon can be selected
arbitrarily to perform each independent Bs measurement.

Let us now explain how one can discriminate the four
logical Bell states, keeping in mind that the Bs measurement
defined in the previous section can unambiguously identify
|�−〉 and |�−〉 out of the four Bell states of single photons.
From the results of two Bs measurements, one can identify the
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Bell states encoded with two photons as follows:

|�+
(2)〉 : both Bs succeed with |�−〉,

|�−
(2)〉 : one Bs succeeds with |�−〉,

|�+
(2)〉 : both Bs succeed with |�−〉,

|�−
(2)〉 : one Bs succeed with |�−〉,

Failure : both Bs fail.

As the failure occurs only when both Bs measurements fail
(i.e., neither |�−〉 nor |�−〉 is obtained), the four Bell states
|�±

(2)〉 and |�±
(2)〉 can be discriminated with 75% success

probability, i.e., Ps = 3/4. Note that our scheme employs
only linear optics and on-off photodetectors as it can be
implemented by means of two separate Bs measurements.

Our scheme can be generalized for the case of ar-
bitrary N photon encoding. From Eq. (3), the logical
Bell states |�±

(N)〉 = (|0L〉|0L〉 ± |1L〉|1L〉)/√2 and |�±
(N)〉 =

(|0L〉|1L〉 ± |1L〉|0L〉)/√2 encoded with N photons can be
written by

|�±
(N)〉 = 1√

2
((|+〉|+〉)⊗N ± (|−〉|−〉)⊗N )

= 1√
2N+1

((|�+〉 + |�−〉)⊗N ± (|�+〉 − |�−〉)⊗N ),

(6)

|�±
(N)〉 = 1√

2
((|+〉|−〉)⊗N ± (|−〉|+〉)⊗N )

= 1√
2N+1

((|�+〉 + |�−〉)⊗N ± (|�+〉 − |�−〉)⊗N ),

by using |±〉|±〉 = (|�+〉 ± |�−〉)/√2 and |±〉|∓〉 =
(|�+〉 ± |�−〉)/√2. After some calculations, we can rewrite
these in the form of

|�+
(N)〉 = 1√

2N−1

[N/2]∑
j=0

P[|�+〉⊗N−2j |�−〉⊗2j ],

|�−
(N)〉 = 1√

2N−1

[(N−1)/2]∑
j=0

P[|�+〉⊗N−2j−1|�−〉⊗2j+1],

|�+
(N)〉 = 1√

2N−1

[N/2]∑
j=0

P[|�+〉⊗N−2j |�−〉⊗2j ],

|�−
(N)〉 = 1√

2N−1

[(N−1)/2]∑
j=0

P[|�+〉⊗N−2j−1|�−〉⊗2j+1],

(7)

where [x] denotes the largest integer less than or equal to x

(i.e., �x), and P[·] is the permutation function for N elements
of photon pairs. For example, we can rewrite the logical Bell
state for N = 3 as

|�+
(3)〉 = 1

4 ((|�+〉 + |�−〉)⊗3 + (|�+〉 − |�−〉)⊗3)

= 1
2 (|�+〉|�+〉|�+〉 + |�+〉|�−〉|�−〉
+ |�−〉|�+〉|�−〉 + |�−〉|�−〉|�+〉)

= 1
2 (|�+〉⊗3 + P[|�+〉|�−〉⊗2]),

(8)

where P[|�+〉|�−〉⊗2] = |�+〉|�−〉⊗2 + |�−〉|�+〉|�−〉 +
|�−〉⊗2|�+〉. Likewise, all other Bell states for N = 3 can
be represented in this way.

Therefore, the four logical Bell states with arbitrary N

photon encoding can be discriminated via N times of separated
Bs measurements as illustrated in Fig. 1(c). Here, each Bs is
performed on two photons; one is arbitrarily selected from the
first and the other is from the second qubit. One can identify
the logical Bell states from the results of N independent Bs

measurements as follows:

|�+
(N)〉 : even number of Bs succeed with |�−〉,

|�−
(N)〉 : odd number of Bs succeed with |�−〉,

|�+
(N)〉 : even number of Bs succeed with |�−〉,

|�−
(N)〉 : odd number of Bs succeed with |�−〉,

Failure : all Bs fail.

As the failure occurs only when none of the N times Bs

measurements succeed, the four logical Bell states |�±
(N)〉

and |�±
(N)〉 can be discriminated with a success probability

Ps = 1 − 2−N . It is remarkable that the success probability
rapidly approaches unity as N increases. For example, the
success rate up to 99.6% can be achieved with N = 8
encoding. We note that our scheme for N photon encoding
can be performed effectively via either spatially or temporally
distributed N times of Bs measurements, irrespectively of the
order of measurements. We will compare the efficiency of our
scheme with other proposals in the following section.

III. COMPARISON WITH OTHER PROPOSALS

A. Other schemes to beat the 1/2 limit

Besides our proposal, many efforts have been devoted so
far to improve the success probability of Bell measurement
based on linear optics. We here consider several recent
proposals employing single-photon qubits [6–8], and calculate
its success probability in terms of the total number of photons
(n̄) used in the process for the comparison with our scheme. We
will take into account the photons contained in the constructed
logical qubits to be measured and in the ancillary states used in
the measurement process as well as the increase of the average
photon number by squeezing operation used in the process.

Grice’s scheme. A scheme proposed by Grice [6] enhances
the success probability of Bell-state discrimination employing
ancillary entangled states of photons and photon number
resolving detection in the Bell measurement process (see
Ref. [6] for details). It increases the success probability up
to Ps = 1 − 2−Na by using 2Na − 2 additional photons. Here
Na is the number of ancillary entangled states |�j 〉 with j =
1, . . . ,Na − 1, each of which contains 2j photons. The total
number of photons used in the Bell measurement process can
be thus obtained by counting all photons in two logical qubits
and the ancillary states. As we here consider single-photon
encoding, two photons are used in two logical qubits. Thus, the
total number of photons counted is n̄ = 2 + 2Na − 2 = 2Na , by
which we can rewrite the success probability as Ps = 1 − 1/n̄.

Zaidi and van Loock’s scheme. Zaidi and van Loock
proposed a scheme to improve the success probability of Bell
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measurement for single photons in terms of inline squeezing
operations accompanied by photon number resolving detec-
tions [8]. With this approach, the success probability up to
64.3% is achieved for dual-rail encoding (photon polarization
encoding) and to 62.5% for single rail encoding (vacuum and
single-photon state encoding). Let us here consider this scheme
with dual-rail encoding in order to compare it with other
schemes using single-photon polarization. In this scheme, each
mode of Bell states is squeezed by a squeezing operator Ŝ(r) =
exp[−r(â†2 − â2)/2] to improve the success probability of
Bell discrimination. Here, r is the squeezing parameter and
â†(â) is the creation (annihilation) operator. Suppose that Bell
states, here assumed to be as |φ±〉 = (|HH 〉 ± |V V 〉)/√2,
pass through a beam splitter as UBS|φ±〉 and then are squeezed.
They can be written in the dual-rail representation as

i

2
(|2′0′0′0′〉 + |0′0′0′2′〉 ± |0′2′0′0′〉 ± |0′0′2′0′〉), (9)

where |n′〉 = Ŝ(r)|n〉. The average photon number n̄ in all four
modes can be calculated by

〈φ±|Ŝ1,2,3,4(−r)(n̂1 + n̂2 + n̂3 + n̂4)Ŝ1,2,3,4(r)|φ±〉, (10)

where n̂i is the photon number operator in the ith mode and
Ŝ1,2,3,4(r) = Ŝ1(r)Ŝ2(r)Ŝ3(r)Ŝ4(r). If we use the relation

Ŝ(−r)n̂Ŝ(r) = (â† cosh r − â sinh r)(â cosh r − â† sinh r),
(11)

the total average photon number in all four modes can be
obtained as

n̄ = 〈n̂1 + n̂2 + n̂3 + n̂4〉 = 2 cosh 2r + 4 sinh2 r. (12)

The best value of r to achieve the highest success probability
is investigated in Ref. [8] and given as r = 0.6585. With
this value, the average photon number in the Bell state after
the squeezing is obtained as n̄ = 6.000 29, which yields the
success probability of the Bell measurement as Ps = 0.643.

Ewert and van Loock’s scheme 1. Ewert and van Loock
proposed a scheme to discriminate the Bell states of single-
photon qubits by using ancillary multiphoton entanglement
[7]. This employs a similar method used in Grice’s scheme [6]
and photon number resolving detection to increase the success
probability. In the proposed Bell measurement setup, the total
number of photons used in a single process can be counted
as n̄ = 4Nm + 2 where Nm is the number of ancillary states.
The success probability achieved using Nm ancillary entangled
states is given by Ps = 1 − 2−Nm−1. Thus, we can rewrite the
success probability by the average total photon number used
in the process n̄ as Ps = 1 − 2−n̄/4−1/2.

Ewert and van Loock’s scheme 2. Recently, another scheme
of linear optical Bell measurement was proposed [14] by
employing parity-state encoding with multiphotons [15]. The
logical qubit is constructed with n blocks each containing m

photons. It was shown that the success probability reaches up
to Ps = 1 − 2−n similarly with our scheme. As the number
of photons contained in each logical Bell state is 2 × n × m,
we can write the success probability of Bell measurement by
using the average photon number used in the process n̄ = 2nm

as Ps = 1 − 2−n̄/2m.

B. Bell measurement with other physical qubits

Instead of single photons, other optical degrees of freedom
can be used to construct the logical qubit in linear optical
quantum-information processing. We will here consider two
previous proposals employing other optical qubits to compare
with our scheme.

Coherent-state qubits. One of the well-known approaches
employs two coherent states |α〉 and |−α〉 with amplitudes
±α, or alternatively their superposed states |α〉 ± |−α〉, as a
qubit basis. It was shown that a nearly deterministic Bell-state
measurement is possible in this approach [9,10]. Quantum tele-
portation [16] and quantum computation schemes [9,10,17,18]
based on the coherent-state encoding have been proposed and
investigated. A drawback of this approach is that one cannot
easily perform the local unitary transforms such as Ẑ operation
due to nonorthogonality of two coherent states.

In this approach, the Bell measurement can be implemented
as follows. If the four Bell states

|�±〉 = N±(|α〉|α〉 ± |−α〉|−α〉),
|�±〉 = N±(|α〉|−α〉 ± |−α〉|α〉), (13)

where N± = (2 ± 2e−4|α|2 )−1/2, pass through a 50:50 beam
splitter (BS), the resulting states are

|α〉|α〉 ± |−α〉|−α〉 BS−→ (|
√

2α〉 ± |−
√

2α〉)|0〉,
|α〉|−α〉 ± |−α〉|α〉 BS−→ |0〉(|

√
2α〉 ± |−

√
2α〉).

(14)

As |√2α〉 + |−√
2α〉 and |√2α〉 − |−√

2α〉 contain respec-
tively an even and odd number of photons, two parity measure-
ments acting on two output modes discriminate between the
four Bell states. Here, the even number state |√2α〉 + |−√

2α〉
yields the case when no photon is detected in both detectors,
due to the nonzero overlap of 〈0| ± √

2α〉 = e−α2
, which

is counted as a failure. Assuming equal input probabilities
of four Bell states, we can then calculate the average
success probability of the Bell measurement as Ps = 1 −
N 2

+|〈0|(|√2α〉 + |−√
2α)〉|2/2 = 1 − (2 cosh 2α2)−1. We can

also obtain the average photon number included in the Bell
states, by averaging 〈n̂1 + n̂2〉 for all four Bell states, resulting
in

n̄ = |α|2
(

1 − e−2α2

1 + e−4α2 + 1 + e−2α2

1 − e−4α2

)
, (15)

which we will use later to compare our scheme with respect to
the success probability for the average photon number used in
the process.

Optical hybrid qubits. Recently, a hybrid approach was
proposed by combining both approaches for single pho-
tons and coherent-state qubits [11,12]. The logical qubit
is constructed based on the orthonormal basis, {|0L〉 =
|+〉|α〉,|1L〉 = |−〉|−α〉}, where |±〉 = (|H 〉 ± |V 〉)/√2. It
was shown that this approach enables a near-deterministic
quantum teleportation as well as deterministic X̂ and Ẑ

operations using linear optics. In this scheme, the logical
Bell-state measurement can be performed using two indepen-
dent Bell-state measurements, the standard Bell measurement
(Bs) for the single-photon part and the coherent-state Bell
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FIG. 2. (Color online) The success probability of Bell measure-
ments against the average photon number (n̄) used in the process. The
black thick dotted curve is for the coherent-state qubits, the brown
thick dashed curve for optical hybrid qubits, the blue thick curve
for our scheme. The blue dashed curve is for Zaidi and van Loock’s
scheme 2 when m = 2 (it is the same with ours when m = 1). The red
dot-dashed curve is for Grice’s scheme, the orange dotted curve is for
Ewert and van Loock’s scheme, and the green circle at Ps = 0.643
and n̄ = 6.000 29 is for Zaidi and van Loock’s scheme 1.

measurement described above for the coherent-state part.
The logical Bell measurement can be successfully performed
unless both Bell measurements on each part fail so that its
success probability is given as Ps = 1 − e−2α2

/2. As the
average number of photons contained in any single Bell
state is obtained as n̄ = 2 + 2α2, we can rewrite the success
probability by n̄ as Ps = 1 − e−n̄+2/2.

C. Comparison with our scheme

In our scheme, the single Bell measurement process
consumes a total of 2N photons as each logical Bell state
contains 2N photons and no additional photons are used in the
process. Thus, the success probability of Bell measurement
can be written as Ps = 1 − 2−n̄/2 with the average photon
number n̄ = 2N used in the process. We plot Ps against n̄

for our scheme and all other above-mentioned schemes in
Fig. 2. We will present some observations about the results
and comparisons of our scheme with others as below:

(i) Our scheme shows the best performance among the
schemes employing single-photon qubits, with respect to
the attained success probability against the average photon
number (n̄) used in the process. For example, our scheme
can reache Ps = 0.996 by using total n̄ = 16 photons for the
Bell measurement. On the other hand, the attained success
probabilities by other Bell measurement schemes suggested
by Grice [6], Zaidi and van Loock [8], and Ewert and van
Loock [7] are much lower than ours with the same number
of photon usage. Moreover, our scheme does not require
photon number resolving detectors in contrast to these schemes
[6–8].

(ii) The scheme recently proposed by Ewert et al. [14], sim-
ilarly with ours, employs multiphoton entanglement encoding.
The logical qubit is constructed in the form of the parity-state
encoding [15], devised to tolerate photon losses by containing
n blocks of m photons, i.e., total nm photons. It also enables
one to perform near-deterministic Bell measurement with the

success probability, 1 − 2−n, similarly with ours. However,
in order to achieve Ps = 1 − 2−n, it uses total 2nm photons.
The attained success probability against the average photon
number usage is the same as ours when m = 1, and becomes
worse with increasing m (see the blue dashed line in Fig. 2 for
the case when m = 2). It was also pointed out in Ref. [14] that,
under the effects of photon losses, increasing n yields higher
success probability than increasing m.

(iii) The schemes with coherent-state encoding [9,10] or
optical hybrid encoding [11,12] yield higher success probabil-
ities than ours for the same average photon number usage as
we can see in Fig. 2. This is due to the fact that the success
probability of coherent-state Bell measurement, employed in
both (coherent-state encoding and hybrid encoding) schemes,
dramatically increases as the amplitude of the coherent states
gets higher. However, it requires the exact discrimination
of even and odd number of photons, which becomes more
difficult to realize for higher amplitudes. We stress again that,
in contrast, our scheme only requires photon on-off detectors,
which is a considerable advantage to realize.

IV. APPLICATION TO QUANTUM-INFORMATION
PROCESSING

In this section, we will consider the application of our
scheme to quantum communication and all-optical quantum
computation. We will also investigate the effects of photon
loss, which is the major detrimental factor of errors for the
optical implementation of quantum-information processing
[2].

In our analysis, we have made some assumptions as
follows. The resource states required for logical qubits or
entangled channels for gate teleportation, e.g., GHZ entan-
glement of multiphotons, are assumed to be prepared by
off-line processes. The evolution of optical quantum states
in a lossy environment is obtained by solving the master
equation [19]

dρ

dt
= γ (Ĵ + L̂)ρ, (16)

where Ĵ ρ = ∑
i âiρâ

†
i , L̂ρ = −∑

i(â
†
i âiρ + ρâ

†
i âi)/2, and

âi(â
†
i ) is the annihilation (creation) operator for the ith mode.

Here, γ is the decay constant, and the loss rate is defined
as η = 1 − e−γ t . It is assumed that all optical systems, from
the logical qubits to teleportation channels, experience the
same loss effects with rate η. During the generation process
of entangled quantum channel, loss also occurs with rate η

so that some imperfect resource states in which photons may
be lost at one or more modes are possibly supplied into in-
line communication or computation. The logical qubits are
assumed to be prepared in ideal pure states when they are first
supplied into the in-line process. During the in-line process,
the same loss rate η is applied to each photonic mode of
the qubits for each gate operation and corresponding time in
quantum memory. Details of our analysis will be presented in
the following subsections.
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A. Quantum communication

Our Bell measurement scheme is useful for the implemen-
tation of quantum communications. At first, it immediately
enhances the success probability of the standard quantum tele-
portation [20]. In our approach, an unknown qubit is prepared
with N photon encoding as |φN 〉A = a|+〉⊗N

A + b|−〉⊗N
A at

site A. The channel state |+〉⊗N
A |+〉⊗N

B + |−〉⊗N
A |−〉⊗N

B is dis-
tributed between site A and B. Here, both the qubit and channel
states are in the form of GHZ entanglement. First, the sender
located at site A carries out our Bell measurement scheme,
i.e., N times of Bs measurements, where each Bs is acting on
two photons, one from |φN 〉A and the other from the site A of
the channel state. The receiver at site B can then retrieve the
input state |φN 〉 by performing appropriate unitary transforms,
either Pauli X (bit flip) or Z (phase flip) or both operations,
which can be implemented deterministically as we will explain
in the following Sec. IV B. The success probability of quantum
teleportation with N photon encoding is just given as Ps = 1 −
2−N , equal to that of the logical Bell measurement. Therefore,
a near-deterministic quantum teleportation can be achieved
by employing only linear optics and photon on-off detectors.
For example, if four-photon entangled logical qubit and eight-
photon entangled channel states are used, the success proba-
bility of quantum teleportation becomes higher than 90%.

In the realization of quantum communications, photon
loss is unavoidable. An arbitrarily encoded qubit |φN 〉 =
a|+〉⊗N + b|−〉⊗N evolves under a lossy environment into a
mixed state in the form of

(1 − η)N |φN 〉〈φN | + 1

2

N∑
k=1

(
N

k

)
(1 − η)N−kηk

× (|φN−k〉〈φN−k| + |φ−
N−k〉〈φ−

N−k|), (17)

where (N

k
) denotes the binomial coefficient and η is the loss

rate on each photonic mode. As one can see here, the total loss
probability of each logical qubit is given by P = 1 − (1 − η)N .
The probability that k photons are lost out of N is (N

k
)(1 −

η)N−kηk and its possible resulting state is either |φN−k〉 =
a|+〉⊗N−k + b|−〉⊗N−k , or |φ−

N−k〉 = a|+〉⊗N−k − b|−〉⊗N−k .
Note that there is no logical error in the former state, while
the latter contains a Pauli-Z error. Therefore, if a photon is
lost from any single mode of a logical qubit, it experiences a
Pauli-Z error with probability 1/2.

The logical Bell measurement is also affected by photon
losses. During the quantum teleportation process, losses occur
possibly at both the input qubit and the channel states. We
thus here consider the Bell measurements performed on two
qubits in the assumption that they both experience photon
losses with the same rate η. In our Bell measurement scheme
[see Fig. 1(c)], N times of Bs measurements are performed
independently on two photons; one is from the qubit and the
other is from the channel. If either of the two photons are lost,
the Bs fails. The probability that losses occur at k times of Bs

can be written by(
N

k

)
{(1 − η)2}(N−k){1 − (1 − η)2}k

=
(

N

k

)
(1 − η)2(N−k)ηk(2 − η)k. (18)

FIG. 3. (Color online) The success probabilities of quantum tele-
portation under the effect of photon losses (η) based on our Bell
measurement scheme with N -photon encoding; the black dotted curve
for single photon (N = 1), the green dot-dashed curve for N = 4, the
red dashed curve for N = 16, and the blue curve for N = 80 photon
encoding.

Therefore, we can obtain the total success probability of Bell
measurements under losses as

Ps(η) = 1 −
N∑

k=0

(
N

k

)
(1 − η)2(N−k)ηk(2 − η)k

(
1

2

)N−k

= 1 −
(

1 + η(2 − η)

2

)N

, (19)

which becomes Ps(0) = 1 − 2−N when there is no loss η =
0 and Ps(1) = 0 for η = 1. Assuming that no additional
operational errors occur during the Bell measurement and
feedforward operations, the success probability of teleporta-
tion under a lossy environment is obtained as Ps(η). We plot
Ps(η) against the loss rate η for different encoding numbers N

in Fig. 3. It shows us that in principle quantum teleportation
can be implemented with arbitrary high success probability
under a lossy environment by increasing the encoding number
N in our scheme. Note that here we do not consider the
Pauli Z error caused by losses, which can be propagated
to the teleported qubit with probability 1/2. Such a Pauli
logical error should be corrected by employing error correction
codes, details of which will be considered in the following
subsections.

For a long-distance quantum communication, the distance
between the sender and receiver is limited by the effects of
photon losses and quantum repeaters are necessary at interme-
diated locations [21]. As quantum repeaters typically require
Bell measurements to complete the protocol [14,22], our
scheme can be possibly employed to enhance the performance
of such a protocol, which will be a possible future work.

B. Universal gate operations

In order to realize universal quantum computation, a set
of logical quantum gates is necessary, by which any logical
operation is in principle possible to construct. For example,
Pauli X, arbitrary Z (phase) rotation, Hadamard, and a
controlled-Z (CZ) operations constitute such a universal set.
In our framework, Pauli X and arbitrary Z (phase) operations
are straightforward to implement using linear optical elements.
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The Pauli X (bit flip) operation can be performed by flipping
|+〉 ↔ |−〉 implemented by a polarization rotator at all photon
modes. An arbitrary Z (phase) operation can be performed
by applying the phase-shift operation only a single photonic
mode: {|+〉,|−〉} → {|+〉,eiθ |−〉}, and no operation is required
for the other modes. Thus, both the Pauli X and arbitrary Z

(phase) operations are deterministic in our approach.
In order to realize the Hadamard and CZ gates, we here

employ the gate teleportation protocol with specific types of
entangled states [23]. For the Hadamard operation, the entan-
gled state |Z〉 ≈ |0L〉|0L〉 + |0L〉|1L〉 + |1L〉|0L〉 − |1L〉|1L〉
should be used as the quantum channel for teleportation.
If one performs a standard teleportation of unknown qubit
|φ〉 with the channel |Z〉, the output state is given as the
Ĥ |φ〉 where Ĥ indicates the Hadamard gate. Likewise, one
can realize the CZ gate operation by performing two-qubit
teleportation with |Z′〉 ≈ |0000〉 + |0011〉 + |1100〉 − |1111〉
where |0000〉 = |0L〉|0L〉|0L〉|0L〉 and so on, as the quan-
tum channel for teleportation. In this case, the cost is the
preparation of mutiphoton entanglement as resource states.
As the success probability of the Hadamard or CZ gates
is the same as the success probability of the logical Bell
measurements, it is possible to implement these operations
nearly deterministically by increasing the number of photons
N in a logical qubit.

Alternatively, other approaches for the realization of the
Hadamard and CZ gates, such as the Knill-Laflamme-Milburn
(KLM) scheme [3] or the parity encoded scheme used in
Refs. [15,24,25], may be considered: Such approaches may
possibly reduce the resource requirements in gate operations
in comparison to gate teleportation in which many resources
are consumed to prepare the channel states |Z〉 and |Z′〉 (details
will be discussed in Sec. IV C), however it may require more
feedforward operations than gate teleportation.

The effects of photon losses should be also considered
for the implementations of quantum computing. A logically
encoded qubit with N photons may be affected by losses during
the in-line process, resulting in the same form as Eq. (17),
which contains some logical errors. When performing gate
teleportation for the Hadamard and CZ gate operations, the
success probability of Bell measurement is also deteriorated by
photon losses. Here we assume that the resource channels |Z〉
and |Z′〉 are prepared off-line and immediately used such that
only the input qubits are subjected to losses. In this case, the
Bell measurement fails with rate (1/2)N−k when k photons are
lost in the qubit. Thus, we can calculate the success probability
of the gate teleportation with loss rate η as

P ′
s (η) = 1 −

N∑
k=0

(
N

k

)
(1 − η)N−kηk

(
1

2

)N−k

= 1 −
(

1 + η

2

)N

, (20)

where
(
N

k

)
represents the binomial coefficient. It becomes

P ′
s (0) = 1 − 2−N when there is no loss η = 0, and P ′

s (1) = 0
for η = 1. It is higher than the one obtained in Eq. (18) as we
assumed here that loss occurs only at the input qubit modes
(no loss at the channel states).

During the computation process, several errors are caused
by photon losses. Some of the errors are detectable by
measurements during the gate operations, which are called
“locatable” [2], while other errors propagates and can only
be corrected by an error correction code. This latter kind are
called “unlocatable.” As we can see in Eq. (17), losses occur
with the rate P in quantum memory or gate operations. If any
single photon is lost, the logical qubit experiences a Pauli Z

error with probability 1/2. The loss errors in quantum memory
as well as deterministic operations, such as the Pauli X or
arbitrary Z rotation, are unlocatable. On the other hand, the
errors in Hadamard or CZ gates caused by losses are in fact
immediately detectable by missing photons at the detectors
during the logical Bell measurement. Moreover, as the gate
teleportation scheme is used here, missing photons in the
input qubit are compensated at the output qubit as far as the
teleportation succeeds.

C. Fault-tolerant quantum computation

In order to build arbitrary large-scale quantum computers,
it should be justified that they can be implemented with
tolerance to small errors: so-called fault-tolerance [26]. For
this, the amount of noise per operation with appropriate error
corrections should be below a fault-tolerant threshold. We thus
carried out numerical simulations to obtain the threshold for
our scheme with a given loss rate η. We here employ the seven
qubit STEANE code [27] with several levels of concatenation
based on the circuit-based telecorrection [28], in order to
directly compare its performance with previous other schemes
employing the same correction code and circuit [11,18,25,28].
Note that the STEANE code can correct arbitrary logical or
unlocatable errors, but for the purpose of this calculation we
assume that the other errors are negligible compared to the
loss errors.

We will employ the modified telecorrection circuit com-
posed of CZcz, Hadamard, |+〉 state, and X-basis measurement
[18]. Let us define the error model for our approach as follows:
When Hadamard or CZ gates fail, the output qubit is assumed to
experience depolarization, which can be modeled by a random
Pauli operation, i.e., Pauli Z and X operation independently
act on the logical qubit with the equal probability 1/2. For
the other loss errors in quantum memory or gate operations,
Pauli Z operation is applied to the qubit with probability 1/2.
We use this error model for the lowest level of concatenation,
while the same error model described in Ref. [28] is used for
higher levels of concatenation. Based on this approach, we
performed a series of Monte Carlo simulation (using C++) to
obtain the corrected error rates for a range of η with different
N . The resulting corrected error rates in a lower level are used
for the error rates for the elements used in the next level of
error correction. If the error rates tend to zero in the limit of
many levels of concatenation, it is guaranteed that in principle
the fault-tolerant quantum computation is possible with those
certain η and N .

In this way, the noise thresholds of our scheme with
different N are obtained as shown in Table I. Interestingly, the
largest threshold is obtained when the logical qubit is encoded
with four photons (N = 4). Note that a further increase of
N lowers the threshold, which may be due to unlocatable
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TABLE I. Fault-tolerant noise thresholds (η) for different num-
bers of photons in a logical qubit (N ) using the seven-qubit STEANE
code and the telecorrection protocol [28]. The highest threshold is
obtained when N = 4.

N Noise threshold η N Noise threshold η

3 1.3 × 10−3 7 1.1 × 10−3

4 1.7 × 10−3 8 0.9 × 10−3

5 1.5 × 10−3 9 0.7 × 10−3

6 1.3 × 10−3 10 0.6 × 10−3

errors becoming dominant for larger N encoding. Let us then
compare the result with those obtained by other schemes.
The threshold obtained by our scheme (∼1.7 × 10−3) is
much higher than those for coherent-state qubits (∼2 × 10−4)
[9,10,17,18] and optical hybrid qubits (∼5 × 10−4) [11]. On
the other hand, it is almost equivalent to the one using parity-
states encoding with entangled photons [15,25]. Even much
higher thresholds may be attainable by employing recently
proposed topological error codes [31,32], which will be a
possible future work.

The number of resources required for one round of error
correction is another important factor to analyze the scalability
of quantum computation. One can estimate the resource
requirements of the telecorrection scheme by the following
estimation. The total number of operations in one round of
telecorrection is about 1000 [2] and the element operations
are used with the following fractions [18,28]: memory 0.284,
Hadamard 0.098, CZ 0.343, diagonal state 0.164, and X-basis
measurement 0.111. If we assume that the number NH , NCZ,
and N|+〉 of resources are consumed to prepare the Hadamard,
CZ gate, and the diagonal state, respectively, and none for the
others. Then, the total resource requirements for one round of
error corrections is obtained by

98NH + 343NCZ + 164N|+〉.

In fact, it depends on the form of the required entangled
states and the efficiency of their generation methods. In our
scheme, as explained in Sec. IV B, the entangled states |Z〉 and
|Z′〉 are used as the channel for gate teleportation to realize
Hadamard and CZ gate, respectively. If we assume conditional
generation of |Z〉 and |Z′〉 from entangled photon pairs, e.g.,
using the fusion gate operation [33], the resource cost increases
exponentially with increasing N the number of photon in a
logical qubit. On the other hand, any on-demand or efficient
generation scheme for such multiphoton entanglement will
be able to reduce dramatically the resource requirements.
Recently, such multiphoton entanglement has been experi-
mentally produced [34]. For example, GHZ entanglement up to
eight photons [29,30] and cluster states up to eight photons [31]
have been successfully generated. Several on-demand gener-
ation schemes were proposed theoretically [35,36] and are
expected to be realized, e.g., based on semiconductor quantum
dots [37].

V. CONCLUSIONS

We have presented a detailed scheme for nearly deter-
ministic Bell measurement using multiphoton entanglement

and linear optics proposed in Ref. [13]. The limitation
that only two of four Bell states can be identified by the
standard Bell measurement Bs is overcome by the GHZ
type of multiphoton entanglement and N times of Bs mea-
surements, where N is the number of photons in a logical
qubit. The logical Bell measurement is performed through
N times of Bs measurements, and it fails only when none
of those N times of Bs measurements succeeds. Therefore,
the success probability of the logical Bell measurement is
given as 1 − 2−N , which rapidly approaches unity as N

increases.
We have compared the efficiency of our scheme with those

of other previous schemes proposed to improve the success
probabilities of Bell measurement based on linear optics;
several schemes were proposed based on single-photon qubits
[6–8,14] or other optical qubits such as coherent state [9,10]
and optical hybrid qubits [11]. We showed that our scheme
outperforms other schemes employing single-photon qubits,
with respect to the attained success probability in terms of the
average number of photons used in the process. Although the
scheme using coherent-state or optical hybrid qubits achieves
a higher success probability than ours by consuming the same
number of photons on average, a considerable advantage of our
scheme over all the other schemes is that it does not require
photon number resolving detections but only photon on-off
detection suffices.

We have demonstrated that our scheme can be effectively
used for the implementation of quantum teleportation and all-
optical quantum computation. The success probability of quan-
tum teleportation increases rapidly to unity as increasing N , the
number of photons in the qubit and channel states. We showed
that in our approach fault-tolerant quantum computation is
possible under photon losses. It is remarkable that the highest
noise threshold is obtained with four-photon encoded qubits
and eight-photon entangled channels that are accessible within
current technologies [34]. For example, eight-photon GHZ
entangled states have been recently generated successfully in
optics laboratories [29,30].

Interestingly, our Bell measurement scheme can be im-
plemented via either spatially or temporally distributed and
independent N times Bs measurements. Such an experiment
may be considered not only with spatially separated N -mode
entangled states but also with temporal mode entanglement as
done in Refs. [38–40]. For a temporally distributed implemen-
tation, only one standard Bell measurement device, illustrated
in Fig. 1(a) [4], will be sufficient to perform independent N

times of Bs measurements for a logical Bell measurement. We
finally note that our idea for a distributed Bell measurement
scheme, in principle, is not limited to photonic qubits but can be
applied to any multipartite systems with other physical degrees
of freedom. Our work reveals the possibility of using multi-
partite entanglement for efficient quantum communication and
computation.
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