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Optomechanics is currently believed to provide a promising route towards the achievement of genuine quantum
effects at the large, massive-system scale. By using a recently proposed figure of merit that is well suited to address
continuous-variable systems, in this paper we analyze the requirements needed for the state of a mechanical
mode (embodied by an end-cavity cantilever or a membrane placed within an optical cavity) to be qualified as
macroscopic. We show that according to the phase-space-based criterion that we have chosen for our quantitative
analysis, the state achieved through strong single-photon radiation-pressure coupling to a quantized field of light
and conditioned by measurements operated on the latter might be interpreted as macroscopically quantum. In
general, though, genuine macroscopic quantum superpositions appear to be possible only under quite demanding
experimental conditions.
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I. INTRODUCTION

The superposition principle is one of the most distinctive
features of quantum mechanics. It is at the basis of phenomena
such as entanglement and is at the core for the speedup
of quantum computation and the superiority of quantum
communication schemes over their classical counterpart.

The strenuous experimental efforts produced in the last
50 years have certified the possibility to engineer coherent
superpositions in a number of physical systems, from all-
optical to solid-state and cold-atom ones. Recent landmarks in
such endeavors are embodied by the generation of small-scale
Schrödinger-cat-like states [1–4]. Yet, despite the exciting
experimental progress made in this context, we are still facing a
rather disappointing lack of tests of the validity of the quantum
superposition principle at the genuine meso- and macroscopic
scale [5].

Notwithstanding such bottlenecks, there is great interest
in engineering quantum superpositions of macroscopically
distinct states for both technological and foundational reasons.
Among the various platforms that have been put forward so far
to achieve such goal [5], a potentially very promising candidate
is provided by the framework of cavity optomechanics [6],
which offers unprecedented possibilities to induce strong
nonclassical features in a massive mechanical system by
means of radiation pressure, combined with perspectives for
achieving quantum control at the mesoscopic scale through
hybrid settings [7]. However, a rigorous assessment of such
optomechanical route towards macroscopic superpositions is
still lacking.

In this paper, we investigate the possibilities for the
generation of genuinely macroscopic quantum superpositions
offered by cavity optomechanics. We analyze both a linear and
a quadratic coupling of the intensity of a cavity field with the
position of a mechanical oscillator, which are configurations
that have been thoroughly explored experimentally [6]. We
assume both the single-photon optomechanics condition and
the intense-driving one. While the first embodies a desideratum
that is currently pursued experimentally, the second adheres

very well to current experimental state-of-the-art working
regimes. As a figure of merit for quantum macroscopicity, we
employ a recently proposed phase-space measure [8], which
is based on a phase-space analysis of the state of harmonic
oscillators. So far, various measures for quantum macroscop-
icity have been proposed [8–22]. Other than the one chosen
for our study [8], the approach suggested by Nimmrichter
and Hornberger [5,19] can also be applied to optomechanical
systems. However, their measure is suitable mainly to compare
different experimental approaches rather than to compare
quantum states per se produced at fixed timings [23]. The
various measures put forward so far appear to capture different
aspects and definitions of macroscopic quantumness. The one
adopted here allows for a fair comparison between states of an
optomechanical system achieved by varying the optomechan-
ical coupling strength (at set values of all the other parameters
that set a given working point). We show that in the single-
photon optomechanical scenario, quantum superpositions that
are deemed to be macroscopic in nature by the quantifier that
we use can be engineered under conditions of very strong
coupling and accurate postselection of the mechanical state
following homodyning of the cavity field that drives its motion.

The remainder of this paper is organized as follows.
Section II addresses the case of the coupling between the
intensity of a cavity field and the position of a mechanical
oscillator. Section III extends such analysis to the coupling to
the square of the mechanical system’s position. In Sec. IV, we
study the effects of both cavity losses and mechanical damping
on the results achieved in Sec. II, thus providing a benchmark
for experimentally realistic conditions. Finally, in Sec. V we
draw our conclusions.

II. LINEAR-COUPLING CONFIGURATION

Let us start considering the standard description of the
radiation-pressure coupling between the field of an optome-
chanical cavity and a highly reflecting vibrating end-cavity
cantilever. The system is described quantum mechanically by
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the Hamiltonian [24]

Ĥ = �ω0â
†â + �ωmb̂†b̂ − �gâ†â(b̂ + b̂†), (1)

where ωm (ω0) is the frequency of the mechanical mode
(cavity field) and b̂,b̂† (â,â†) are its bosonic annihilation and
creation operators. In Eq. (1), g = (ω0/L)

√
�/(2mωm) is the

optomechanical coupling rate. For this first part of our analysis,
we assume ideal operating conditions—namely, we neglect
losses and describe the dynamics unitarily. This idealization
satisfactorily models a system in the strong single-photon
optomechanical coupling regime, i.e., when g � κ,γm in
which κ is the photon loss rate of the cavity field and γm

is the mechanical damping rate. While such condition has not
yet been met experimentally, significant progress in this sense
is currently ongoing [6]. Moreover, such assumption embodies
the “best possible scenario” and, as such, it allows us to bench-
mark our analysis. We stress that a study of experimentally
realistic conditions is reported later on in this paper.

The time-evolution operator generated by Ĥ can be put into
the form [25]

Û (t) = e−ira†at eik2(a†a)2(t−sint)eka†a(ηb†−ηb)e−ib†bt , (2)

where we have introduced the dimensionless parameters t =
ωmτ , η = (1 − e−it ), k = g/ωm, and r = ω0/ωm. Here, τ is
the actual duration of the evolution. The initial state of the
system is taken to be ρ0 = |α〉〈α|c ⊗ ρ th

m , with |α〉c a coherent
state of the cavity field and ρ th

m a displaced thermal state
of the mechanical mode at temperature T . The cavity field
state is realized by driving the resonator with an external
coherent pump, while the mechanical oscillator is assumed
to be a displaced state thermalized to the temperature of its
phononic environment. Considering the quantum phase space
of the mechanical system and using the P quasiprobability
distribution of the latter, we have

ρ th
m =

∫
P th(β)|β〉〈β|md2β (β ∈ C), (3)

with P th(β) = e−|β−β0|2/n/(πn), β0 the amplitude of

the mechanical displacement, and n = (e
�ωm
KB T − 1)−1 the

mean phonon number (KB is the Boltzmann con-
stant). The evolved state of the whole system is thus∫

P th(β)[Û (t)|α,β〉〈α,β|c,mÛ †(t)]d2β, with

Û (t)|α,β〉c,m = e− |α|2
2

∑
n

αn

√
n!

eik2n2(t−sin t)|n,ϕn(t)〉c,m, (4)

where |ϕn(t)〉m are coherent states of the mechanical oscillator
with amplitude ϕn(t) = βe−it + kn(1 − e−it ). For T = 0, the
analysis in Ref. [25] revealed that owing to the large entangle-
ment established between the mechanical mirror and the cavity
field at t = π , a suitable homodyne measurement performed
over the field prepares the mirror in a superposition of well-
distinguishable coherent states. In particular, by projecting
the cavity field into the eigenstate corresponding to the zero
of the position quadrature and taking α = 0.8 and β0 = 2,
the conditional state |ψ(t)〉m of the mechanical mirror has an
associated Wigner function showing substantial coherences,
as revealed by the well-resolved ripples in the plot of Fig. 1(a).
The chosen values of α and β0 were demonstrated in Ref. [25]
to be optimal for the production of a cat-like state. The initial
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FIG. 1. (Color online) (a) Wigner function of the conditional
state of the mechanical mirror achieved by projecting the cavity
field into the origin of the phase space. (b) Measure of quantum
macroscopicity I and mean number of phonons M in the conditional
mechanical state, plotted against the (dimensionless) coupling rate k.
The inset is for k ∈ [0,5]. In both panels, we have taken T = 0, α =
0.8, β0 = 2, and t = π . The Wigner function in (a) has been evaluated
using k = 1. All of the quantities being plotted are dimensionless.

state of the system could be prepared by exploiting a competing
coupling between the mechanical mode at hand and a second
field, addressing it from the back and de facto canceling the
optomechanical coupling under scrutiny here. This allows for
the preparation of a state of the required form [26]. In fact, the
mechanical state resulting from the competition of the two op-
tomechanical coupling mechanisms is very close to the thermal
state of its free Hamiltonian [26]. Turning off the competing
coupling for a time τ would result in the effective switching on
of the optomechanical interaction for the needed time interval.

To address how macroscopic such quantum superposition
state is, we now employ the measure introduced in Ref. [8],
which is fundamentally based on the extent of such ripples,
and thus evaluate the quantity

I = Max

[
0,

1

2π

∫
d2ξ (|ξ |2 − 1)|χm(ξ )|2

]
, (5)

where χm(ξ ) = m〈ψ(t)| D̂m(ξ )|ψ(t)〉m is the Weyl charac-
teristic function of the conditional mechanical state, D̂m(ζ )
is the displacement operator, and ξ ∈ C. It can be shown
that I � M, where M = Tr[b̂†b̂ρm(t)] is the mean phonon
number at time t and ρm(t) is the corresponding reduced
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FIG. 2. (Color online) (a) [(b)] Measure of quantum macroscopicity [Average number of phonons] for the conditional state of a mechanical
mode obtained taking α = 0.8, β0 = 0 and projecting the cavity field onto the origin of its phase space. From bottom to top [top to bottom] curve,
we have n = 0.1,10−2, and 10−4, respectively. (c) Maximum degree of macroscopicity in the conditional state of an end-cavity mechanical
oscillator, plotted against the mean occupation number n of the initial mechanical state. We have taken k = 0.7 and α = 0.8. All the quantities
being plotted are dimensionless.

state of the mechanical mode. As discussed in Ref. [8], a
nonzero value of I is an indicator of quantum macroscopicity.
Needless to say, the larger the value of I, the more pronounced
is the macroscopic character of the state under scrutiny. A fully
consistent framework for the study of macroscopicity is still
lacking: at present, various proposals for the quantification of
the macroscopic character of the state of a quantum system
have been put forward [8–22]. Yet, a systematic and rigorous
approach to the definition of macroscopic quantumness has
only recently been presented [27], highlighting the need for
objective criteria that any bona fide measure should satisfy. The
quantity I proposed in Ref. [8] and used throughout this paper
combines handiness of calculation [cf. Eq. (5)], as it relies on
the easily accessible Wigner function of a given state, and a
clear physical interpretation, since it is linked directly to the
rate of change of the purity of a given quantum system [8].

In Fig. 1(b), we show the behavior of the quantum
macroscopicity measure I and the mean number of phonons
M against the dimensionless coupling rate k for T = 0 (so
that the mechanical system is initially prepared in a coherent
state of amplitude β0), and the same working point used to plot
the Wigner function of Fig. 1(a). As a quantitative benchmark,
we compare the value of I achieved in our case with what
would be obtained using a Schrödinger cat state of the
form |C〉 = N (|α0〉 + |−α0〉), with |±α0〉 a coherent state of
amplitude α0 ∈ R and N a normalization factor. This class of
states saturate the upper bound set to I, i.e., they are such that
I = M and embody a significant milestone. Quantitatively, a
|C〉 state achieves a value of quantum macroscopicity IC for an
amplitude α0 satisfying the condition tanh(α2) = IC/α2

0. At
β0 = 2 with α = 0.8, T = 0, and k = 1, which would imply a
coupling strength of the order of the mechanical frequency, the
conditional mechanical state achieved by projecting the state
of the cavity field onto the origin of the phase space achieved a
degree of quantum macroscopicity, I � 1.49. A state |C〉 with
such value of quantum macroscopicity would require coherent
states of amplitude α0 � 1.27, which would hardly qualify
the corresponding cat-like state as macroscopic. Only values
of the coupling strength k � 10 would correspond to degree
of quantum macroscopicity comparable with sizable cat-like
states, as amplitudes α0 � 10 would be correspondingly
required. Moreover, as the single-photon optomechanical
coupling strength depends on 1/

√
m, mechanical systems of

large mass give rise to small values of k. This is intuitive,

as more photons would be needed to put in motion an
oscillator of large mass. By fixing the density of the material
used to fabricate the mechanical oscillator, then, similar
considerations hold for its size.

In the foregoing analysis, the zero-temperature assumption
for the mechanical mode is rather stringent. Although exper-
imental success in the cooling of a mechanical mode all the
way down to its ground state have been reported recently [28],
this is still a very challenging task, in particular if combined
with the need for control over the cavity field as well. We have
thus relaxed such assumption to study the impact that a nonzero
temperature would have on the degree of macroscopicity of the
system. As our results turn out to be independent of the initial
displacement of the mechanical mirror, in our calculations we
have set β0 = 0 and computed the thermal-averaged quantities
χth(ζ ) = ∫

d2βP th(β)χm(ξ )|β0=0, which in turn allows us to
evaluate the corresponding macroscopicity measure I and
the thermal occupation number Mth = ∫

d2βP th(β)M. The
results are reported in Figs. 2(a) and 2(b), where it can be seen
that by smearing out coherences, the increasingly thermal char-
acter of the mechanical state reduces the degree of quantum
macroscopicity, rendering it no longer a monotonic function
of the coupling strength k (this is due to the fact that Mth

increases with k, while I does not). We have thus performed a
scaling analysis of the macroscopicity measure at a value of the
coupling strength that is large enough to induce strong single-
photon optomechanical effects, yet somehow foreseeable, and
against the mean thermal occupation number n which is related
to temperature [cf. Fig. 2(c)], finding that the highest temper-
ature allowing for a significant value of I for a mechanical
oscillator with ωm = 1 MHz is as small as 1 μK. Above such
threshold, although coherences might be established, the latter
are not strong enough to qualify the quantum-mechanical state
as macroscopic according to the measure considered here.

III. QUADRATIC COUPLING CONFIGURATION

We now modify the configuration of our thought experiment
and consider the setting where a partially reflecting structure
is placed within the volume of a fixed-boundary cavity. Under
proper arrangements, such configuration gives rise to an overall
quartic Hamiltonian of the form [29]

Ĥ = �ω0â
†â + �ωmb̂†b̂ − �gâ†â(b̂ + b̂†)2, (6)
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FIG. 3. (Color online) (a) Behavior of the degree of squeezing ζ (n) for n = 0 and n = 1 against the dimensionless coupling strength
k = g/ωm at τ = π . (b) Distribution of the probability amplitudes in the state of the membrane achieved when taking α = 0.7, x = 1, k = 1,
t = π . (c) Wigner function associated with the state |ψ ′

π 〉 � N (|0〉 + |ζ (1)〉) of the mechanical system for a value of k such that |ζ (1)| = 2.
(d) Measure of macroscopicity and mean phonon number plotted against the degree of squeezing ζ = |ζ (1)|. Only at large degrees of squeezing
is the state of the mechanical system macroscopically coherent. All the quantities being plotted are dimensionless.

a possibility that has been demonstrated experimentally in
Ref. [30]. As a result of such coupling, the mechanical system
undergoes squeezing by a degree that depends on the number
of photons in the cavity field. For a cavity initially prepared in
a coherent state |α〉 and the membrane in its vacuum state (i.e.,
for a ground-state cooled mechanical oscillator), it is possible
to prove that the time-evolved state reads [31]

|ψ(t)〉 =
∞∑

n=0

c(n,t)|n〉c|ζ (n)〉m, (7)

where c(n,t) = αne− 1
2 (|α|2+iη)/

√
n!, |ζ (n)〉 is a single-

mode squeezed state of squeezing degree ζ (n) =
ieiηarcsinh( 2kn sinχ t

χ
), and η = arctan( ρ

2χ
tan χt) with χ =√

1 + 4kn, ρ = −2(1 + 2kn) and, as before, k = g/ωm.
As for the previous configuration, we seek to enforce

mechanical coherence by performing a suitable projective
measurement on the light. Following the same lines high-
lighted before, we homodyne the field, postselecting the
outcome corresponding to a projection onto the the quadrature
eigenstate |x〉. The correspondingly reduced state of the
mechanical system reads (for α ∈ R)

|ψ ′
t 〉 = N

∞∑
n=0

αn

4
√

π

e− x2

2 − α2

2 +iη

√
2nn!

Hn(x)|ζ (n)〉, (8)

where N is a normalization factor and Hn(x) are Hermite
polynomials of order n. We now aim at identifying the con-
ditions that make |ψ ′

t 〉 a coherent superposition of two highly
distinguishable squeezed states. As the energy of a squeezed
state is directly proportional to the degree of squeezing, we
would like the latter to be sufficiently large. For this, we need
to understand the behavior of the degree of squeezing |ζ (n)|,
which is plotted against the interaction strength k and for
n = 0,1 in Fig. 3(a). A quick numerical optimization over
the other parameters entering Eq. (8) shows that for x = 1,
α = 0.7, and t = π , we have c(0,π ) � c(1,π ), with c(n �
2,π ) being negligibly small [cf. Fig. 3(b)], and thus |ψ ′

π 〉 �
N (|0〉 + |ζ (1)〉) with N 2 = √

cosh ζ (1)/[2 + 2
√

cosh ζ (1)].
The Wigner function associated with such state is shown in
Fig. 3(c). An explicit calculation yields

I = M =
√

cosh ζ (1)[sinh ζ (1)]2

2[1 + √
cosh ζ (1)]

, (9)

implying that the measure of macroscopicity saturates its upper
bound. However, as said, this is not sufficient to claim for the
macroscopic character of the quantum superposition and the
actual values of I and M need to be considered. Figure 3(d)
displays both of them against the degree of squeezing ζ =
|ζ (1)|. Clearly, they become significant only for values of
ζ � 2, which in turn requires k � 17. Such conditions are
currently technologically prohibitive, thus forcing us to con-
clude that even for the quartic Hamiltonian coupling under
scrutiny here, no macroscopic superposition of mechanical
states of motion can be engineered without either dramatically
improving the technology or adopting a different strategy to
enforce quantum superpositions.

IV. LINEAR-COUPLING OPEN-SYSTEM CASE

Although it is instrumental in providing insight into the
difficulties of producing genuinely macroscopic mechanical
superposition states, the approach above retains elements of
ideality that set it apart from the current experimental reality.
Therefore, in order to adhere more closely to the situations
currently addressed in an optomechanics laboratory, here we
analyze the degree of macroscopicity of the mechanical state
produced upon implementing a strategy analogous to the one
described above when all sources of noise are included and
the assumption of large single-photon optomechanical rate is
relaxed.

A quantitative analysis performed by making use of a
quantum Langevin equations approach [32] shows that upon
postselection of the mechanical state following the projection
of the cavity field onto the origin of the phase space, no
macroscopic character is displayed. Let us sketch the formal
steps towards such conclusions.

The dynamical equation for a driven optomechanical cavity
in the case of a linear coupling of the cavity field to the position
of the mechanical oscillator reads

˙̂q = ωmp̂, ˙̂p = −ωmq̂ − γmp̂ − gâ†â + ε̂,
(10)

˙̂a = −(κ + i�0)â − igâq̂ + E +
√

2κâin.

Here, q̂ = (b̂† + b̂)/
√

2 and p̂ = i(b̂† − b̂)/
√

2 are the dimen-
sionless position and momentum quadratures for the mirror,
ain is the vacuum radiation input noise to the cavity, E is
the strength of the coupling between the pump (at frequency
ωL and the cavity), ε̂ is a noise operator that accounts for
the Brownian motion undergone by the mechanical oscillator
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FIG. 4. (Color online) We show the measure of macroscopicity I
and the mean phonon number M against the cavity-pump detuning
�0 for γm/2π = 100 Hz, ωm/2π = 10 MHz, κ = 88 MHz, ε = 6 ×
1012 Hz, and a mechanical system of 5 ng mass in a cavity of 1 mm
length. The external pump has frequency ωL/2π = 3.7 × 1014 Hz
and the operating temperature is taken to be the rather optimistic
value of 0.4 K. Both I and M are dimensionless.

(which is in contact with a bath of phononic modes at
temperature T ), and �0 is the pump-cavity detuning. For an
intense pumping field, the cavity field and mechanical system
fluctuate quantum mechanically around classical stationary
values of their amplitude and position, respectively. This
allows us to consider only the quantum fluctuations δu of
the operators û = (q̂,p̂,â,â†) entering Eqs. (10). This leaves
us with a new set of equations whose solution, achieved as
illustrated in Refs. [32–34], allows for the analytic calculation
of the steady-state covariance matrix of the system [34,35],
which is defined as

Vij = 1
2 [〈δui(∞)δuj (∞) + δuj (∞)δui(∞)〉]. (11)

In this context, one can easily incorporate the effects that
conditional measurements over the state of the light field have
on the mechanical state. For instance, the covariance matrix of
the mechanical system

Vm =
(

V11 V12

V21 V22

)
(12)

is modified by a homodyne measurement performed over the
cavity field as [36]

V ′
m = Vm − Vc(�Vf �)−1V T

c (13)

with

� =
(

1 0
0 0

)
, Vf =

(
V33 V34

V43 V44

)
, Vc =

(
V13 V14

V23 V24

)
.

(14)

In turn, this allows for the evaluation of the Weyl characteristic
function associated with the conditional state of the mechanical
system as χ (ζ ) = e− 1

2 ζV ′
mζT

, with ζ the complex phase-
space variable, and thus the calculation of the measure of
macroscopicity. A typical plot of both I and M against the
experimentally adjustable parameter �0 is presented in Fig. 4
for a set of parameters very close to what can be currently
achieved in quantum optomechanics laboratories.

Clearly, the state resulting from homodyning the field that
has interacted with the mechanical system shows no macro-
scopic quantumness, when the figure of merit embodied by I is
considered. While the mean number of phonons populating the
state of the mechanical system is nonzero for all values of �0

considered, the measure of macroscopicity is identically null.
We have performed a similar study for the case of quadratic
coupling to the position of the mechanical oscillator, finding
again no macroscopically quantum character.

V. CONCLUSIONS

We have explored the possibility to enforce macroscopic
quantum coherence in the state of a mechanical system driven
by light. By analyzing two optomechanical coupling models
currently at the core of extensive experimental investigations,
and armed with the tools provided by the measure proposed
in Ref. [8], we have demonstrated the necessity of large or
ultralarge single-photon optomechanical coupling strengths
and postselection for the sake of producing significant degrees
of macroscopicity.

We believe that despite the somehow negative character of
such surprising results, useful information can nevertheless be
gathered from our analysis. In particular, our findings would
point the current experimental efforts towards the direction
aimed at achieving truthful macroscopic mechanical states.
Such endeavors will have to be focused on the achievement
of large single-photon optomechanical couplings, and the
implementation of conditional strategies able to “extract”
coherence of a macroscopic nature from the state of
the mechanical systems used in typical optomechanical
experiments. In this respect, our future investigations will
address the possibilities offered by pulsed optomechanics [37],
which implements effective homodyne measurements on the
mechanical device and could be useful in generating sizable
macroscopic quantum states.
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