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Bell-inequality tests using asymmetric entangled coherent states in asymmetric lossy environments
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We study an asymmetric form of the two-mode entangled coherent state (ECS), where the two local amplitudes
have different values, as a tool for testing the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality. We find
that the asymmetric ECSs have obvious advantages over the symmetric form of ECSs in testing the Bell-CHSH
inequality. We further study an asymmetric strategy in distributing an ECS over a lossy environment and find
that such a scheme can significantly increase violation of the inequality.
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I. INTRODUCTION

Entangled coherent states (ECSs) in free-traveling fields
[1–3] have been found to be useful for various applications
such as Bell-inequality tests [4–17], tests for nonlocal real-
ism [18,19], quantum teleportation [20–24], quantum com-
putation [25–31], precision measurements [32–39], quantum
repeater [40], and quantum key distribution [41]. ECSs can be
realized in various systems that can be described as harmonic
oscillators and numerous schemes for their implementation
have been suggested [1–3,42–46]. An ECS in a free-traveling
field was experimentally generated using the photon subtrac-
tion technique on two approximate superpositions of coherent
states (SCSs) [47]. A proof-of-principle demonstration of
quantum teleportation using an ECS as a quantum channel
was performed [48].

So far, most of the studies on ECSs have considered
symmetric types of two-mode states where the local am-
plitudes have the same value. Since ECSs are generally
sensitive to decoherence due to photon losses in testing
Bell-type inequalities [6], it would be worth investigating the
possibility of using an asymmetric type of ECS to reduce
decoherence effects. In fact, asymmetric ECSs can be used to
efficiently teleport an SCS [27,48] and to remotely generate
symmetric ECSs [49] in a lossy environment. In addition to
the asymmetry of the ECSs, as a closely related issue, it would
be beneficial to study strategies for distributing the ECSs
over asymmetrically lossy environments. In this paper, we
investigate asymmetric ECSs as well as asymmetric entangle-
ment distribution strategies, and find their evident advantages
over symmetric ones for testing the Bell-Clauser-Horne-
Shimony-Holt (Bell-CHSH) inequality [50] under various
conditions.

The remainder of the paper is organized as follows. In
Sec. II, we discuss the Bell-CHSH inequality tests using
asymmetric ECSs with ideal detectors. We consider photon
on-off detection and photon number parity detection for the
Bell-CHSH inequality tests. Section III is devoted to the study
of decoherence effects on Bell-inequality violations with an
asymmetric strategy to share ECSs. We then investigate the
effects of inefficient detectors in Sec. IV, and conclude with
final remarks in Sec. V.
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II. BELL-INEQUALITY TESTS WITH ASYMMETRIC
ENTANGLED COHERENT STATES

In this paper, we are interested in a particular form of two-
mode ECSs

|ECS±〉 = N±(|α1〉 ⊗ |α2〉 ± |−α1〉 ⊗ |−α2〉), (1)

where |±αi〉 are coherent states of amplitudes ±αi for
field mode i, and N± = [2 ± 2 exp(−2α2

1 − 2α2
2)]−1/2 are the

normalization factors. We note that amplitudes α1 and α2 are
assumed to be real without loss of generality throughout the
paper. The ECSs show noticeable properties as macroscopic
entanglement when the amplitudes are sufficiently large and
these properties have been extensively explored [9,15,51,52].
It is worth noting that there are studies on other types of
ECSs such as multidimensional [53], cluster-type [54–56],
and multi-mode [57], and the generalization of ECSs with
thermal-state components [9,58], while we focus on two-mode
ECSs in free-traveling fields in this paper.

We call |ECS+〉 (|ECS−〉) the even (odd) ECS because it
contains only even (odd) numbers of photons. When α1 = α2,
we call the states in Eq. (1) symmetric ECSs, and otherwise
they are called asymmetric ECSs. It is straightforward to show
that an ECS can be generated by passing an SCS in the form of
|α〉 ± |−α〉 [59], where α2 = α2

1 + α2
2, through a beam splitter.

A beam splitter with an appropriate ratio should be used to
generate an asymmetric ECS with the desired values of α1 and
α2. In this paper, asymmetric ECSs with various values of α1

and α2 are compared for given values of α. The average photon
numbers of the ECSs are solely dependent on the values of α

and are simply obtained as

n̄± = 〈ECS±|n̂|ECS±〉 = α2(1 ∓ e−2α2
)

1 ± e−2α2 , (2)

where n̂ = n̂1 + n̂2 and n̂i is the number operator for field
mode i.

A. Bell-CHSH tests with photon on-off measurements

We first investigate a Bell-CHSH inequality test using
photon on-off measurements with the displacement opera-
tions. A Bell-CHSH inequality test requires parametrized
measurement settings of which the outcomes are dichotomized
to be either +1 or −1 [50]. In the simplest example of a
two-qubit system, a parametrized rotation about the x axis
followed by a dichotomized measurement in the z direction
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is used. In our study, the displacement operator that is known
to well approximate the qubit rotation for a coherent-state
qubit [7,26] is used for parametrization. The displacement
operator can be implemented using a strong coherent field
and a beam splitter with a high transmissivity. Together with
the displacement operator, the photon on-off measurement
is experimentally available using current technology with
an avalanche photodetector [60] in spite of the issue of the
detection efficiency. We shall analyze the effects of the limited
detection efficiency in Sec. IV.

The photon on-off measurement operator for mode i is
defined as

Ôi(ξ ) = D̂i(ξ )

( ∞∑
n=1

|n〉 〈n| − |0〉 〈0|
)

D̂
†
i (ξ ), (3)

where D̂i(ξ ) = exp[ξ â
†
i − ξ ∗âi] is the displacement operator

and |n〉 denotes the Fock state. The correlation function is
defined as the expectation value of the joint measurement

EO(ξ1,ξ2) = 〈Ô1(ξ1) ⊗ Ô2(ξ2)〉, (4)

and the Bell-CHSH function is

BO = EO(ξ1,ξ2) + EO(ξ ′
1,ξ2) + EO(ξ1,ξ

′
2) − EO(ξ ′

1,ξ
′
2).

(5)

In any local realistic theory, the absolute value of the Bell-
CHSH function is bounded by 2 [50].

We calculate an explicit form of the correlation function
EO(ξ1,ξ2) using Eqs. (3) and (4), of which the details are
presented in in Appendix A. We then find the Bell-CHSH
function BO using Eq. (5) and its absolute maximum values
|BO |max over the displacement variables ξ1, ξ ′

1, ξ2, and
ξ ′

2 together with n̄±, α1, and α2. It requires a numerical
multivariable maximization method, and we use the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [61] throughout
this paper.

The optimized Bell-CHSH functions against the average
photon numbers n̄± for |ECS±〉 are presented in Fig. 1, while
Fig. 2 shows how asymmetric the ECSs become in order to
maximize the Bell violations. The solid curves show the results
for symmetric ECSs while the dotted curves correspond to
general cases (asymmetric ones). The Bell-CHSH functions
are numerically optimized over all displacement variables and
amplitudes under the condition of Eq. (2). The Bell violations
occur for both the even and odd ECSs regardless of the values
of n̄±, which is consistent with the results in Ref. [7]. The
odd ECS, |ECS−〉, violates the inequality more than the other
one, |ECS+〉, for a given average photon number. The Bell-
CHSH function for state |ECS−〉 reaches up to |BO |max ≈
2.743 while the maximum Bell-CHSH function for |ECS+〉 is
|BO |max ≈ 2.131. This is because the odd ECS is maximally
entangled regardless of the value of n̄− [22,62] and the on-off
measurement can effectively reveal the nonlocality of the ECSs
when the amplitudes are small [7].

It is obvious from Fig. 1 that one can increase the amount
of violations by using the asymmetric ECSs for certain
regions of n̄±. In the case of state |ECS−〉, this difference
appears for n̄− � 1.43. This difference in the optimized
Bell-CHSH function reaches its maximum value of ≈0.053
for n̄− ≈ 2.24. For this value of n̄−, the symmetric ECS gives
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FIG. 1. (Color online) Optimized Bell-CHSH function against
the average photon number for (a) |ECS+〉 and (b) |ECS−〉 using
photon on-off measurements. The solid curves indicate Bell-CHSH
functions optimized over the displacement variables ξ1, ξ ′

1, ξ2, and
ξ ′

2 for the symmetric ECSs (α1 = α2 = α/
√

2). The dotted curves
indicate the optimized Bell-CHSH functions with asymmetric ECSs.
In the latter case, in addition to the displacement variables, amplitudes
α1 and α2 are also optimized under the condition in Eq. (2).

|BO |max ≈ 2.135 for α1 = α2 ≈ 1.04 while the asymmetric
ECS yields |BO |max ≈ 2.189 for α1 ≈ 1.26 and α2 ≈ 0.77.
The even ECS also shows a small increase of the violation
when an asymmetric ECS is used in place of the symmetric
ECS for n̄+ � 2.83. The maximum difference is ≈ 0.007 when
n̄+ ≈ 3.93.

To further investigate the advantages of the asymmetric
ECS, we plot the optimized Bell-CHSH function |BO |max
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FIG. 2. (Color online) Optimized Bell-CHSH function |BO |max

using photon on-off measurements as a function of amplitudes α1

and α2 for |ECS−〉. For each point of α1 and α2, the Bell-CHSH
function is optimized over the displacement variables. The blue line
indicates the states that show the maximum Bell violations among
the states for the same average photon numbers.
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as a function of α1 and α2 for |ECS−〉 in Fig. 2. The
blue line indicates the point for the maximum Bell-CHSH
function for each value of n̄−. The unsmooth change in the
blue line at α1 = α2 ≈ 0.77 (n̄− ≈ 1.43) results from the
numerical optimization process where local maximum values
are compared with changes of related parameters, i.e., the
displacement variables and amplitudes. We note that such
comparisons among local maxima at a number of different
parameter regions lead to unsmooth changes in several plots
throughout this paper [63]. In fact, the blue line splits to two
symmetric curves from the point of n̄− ≈ 1.43, according to
our numerical calculation (which is obvious because α1 and
α2 are simply interchangeable), while we plot only one of the
curves for convenience.

The results in Figs. 1 and 2 shows that when the average
photon number is relatively large, the asymmetric ECS
outperforms the symmetric one in testing the Bell-CHSH
inequality with photon on-off measurements and displacement
operations. On the other hand, when the average photon num-
ber is small, the symmetric ECS gives larger Bell violations.

B. Bell-CHSH tests with photon number parity measurements

We now consider the photon number parity measurements
with the displacement operators for both modes. Here we use
the displacement operator again in order to approximate a
parametrized rotation for a coherent-state qubit in the Bell-
CHSH test. The displaced parity measurement is given by

�̂i(ξ ) = D̂i(ξ )
∞∑

n=0

(|2n〉 〈2n| − |2n + 1〉 〈2n + 1|)D̂†
i (ξ ),

(6)

where i ∈ {1,2} denotes each mode and the correlation
function is

E�(ξ1,ξ2) = 〈�̂1(ξ1) ⊗ �̂2(ξ2)〉 , (7)

with which the Bell-CHSH function B� can be constructed
using Eq. (5). We have obtained and presented an explicit
form of the correlation function in Appendix A.

The optimized Bell-CHSH functions are plotted for varying
n̄± using parity measurements in Fig. 3. In contrast to the
on-off measurement case, the optimized Bell-CHSH functions
increase monotonically toward Cirel’son’s bound [64], 2

√
2,

for both even and odd ECSs as shown in the figure. These
results are consistent with previous studies [6,7]. As explained
in Ref. [7], the reason that the Bell-CHSH violation increases
monotonically in the case of the parity measurement but not
in the case of the on-off measurement can be explained as
follows. When the average photon number of the symmetric
ECS is sufficiently large, it can be represented as a maximally
entangled two-qubit state in a 2 ⊗ 2 Hilbert space spanned by
the even and odd SCS basis (|α〉 ± |−α〉) and the displacement
operator well approximates the qubit rotation. Therefore,
in this limit, the violation approaches the maximum value,
2
√

2, with the parity measurement that perfectly discriminates
between the even and odd SCSs. In contrast, the photon number
on-off measurement cannot cause Bell violations for large
amplitudes because the vacuum weight in the state almost
vanishes in the limit of α � 1 [7].
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FIG. 3. (Color online) Optimized Bell-CHSH functions using
photon number parity measurements against average photon number
of (a) the even ECS and (b) the odd ECS. The solid curves show
the optimization results for the symmetric form of ECS. The dotted
curves are the results for the general form of ECSs. Like the on-off
measurement case, we optimized the displacement variables and
amplitudes for each setting.

As implied by the apparent overlaps between the cases of
symmetric ECSs (solid curve) and those of the asymmetric
ECSs (dotted), our numerical investigations show that unlike
the case with on-off measurements, the asymmetric ECSs
do not show any larger Bell violations. Figure 4 shows the
optimized Bell-CHSH function of |ECS+〉 for amplitudes α1

and α2. The blue line in the figure indicates the states with
which the maximum violations are obtained for the same
average photon numbers. The figure shows that the asymmetry
of the amplitudes does not improve the amount of violations
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FIG. 4. (Color online) Optimized Bell-CHSH function for
|ECS+〉 using photon number parity measurements. We optimize the
Bell-CHSH function for amplitudes α1 and α2 with all displacement
variables, and find that the function is optimized when α1 = α2.
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in the case of the parity measurement. We conjecture that
the symmetric structure of the parity measurement is closely
related to this result.

III. BELL-CHSH INEQUALITY TESTS UNDER
DECOHERENCE EFFECTS

In this section, we consider decoherence effects on Bell
nonlocality tests using an ECS. We will study the Bell-CHSH
inequality violation using a general form of ECS and compare
it to the result with a symmetric ECS for both on-off and parity
measurements.

A. Symmetric and asymmetric strategies
for entanglement distribution

In the presence of photon loss, the time evolution of a
density operator ρ is described by the master equation as [65]

∂ρ

∂τ
= Ĵ ρ + L̂ρ, (8)

where τ is the interaction time, and the Lindblad super-
operators Ĵ and L̂ are defined as Ĵ ρ = γ

∑
i âiρâ

†
i and

L̂ρ = −γ /2
∑

i(â
†
i âiρ + ρâ

†
i âi) with a decay rate γ .

We consider two different strategies, i.e., symmetric (A)
and asymmetric (B) ones, when distributing an ECS over a
distance to Alice and Bob as illustrated in Fig. 5. In the case of
strategy A, photon loss occurs symmetrically for both modes
of the ECS during the decoherence time τ . On the other hand,
in strategy B, an ECS is first generated in the location of
Alice and one mode of the ECS is sent to Bob at a distance.
In the latter case, photon losses occur only in one of the field
modes but the decoherence time becomes 2τ . Assuming a zero
temperature bath and a decay rate γ for both cases, a direct
calculation of the master equation leads to the states

ρ±
A (α1,α2,t) = N±2{|√tα1〉 〈√tα1| ⊗ |√tα2〉 〈√tα2|

± e−2(1−t)(α2
1+α2

2 )

× [|√tα1〉 〈−√
tα1| ⊗ |√tα2〉 〈−√

tα2|
+ |−√

tα1〉 〈√tα1| ⊗ |−√
tα2〉 〈√tα2|]

+ |−√
tα1〉 〈−√

tα1| ⊗ |−√
tα2〉 〈−√

tα2|},
(9)

(a)

(b)

ττ

2τ

FIG. 5. (Color online) Schemes to distribute an ECS in (a)
symmetric and (b) asymmetric ways. (a) In strategy A, photon losses
occur in both parts with the same rate and for time τ . (b) In strategy
B, an ECS is generated in the location of Alice and one of the field
modes is sent to Bob. Photon losses then occur in only one of the two
modes for time 2τ .

ρ±
B (α1,α2,t) = N±2{|α1〉 〈α1| ⊗ |tα2〉 〈tα2|

± e−2(1−t2)α2
2 [|α1〉 〈−α1| ⊗ |tα2〉 〈−tα2|

+ |−α1〉 〈α1| ⊗ |−tα2〉 〈tα2|]
+ |−α1〉 〈−α1| ⊗ |−tα2〉 〈−tα2|} (10)

for strategies A and B, respectively, where t = e−γ τ . For
convenience, we define the normalized time r = 1 − t which
has the value of zero when τ = 0 and increases to 1 as τ

increases to the infinity. If the cross terms in Eqs. (9) and (10)
vanish, the states become classical mixtures of two distinct
states and quantum effects generally disappear. We observe
that the cross term in ρ±

A is proportional to e−2(1−t)(α2
1+α2

2 ) and
it is proportional to e−2(1−t2)α2

2 in ρ±
B . This implies that one

may reduce decoherence effects using strategy B by making
the amplitude smaller for the mode in which loss occurs (i.e.,
by making the field mode sent to Bob in Fig. 5 to have the
smaller amplitude). Such a strategy was also applied to the
tele-amplification protocol [48] and the distributed generation
scheme for ECSs [49].

B. Bell-CHSH tests with on-off measurements
under photon loss effects

We first consider Bell-CHSH tests with on-off measure-
ments in comparing strategies A and B regarding robustness
to the decoherence effects. An explicit form of the correlation
functions calculated using Eqs. (9) and (10) can be found
Appendix A. We numerically optimize the corresponding
Bell-CHSH function |BO |max over all displacement variables
and amplitudes α1 and α2 for given r . The numerically
optimized Bell-CHSH functions against the normalized time
are presented for both ρ±

A and ρ±
B in Fig. 6 where the decrease

of violations due to the decoherence effects is apparent. The
optimizing values of amplitudes α1 and α2 are found between
0.4 and 1.4, where relatively smaller values correspond to
large values of r . We observe that strategy B leads to
larger violations than strategy A for r � 0.07 when we use
the even ECS ρ+. For the smaller value of r , strategy A
gives slightly larger violations where the difference is up to
�0.001. On the other hand, the odd ECS ρ− shows larger
violations for strategy B than strategy A regardless of the value
of r . As explained earlier in Sec. II A, the discontinuities
of the first derivative at r ≈ 0.09 for ρ+

A and r ≈ 0.07 for
ρ+

B in Fig. 6(a) emerge from the numerical optimization
process where local maxima for different parameter regions are
compared.

The Bell violations of the odd ECSs for varying α1

and α2 for r = 0.2, numerically optimized for the displace-
ment variables, are shown in Fig. 7. Figure 7(a) clearly
shows the asymmetric behavior of the optimized Bell-CHSH
function under strategy A. Figure 7(b) is for the case of
asymmetric decoherence (strategy B). For a given average
photon number, the optimizing value of α2 in strategy
B is smaller than that of strategy A. It shows that an
asymmetric ECS can reduce the asymmetric decoherence
effects by lessening the amplitude of the mode in which
decoherence occurs and adjusting the other mode which is
free from decoherence. These results are consistent with
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FIG. 6. (Color online) Optimized Bell-CHSH function |BO |max

against the normalized time r for (a) even and (b) odd ECSs using
on-off measurements. The dotted curves indicate the optimized results
for strategy A for entanglement distribution and the solid curves
correspond to the results for strategy B explained in the main text.
Amplitudes α1 and α2 together with displacement variables are all
numerically optimized to find the maximum values of the Bell-CHSH
function for given r . The optimizing values of α1 and α2 are found
between 0.4 and 1.4, where relatively smaller values correspond to
large values of r . The dot-dashed horizontal line indicates the classical
limit, 2.

previous studies for Bell-inequality tests using hybrid entan-
glement [66,67] and quantum teleportation [48,68], where the
amplitude of the mode that suffers decoherence should be
kept small in order to optimize Bell violations or teleportation
fidelities.

It is important to note from Fig. 7 that strategy B shows
significantly larger violation than that of strategy A. In strategy
A [Fig. 7(a)], the maximum value of the Bell-CHSH function
is ≈2.054 for α1 ≈ 0.81 and α2 ≈ 0.74. On the other hands,
the maximum value for strategy B [Fig. 7(b)] is ≈2.145 for
α1 ≈ 0.76 and α2 ≈ 0.50. Noting that 2.0 is the maximum
value of the Bell function by a local realistic theory, the
absolute value of the Bell function with strategy B, 2.145,
is significantly larger than that of strategy A, 2.054. It is a
remarkable advantage of using asymmetric ECSs with the
asymmetric distribution scheme in testing the Bell-CHSH
inequality.

C. Bell-CHSH tests with photon number parity measurement
under photon loss effects

Figure 8 presents the numerically optimized Bell-CHSH
function |B�| with parity measurements against the normal-
ized time r (see Appendix A for details). For both the even
and odd ECSs, strategy B give significantly larger violations
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FIG. 7. (Color online) Optimized Bell-CHSH values against α1

and α2 (a) in strategy A and (b) in strategy B using on-off
measurements for the odd ECSs. The normalized time is r = 0.2 for
both (a) and (b). In (a), only one side of the blue curves is displayed.
Since the correlation function has a symmetry over the exchange of
the two modes, the maximal violation points also exist in the opposite
side relative to the center line of α1 = α2. Strategy B generally shows
the larger violations of the Bell-CHSH inequality than strategy A.
The optimizing value of α2 for the same value of α1 with strategy B
is always smaller than that with strategy A.

over strategy A. The optimizing values of α1 and α2 approach
infinity for r → 0. This is because, when we use the photon
number parity measurements and the photon loss is absence
in one mode, the optimized Bell-CHSH functions increase
monotonically with respect to the amplitude of that mode.
However, we are interested in values that can be obtained
within a realistic range (e.g., n̄± < 5). We thus plot in Fig. 9
the optimization results for the even ECSs under a normalized
decoherence time (r = 0.1) for varying α1 and α2. In contrast
to the case of on-off measurements, as shown in Fig. 9(a), the
asymmetry of the amplitudes of the ECS does not improve the
amount of Bell violations for strategy A where decoherence
occurs symmetrically. Similar to the results of the on-off
measurements, the asymmetry of the amplitudes in ECSs
increases the amount of Bell violation for strategy B [Fig. 9(b)].
In this case, the maximum value of the optimized Bell-CHSH
function is |B�|max ≈ 2.146 for α1 → ∞ and α2 ≈ 0.46. A
similar value |B�|max ≈ 2.131 can be obtained for α1 = 2
and α2 ≈ 0.44 where the average photon number is given by
n+ ≈ 4.19. This value is much larger than that of strategy A,
which only shows |B�|max ≈ 2.014 for α1 = α2 ≈ 0.44.
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FIG. 8. (Color online) Optimized Bell-CHSH function against
normalized decoherence time r for photon parity measurement for (a)
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The dot-dashed line indicates the classical limit, 2.
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strategies (a) A and (b) B. All displacement variables are optimized
for given α1 and α2.
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FIG. 10. (Color online) Schematics for (a) displaced measure-
ment under decoherence in a part of the entangled state and (b)
displaced measurement using an inefficient detector. Only one part
of the Bell-inequality test is shown.

IV. EFFECTS OF DETECTION INEFFICIENCY

Here we investigate the effects of detection inefficiency in
the Bell-CHSH inequality tests. An imperfect photodectector
with efficiency η can be modeled using a perfect photodetector
together with a beam splitter of transmissivity

√
η in front of

it [69]. Meanwhile, decoherence by photon loss [Eqs. (9) and
(10)] in the entangled state can also be modeled using a beam
splitter. The only difference between the effect of detection
inefficiency and that of photon loss in the entangled state is
the order of photon loss and displacement as shown in Fig. 10.
We compare these two cases in Appendix B where the results
show that the two cases lead the same Bell-CHSH function
except for the coefficients of the displacement variables which
disappear during the optimization process.

We have numerically investigated both cases of on-off and
parity measurements with limited efficiencies, η1 for mode
1 and η2 for mode 2, for both even and odd ECSs. As we
find that the even ECS is better for on-off measurements and
the odd ECS is better for parity measurements, as already
implied in Figs. 6 and 8, we present the two corresponding
cases in Fig. 11. It shows that the on-off measurement scheme
generally gives much larger violations compared to the parity
measurement scheme. This is consistent with the results of the
case with photon loss effects studied in the previous section
[see Figs. 6(b) and 8(a)].

In detail, for the displaced on-off measurements with the
odd ECS [Figs. 11(a) and 11(b)], optimizing values of α1

and α2 lie between 0.4 and 1.4, which is experimentally
feasible [47,59]. We find that the asymmetric ECS [Fig. 11(b)]
shows larger violations compared to the symmetric ECS
[Fig. 11(a)]. When η = η1 = η2, a detection efficiency of
η � 0.771 is required for violation of |BO | � 2.001 with
the symmetric ECS while a smaller efficiency η � 0.745 is
sufficient for the same amount of violation with the asymmetric
ECS. When the efficiencies for modes 1 and 2 are η1 = 0.75
and η2 = 1, the asymmetric ECS shows the optimized Bell
quantity of 2.305 which is larger than 2.269 for the symmetric
ECS.

For the parity measurements using the even ECSs, the
improvement by the asymmetric ECS is even larger. For
example, comparing η1 = 0.98 line in Figs. 11(c) and 11(d),
we find that there is a violation |B�| � 2.01 for η2 � 0.760 if
we use the asymmetric form of ECS. However, much larger
efficiency η2 � 0.805 is needed when we use the symmetric
ECS. The optimizing values of α1 and α2 lie between 0.02 and
1.64 if η1 < 0.99 and η2 < 0.99. We also note that if one of
the detectors is perfect, the optimizing value of the amplitude
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FIG. 11. (Color online) Numerically optimized Bell-CHSH
function for all displacement variables and amplitudes using
imperfect photodetectors. The detection efficiencies are η1 for
mode 1 and η2 for mode 2. The results in (a) and (b) show the
optimized Bell-CHSH functions for displaced on-off measurement
using the odd ECSs. The results are restricted to the symmetric
ECS in (a) while they are optimized for any values of α1 and α2

with the asymmetric ECS in (b). The optimizing values of α1 and
α2 for (a) and (b) are between 0.4 and 1.4. Results with parity
measurements are shown in (c) for the even symmetric ECS and (d)
for the even asymmetric ECS with any values of α1 and α2. The
two uppermost lines in (c) and (d) indicate 2.4 and 2.5, respectively.
When η1 = η2 = 1, the maximum violations of the Bell-CHSH
functions are up to ≈2.743 for (a) and (b) and 2.820 for (c) and (d).
The optimizing values of α1 and α2 for (c) and (d) are between 0.02
and 1.64 for η1 < 0.99 and η2 < 0.99.

of that mode goes to infinity. This behavior can be inferred
from the results in Sec. III C with Fig. 9(b) for the case of
decoherence, noting that the decoherence and the detection
inefficiency give qualitatively the same effects (Appendix B).
When both the detectors are perfect, of course, the larger
amplitude gives the larger violation for each mode as implied
in Fig. 4; the maximum violation appears when both α1 and
α2 become infinity.

V. REMARKS

In this paper, we have studied asymmetric ECSs as well
as asymmetric lossy environments for Bell-CHSH inequality
tests. We first investigated the violations of Bell-CHSH
inequality using perfect on-off detectors and ideal ECSs. We
have shown that the asymmetric form of ECS could give larger
violations of the Bell-CHSH inequality in some region of the
averaged photon numbers of the ECSs. On the other hand, in
the case of photon number parity measurements, we could not
find any apparent improvement of the Bell violations using the
asymmetric form of ECS with perfect detectors.

We then studied Bell-CHSH violations under the effects
of decoherence on the ECSs. We considered two different
schemes for distributing entanglement under photon loss, i.e.,
symmetric and asymmetric schemes. In the symmetric scheme,
the photon losses occur in both modes of the ECSs. On the
other hand, photon loss occurs only in one of the two modes in
the asymmetric scheme. We showed that the asymmetric form
of ECS can increase the amount of violations significantly
under the asymmetric scheme compared to the symmetric
scheme. For example, when the normalized time is r = 0.2,
the Bell-CHSH function using photon on-off detectors for the
asymmetric loss scheme shows the maximum value of 2.145,
which is much larger than that for the symmetric case, 2.054.
A similar improvement can be made in the case of photon
number parity measurements; when r = 0.1 with the ECS
of average photon number ≈4.19, the optimized Bell-CHSH
function under the symmetric loss scheme is about 2.014 but
it is 2.131 under the asymmetric scheme.

We have also investigated effects of inefficient detectors.
We show that the asymmetric form of ECSs lowers the
detection efficiency required for violation of the Bell-CHSH
inequality. For example, a detection efficiency of η � 0.771 is
required for a Bell-CHSH violation of |BO | � 2.001 with the
symmetric ECS, but a smaller efficiency η � 0.745 is sufficient
for the same amount of violation with the asymmetric ECS.
This improvement is even more significant for the case of parity
measurements particularly when the detection efficiencies of
two detectors differ much. When the detection efficiency for
mode 1 is η1 = 0.98, the required detection efficiency for mode
2 is η2 � 0.81 to show the violation of |B�| � 2.01 using
the symmetric ECS, but it is η2 � 0.76 when the asymmetric
ECS is used. The optimizing amplitudes are found between
0.4 and 1.4 for the on-off measurements and between 0.02 to
1.64 for the parity measurements. It is worth noting that these
values of amplitudes for ECSs are within reach of current
technology [47,59,70,71]. In summary, our extensive study
reveals that the asymmetric form of ECSs and the asymmetric
scheme for distributing entanglement enable one to effectively
test the Bell-CHSH inequality with the same resources.
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APPENDIX A: CORRELATION FUNCTIONS FOR ON-OFF
AND PARITY MEASUREMENTS

Here, we present the explicit forms of the correlation
functions defined in Eqs. (4) and (7) under lossy effects.
Instead of computing the correlation function for every case,
we calculate the results for an ECS under the beam splitters
with transmissivities η1 and η2 for modes 1 and 2, respectively,
and show that these results are applicable to all the cases
discussed in this paper.
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The beam-splitter operator with transmissivity
√

η be-
tween modes a and b can be represented by B̂ab =
exp[(cos−1 √

η)(â†
aâb − âaâ

†
b)] [72]. If a coherent-state dyadic

|α〉 〈β| for mode C is mixed with the vacuum for mode v, the
initial coherent-state dyadic becomes

Trv[B̂Cv(|α〉 〈β|)C ⊗ (|0〉 〈0|)vB̂†
Cv]

= exp
[− 1

2 (1 − η)(|α|2+|β|2−2αβ∗)
] |√ηα〉 〈√ηβ| .

(A1)

We now apply this result to a pure ECS |ECS±〉 mixed
with the vacuum modes through two beam splitters with

transmissivities η1 and η2, and the result is

ρ±[α1,α2,η1,η2]

= N±2{|√η1α1〉 〈√η1α1| ⊗ |√η2α2〉 〈√η2α2|
± e−2[(1−η1)α2

1+(1−η2)α2
2 ]

× [|√η1α1〉 〈−√
η1α1| ⊗ |√η2α2〉 〈−√

η2α2|
+ |−√

η1α1〉 〈√η1α1| ⊗ |−√
η2α2〉 〈√η2α2|]

+ |−√
η1α1〉 〈−√

η1α1| ⊗ |−√
η2α2〉 〈−√

η2α2|}.
It is straightforward to check that if we let η1 = η2 = t then
the state will be exactly the same as Eq. (9). In addition, η1 = 1
with η2 = t2 will give Eq. (10).

Using the result, the correlation functions for on-off measurement and parity measurement are obtained as

EO(ξ,χ ) = Tr[ρ±Ô1(ξ ) ⊗ Ô2(χ )] = 2

2 ± 2e−2α2
1−2α2

2

{
1 ∓ 2e−2α2

1−2α2
2−χ2

i −χ2
r −ξ 2

i −ξ 2
r

[
eα2

1η1+χ2
i +χ2

r cos(2α1
√

η1ξi)

+ eα2
2η2+ξ 2

i +ξ 2
r cos(2α2χi

√
η2)

] − 2eα2
1η1+α2

2η2 cos[2(α1
√

η1ξi + α2
√

η2χi)]

± e−2(α2
1+α2

2 ) + 2e−(ξr−α1
√

η1)2−(χr−α2
√

η2)2−χ2
i −ξ 2

i + 2e−(α1
√

η1+ξr )2−(α2
√

η2+χr )2−χ2
i −ξ 2

i

− e−(ξr−α1
√

η1)2−ξ 2
i − e−(α1

√
η1+ξr )2−ξ 2

i − e−(α2
√

η2+χr )2−χ2
i − e−(χr−α2

√
η2)2−χ2

i

}
,

E�(ξ,χ ) = Tr[ρ±�̂1(ξ ) ⊗ �̂2(χ )] = 1

2 ± 2e−2α2
1−2α2

2

exp
{−2

[
α2

1(η1 + 1) + α2
2(η2 + 1) + χ2

i + χ2
r + ξ 2

i + ξ 2
r

]}
× [ ± 2e4(α2

1η1+α2
2η2) cos(4α1

√
η1ξi + 4α2χi

√
η2) + e2(α2

1−2α1ξr
√

η1+α2
2−2α2χr

√
η2)(e8α1

√
η1ξr+8α2χr

√
η2 + 1)

]
,

where ξ = ξr + iξi and χ = χr + iχi , and Oi(ξ ) and �i(ξ )
were defined in Eqs. (3) and (6). By substituting η1 = η2 =
1, we can get the correlation functions for the case of
perfect detectors. Likewise, η1 = η2 = t gives the correlation
functions for distribution strategy A and η1 = 1 and η2 = t2

give the correlation function for strategy B. As we will discuss
below, we also can use these results for imperfect detectors
even though they differ in the order of the displacement
operators and the beam splitters.

APPENDIX B: ORDER OF PHOTON LOSS AND
DISPLACEMENT OPERATOR IN THE CORRELATION

In this section, we show that ECSs give the same optimized
value of the Bell-CHSH function independent of the order of
the displacement and the photon loss by a beam splitter. Note
that it is sufficient to only consider two coherent-state dyadics
of the form |γ 〉 〈γ | and |γ 〉 〈−γ |. This is because ECSs only
contain this kind of dyadics and a photon loss by a beam splitter
is superlinear (linear in the space of density matrices) and a
displacement operator is linear.

First, suppose that the states undergo a beam splitter first
and displacement second. From the above, the dyadics after
the transmission to the beam splitter with transmissivity

√
η

would be

|γ 〉 〈γ | −→ |√ηγ 〉 〈√ηγ | ,
|γ 〉 〈−γ | −→ exp[−2(1 − η) |γ |2] |√ηγ 〉 〈−√

ηγ | .

Now we apply the displacement operator D̂(ξ ) = exp[ξ â† −
ξ ∗â] to photon lost dyadics. Then the states would be

|γ 〉 〈γ | −→ |√ηγ − ξ〉 〈√ηγ − ξ | ,
|γ 〉 〈−γ | −→ exp[−2(1 − η)|γ |2 + √

η(ξ ∗γ − ξγ ∗)]

× |√ηγ − ξ〉 〈−√
ηγ − ξ | . (B1)

Next, let us consider the case in which we employ the
operators to opposite order: displacement first and photon loss
second. After the displacement, the dyadics would be

|γ 〉 〈γ | −→ |γ − ξ〉 〈γ − ξ | ,
|γ 〉 〈−γ | −→ exp[ξ ∗γ − ξγ ∗] |γ − ξ〉 〈−γ − ξ | .

Applying photon loss to these dyadics using Eq. (A1), we
finally obtain

|γ 〉 〈γ | −→ |√η(γ − ξ )〉 〈√η(γ − ξ )| ,
|γ 〉 〈−γ | −→ exp[−2(1 − η) |γ |2 + η(ξ ∗γ − ξγ ∗)]

× |√η(γ − ξ )〉 〈√η(−γ − ξ )| . (B2)

These results show that if we replace ξ with
√

ηξ in Eq. (B1),
it will be exactly the same as Eq. (B2). This means that
the optimized values of the Bell-CHSH functions for all
displacement variables do not depend on the order of loss
and displacement.
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