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Experimental demonstration of error-insensitive approximate universal-NOT gates
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We propose and experimentally demonstrate an approximate universal-NOT (UNOT) operation that is robust
against operational errors. In our proposal, the UNOT operation is composed of stochastic unitary operations
represented by the vertices of regular polyhedrons. The operation is designed to be robust against random
operational errors by increasing the number of unitary operations (i.e., reference axes). Remarkably, no increase
in the total number of measurements nor additional resources are required to perform the UNOT operation.
Our method can be applied in general to reduce operational errors to an arbitrary degree of precision when
approximating any antiunitary operation in a stochastic manner.
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I. INTRODUCTION

For the implementation of quantum information processing,
it is necessary to reduce errors and their effects on whole
processes. Quantum information processing such as quantum
computing and communications is composed of three stages:
state preparation, operations, and measurements. Any physical
process that is described, either implicitly or explicitly, within
the framework of quantum mechanics consists of these three
stages and errors may occur during any processes. Errors are
detrimental to the final outcome in the measurement stage:
For example, both the decoherence process that changes
the state before the final measurement and the inefficiency
of the measurement device (i.e., detector) will affect the
results. Recently, it was reported that the inaccuracy of unitary
operations such as incorrect changes in the references for
measurements plays a crucial role in diminishing quantum
effects [1]. We refer to these types of errors as operational
errors, in contrast to the errors caused by state decoherence or
inefficient detection. Schemes including the composite pulse
technique [2,3] and quantum error correction codes [4] have
been suggested to reduce or correct various types of errors,
but these methods require additional resources such as a larger
number of pulses [3] or ancillary qubits [5] to enhance the
precision of quantum information processing.

Antiunitary operations in quantum mechanics are nonphysi-
cal operations and thus they cannot be implemented in a perfect
manner. However, approximate implementations are possi-
ble [6–8] and some implementations such as the universal-NOT

(UNOT) gate [6] and the transpose operation [8] are particularly
useful for quantum cloning, quantum state estimation, and
entanglement detection [8–13]. The approaches taken for the
implementation of antiunitary operations can be categorized
into two types: ancilla-assisted models [6] and stochastic
mapping [7,8], as outlined in [14]. The necessary condition
for the universality of each approach has been shown to be
two ancillary qubits or three stochastic operations.

There are two important factors for implementing a UNOT

gate. One factor is the average value of the fidelities to the
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target state for all possible input states and the other is their
standard deviation, known as the universality [14]. Typically,
the average fidelity is the dominant factor when estimating
the accuracy of a quantum operation. However, the fidelity
deviation may also be important in some cases [15]. An
approximate UNOT gate is one such example [6] in which the
fidelity is 2

3 for any input state so that the zero fidelity deviation
is always guaranteed. In fact, there may be situations in which
the fidelity deviation is practically important. For example,
certain tasks such as fault-tolerant quantum computing [16]
may require the fidelity to be above a certain limit. In addition,
supposing that an ensemble of a pure state is the input for a
quantum operation but we do not know which pure state it is
in (the input is an unknown state), then it may be important
to reduce the fidelity deviation, i.e., the sensitivity of the final
results to the input state or operational errors.

In this paper we propose and experimentally demonstrate a
method to effectively reduce the effects of operational errors
on the operation of an approximate UNOT gate. The UNOT gate
is designed to be insensitive to operational errors by increasing
the number of reference axes without increasing any resources
or the total number of measurements. The experiment in this
study was performed for stochastic mapping, but the same
method is applicable to a certain ancilla-assisted model. We
used spontaneous parametric down-conversion (SPDC) and
linear optics elements in the experimental realization and
the stochastic map was characterized by quantum process
tomography (QPT) [4]. From the results of the QPT, we
calculated the sensitivities of the maps, which matched well
with the simulations and analytic predictions. In principle,
our method to reduce the effects of operational errors can
be applied to any type of approximate antiunitary operation
realized in a stochastic manner.

II. CONCEPT AND THEORY

The UNOT gate is represented by the mapping |ψ〉 �→ |ψ⊥〉,
where |ψ〉 is an arbitrary unknown input state in a qubit and
|ψ⊥〉 is its orthogonal state. It is well known that such a
gate cannot be completely realized, but only approximately
implemented [6]. To evaluate the approximate UNOT gate, we
introduce two measures, the average fidelity F and fidelity
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deviation �, defined as

F =
∫

f (ψ)dψ, � =
√∫

f (ψ)2dψ − F 2, (1)

where f (ψ) is the fidelity between the orthogonal state and the
output state of the approximate operation O for a pure input
state |ψ〉, i.e., f (ψ) = 〈ψ⊥|O(ψ)|ψ⊥〉. Note that F can be
maximized to 2

3 (the so-called optimality condition) and � can
be 0 (the so-called universality condition); these are regarded
as the best conditions for realizing an optimum approximate
UNOT gate.

In Ref. [14], it was demonstrated that the approximate UNOT

gate can be realized with three or more stochastic unitary
operations such that ρ �→ O(ρ) = ∑m

i=1 piUiρU
†
i (m � 3),

where Ui is a single-qubit unitary operation given by Ui =
cos θi

2 I + sin θi

2 (�σ · �ni). Here �σ = (σ1,σ2,σ3) is a vector oper-
ator whose elements are the Pauli operators, �ni = (ni1,ni2,ni3)
is a normalized (real) vector, i.e., |�ni | = 1, and {pi} is
the probability distribution of the stochastic operations such
that

∑
pi = 1. The necessary condition for obtaining the

maximum F is that the rotation angles {θi} are π (for all
i = 1,2, . . . ,m). However, perfect universality (i.e., � = 0)
is achieved by choosing an appropriate set of normalized
directional vectors {�ni} and a suitable probability distribution
{pi}. We find conditions of {�ni} for a uniform distribution of
{pi}: {�ni} point to the vertices of regular polyhedrons [17]
that are equally distributed in a solid angle. Based on the
above descriptions, our generalized stochastic process for the
approximate UNOT operation is as follows:

ρ → ρ ′
N = ON (ρ) = 1

N

N∑
i=1

(�σ · �ni)ρ(�σ · �ni). (2)

For the cases of O3 and O4, the {�ni} are given
by {(1,0,0),(0,1,0),(0,0,1)} and {( 1√

3
, 1√

3
, 1√

3
),( 1√

3
, −1√

3
, −1√

3
),

( −1√
3
, 1√

3
, −1√

3
),( −1√

3
, −1√

3
, 1√

3
)}, which correspond to the vertices of

an octahedron and a tetrahedron, respectively. We can easily
generalize these to the cases of O6 and O8 by considering
the opposite directional vectors {−�ni}. If error-free (in the
ideal case), all the maps ON in Eq. (2) are equivalent to
that of N = 3, the Hillery-Bužek UNOT gate [18,19] as
ρ �→ OI (ρ) = 1

3 (σxρσx + σyρσy + σzρσz). Thus, Eq. (2) is
the optimum approximate UNOT gate.

We now consider the maps ON with errors by taking
realistic circumstances into account. Errors usually deteriorate
the average fidelity and fidelity deviation in implementations
of the approximate UNOT gate and here we consider a specific
but very common (operational) error that arises from the
imperfect setting of Ui . It is important to note that � can
be seriously affected by even a small error, whereas F will
remain close to its maximum value of 2

3 [14]. This trend
motivated us to invent an error-insensitive approximate UNOT

gate, significantly reducing the influence of the errors on �.
We show that adding more stochastic operations will

increase the resilience against the operational errors. This can
be verified by analytic calculations for the cases of N = 3, 4,
6, and 8. The process in Eq. (2) is characterized by χ matrices
through O(ρ) = ∑3

i,j=0 χijσiρσj , where σ0 = I [4], and so
the ideal case of the approximate UNOT gate is characterized
by χI = diag(0, 1

3 , 1
3 , 1

3 ). However, operational errors occurring

under realistic circumstances will vary χI . By using the χ

matrix, we can find the mean of average fidelity FN and
fidelity deviation �N for the map ON over the random
errors as

FN 
 2

3
, �N 
 α√

N
δr = SNδr , (3)

where α is a constant factor and δr is the standard deviation of
the random error. Since FN is stationary, we define the error
sensitivity of ON with �N as SN ≡ α/

√
N (see Appendix C

for more details). In deriving Eq. (3), the random error is
considered as a random unitary operation Vi following the
stochastic operation, e.g., �σ · �ni

error−−→ Vi(�σ · �ni). We consider
the error operation as Vi = ei�εi ·�σ 
 I + i�εi · �σ , where �εi =
(εi1,εi2,εi3) and |εij | < ε0 � 1, so that the error distribution
is symmetric and homogeneous (see Appendix B for more
details). Equation (3) shows directly that the deterioration
of �N due to operational errors can be reduced by simply
increasing the number of stochastic operations N .

Note that N is the number of stochastic operations that
constitute the map ON and is not the number of measurements.
However, we see that Eq. (3) is very similar in form to that for
the standard error of N measurements of random variables. The
reason for this similarity is that the output state of the map is a
mixed state: a convex combination of N states. An erroneous
output state of ON is expressed as a summation of vectors in
the Bloch sphere as

∑N
i=1(�oi + �ei)/N , where �oi are the Bloch

vectors of ideal stochastic operations and �ei are effects of the
operational errors [20]. The total effect of operational errors is
described as

∑N
i=1 �ei/N with an average of zero and a standard

deviation proportional to �(|�ei |)/
√

N . Therefore, the average
fidelity remains close to the maximum and a mean of �N for
an erroneous map is expressed by Eq. (3).

III. SETUP AND METHOD

The experiment was based on the polarization state of a
single photon generated from SPDC and manipulated by linear

FIG. 1. (Color online) Experimental setup: PPKTP, periodically
poled potassium titanyl phosphate (KTiOPO4); DF, dichroic filter;
PBS, polarizing beam splitter; QWP, quarter-wave plate; HWP,
half-wave plate; IF, interference filter; CH-1(2), polarization analyzer
channel; CH-3, counting trigger channel for coincidence counts;
SMF, single-mode fiber; SPCM, single photon counting modules;
and FPGA, coincidence counter.
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FIG. 2. (Color online) Experimentally reconstructed input and output states of the maps O3,4,6,8 for QPT and their χ matrices under
error-free circumstances.

optics, as shown in Fig. 1. We first generated a pair of photons
via a frequency-degenerate collinear type-II SPDC process
using a diode continuous-wave laser (1.8 mW at 406 nm)
and a periodically poled KTiOPO4 crystal (L = 10 mm, � =
10.00 μm). The polarizations of the two photons in a single
mode (the same frequency and spatial mode) were orthogonal
to each other as |HV 〉. A horizontal photon transmitting
the polarizing beam splitter (PBS) was controlled to be in
an arbitrary polarization qubit state through the use of the
half-wave plate (HWP) and the quarter-wave plate (QWP).
The vertical photon plays the role of a counting trigger for
coincidence counts.

An arbitrary unitary operation for the polarization qubit can
be realized by a set of wave plates (QWP-HWP-QWP) [21].
We stochastically perform unitary operations {�σ · �ni} to realize
the map ON . The random error of a unitary operation is
achieved by rotating each wave plate in the set randomly
between [−φe,φe].

The output states are measured by a polarization analyzer
(QWP-HWP-PBS) and reconstructed by quantum state to-
mography (QST) [22]. To obtain FN , �N , and SN of each
stochastic map ON , we execute QPT, which characterizes a
quantum operation by means of the QST results for four input
states and their output states. From the result of QPT and χ

matrix, we can calculate FN and �N (see Appendix A for more
details). To survey SN , we repeat the QPT measurements of
ON for N = 3, 4, 6, and 8 by varying the boundaries of the
random error φe from 0◦ to 5◦ [23].

IV. RESULTS AND ANALYSIS

Figure 2 shows reconstructed input states and their output
states for QPTs of the maps O3,4,6,8 in the Bloch spheres [24]
and χN matrices when there are no operational errors. The
points (in black) on the surface are the input states and the
points (in red, green, blue, and orange) close to the center
represent the output states of the maps O3,4,6,8 [25]. The graphs
show clearly that the output states are on opposite sides of the
input states and that their lengths decrease by about 1

3 . The χN

matrices are calculated from the reconstructed density matrices
of the input and output states and these are almost the same
as those of the ideal case, i.e., χ11 = χ22 = χ33 = 1

3 . This
constitutes experimental verification of the equivalence of the
maps ON for N = 3, 4, 6, and 8 under error-free circumstances.

Figure 3 represents the input and output states of erroneous
maps Oerr

3,4,6,8 for φe = 5◦ [24]. The output states of Oerr
N are

more diffused than those of Oerr
M , where N < M , and we see

that for larger N , the map ON is less sensitive to random
operational errors. Since the output states have a distribution
in the Bloch sphere, we describe the erroneous maps Oerr

N as
the average value of FN and �N over 20 QPT results.

We repeated the QPT experiments for the maps Oerr
3,4,6,8 for

various error boundaries φe to measureSN . The average values
of FN and �N for random errors are shown in Fig. 4. Each
point represents the average value of 20 experimental results,
except for the error-free case (φe = 0◦) in which two results
were averaged. The solid and dashed lines represent linear fits
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FIG. 3. (Color online) Experimentally reconstructed input and output states of erroneous maps Oerr
3,4,6,8 when φe = 5◦.

of the experimental data and trends of the simulation results for
104 QPT measurements, respectively. The simulation results
are shifted up about 0.005 to match the experimental results.
We attribute this offset to inevitable imperfections in the
experimental setup and measurements.

In Fig. 4 the results of �N are distinct for different
N , although there are no significant differences in FN .
The experimental data of �N and FN agree well with the
simulation results to within the deviations. From Eq. (3) we
note that the gradients of the �N curves corresponding to
the sensitivity SN and the relative gradients SN/SM obtained
from the experimental data (simulation results) for �N and
�M obey the relation

√
M/N to within an accuracy of about

82% (99%). This shows that the sensitivity of the stochastic
map ON is inversely proportional to the square root of the
number of operations N as described in Eq. (3).

Note that all the experimental data (one QST or one QPT)
were measured using the same amount of resources (photon
pairs). Thus, the error insensitivity of ON is not a matter

FIG. 4. (Color online) Average values of FN and �N for Oerr
3,4,6,8

for various random error boundaries φe. The points and solid lines are
the averages of the experimental results and a linear fit of the data.
The dashed lines are shifted trends of the simulation results for 104

QPT measurements.

of the measurement precision dependent on the number of
repetitions. The essential point of our scheme is that the
output state is a convex combination of other states, so we
expect that our error-insensitive method will be applicable
to other stochastic operations. We utilized the stochastic
method rather than the ancilla-assisted model, which demands
N − 1 controlled unitary operations for ON , so as to avoid
any controlled unitary operations that are probabilistic in
the framework of linear optics. Most cases of the ancilla-
assisted model are composed of sequential controlled unitary
operations so that their operational errors can be accumulated.
Therefore, to apply our method to the ancilla-assisted model, a
specific controlled operation and an equally superposed ancilla
state are required, e.g., U

(N)
AB = ∑N

i=1 |i〉A〈i| ⊗ (�σ · �ni)B and
|ψ0〉A = 1√

N

∑N
i=1 |i〉, where A and B denote ancilla and

object systems, respectively.

V. CONCLUSION

We have introduced an error-insensitive (robust) UNOT gate
consisting of stochastic unitary operations with rotation axes
corresponding to the vertex directions of an octahedron and
hexahedron and a rotation angle of π . We demonstrated both
theoretically and experimentally that the sensitivity of the
map to random operational errors is inversely proportional to
the square root of the number of stochastic operations. The
method does not require any increase in the total number
of measurements nor additional resources. Even though we
have considered only the maps ON for N = 3, 4, 6, and 8,
our scheme can be generalized to N = 3n and 4n (1 � n).
This method is also applicable to all approximate antiunitary
operations, since such operations are equivalent to a unitary
transformation, and it may be possible to extend the method
to other stochastic mappings.
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APPENDIX A: CALCULATION OF F AND �

FROM THE χ MATRIX

When a quantum operation O is characterized by a χ

matrix as

χ =

⎛
⎜⎜⎝

χ11 χ12 χ13 χ14

χ∗
12 χ22 χ23 χ24

χ∗
13 χ∗

23 χ33 χ34

χ∗
14 χ∗

24 χ∗
34 χ44

⎞
⎟⎟⎠ , (A1)

the output state is expressed as

O(ψ) =
3∑

i,j=0

χijσi |ψ〉〈ψ |σj , (A2)

where σ0 is 2 × 2 identity matrix and σi �=0 are the Pauli
matrices. The fidelity between the output state of the map O

and ideal UNOT gate is described as

f (O(ψ),ψ⊥) = 〈ψ⊥|O(ψ)|ψ⊥〉

=
3∑

i,j=0

χij 〈ψ⊥|σi |ψ〉〈ψ |σj |ψ⊥〉

=
3∑

i,j=0

χijCiC
∗
j , (A3)

where the coefficients are defined as Ci ≡ 〈ψ⊥|σi |ψ〉.
Since an arbitrary pure state and its orthogonal state
can be represented by |ψ〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉 and

|ψ⊥〉 = sin θ
2 |0〉 − eiφ cos θ

2 |1〉, respectively, where θ = [0,π ]
and φ = [0,2π ], the coefficients Ci are functions of θ and
φ. Thus, the average fidelity F and the square of the fidelity
deviation �2 are obtained as

F = 1

4π

3∑
i,j=0

χij

∫∫
CiC

∗
j sin θ dθ dφ

= 2

3
(χ11 + χ22 + χ33), (A4)

�2 = 1

4π

3∑
i,j,k,l=0

χijχkl

∫∫
CiC

∗
j CkC

∗
l sin θ dθ dφ − F 2

= 4

45

(
χ2

11 + χ2
22 + χ2

33 − χ11χ22 − χ11χ33 − χ22χ33
)

+ 4

15

(
3|χ12|2 + 3|χ13|2 + 3|χ23|2

− 2 Re
[
χ2

12 + χ2
13 + χ2

23

])
. (A5)

APPENDIX B: RANDOM OPERATIONAL ERROR
AND Oerr

N

A random operational error can be considered as an
additional random unitary operation following the original
operation �σ · �ni

error−−→ Vi(�σ · �ni). The error operation is de-

fined as Vi = ei�εi ·�σ 
 I + i�εi · �σ , where �εi = (εi1,εi2,εi3) and
|εij | � ε0 � 1. The distribution of errors P (�εi) is assumed to
be homogeneous and symmetric under the inversion P (�εi) =
P (−�εi) so that �εi = 0. Then, the erroneous map Oerr

N is
expressed as

ρ → ρ ′′
N = Oerr

N (ρ) = 1

N

N∑
i=1

Vi(�σ · �ni)ρ(�σ · �ni)V
†
i . (B1)

APPENDIX C: PROOF OF EQ. (3)

1. The case of Oerr
3

The first order of error terms δO
(1)
3 for the map Oerr

3 and
their additional contribution δχ

(1)
3 to χI matrix are

δO
(1)
3 = 1

3
[i(�ε1 · �σ )σxρσx + i(�ε2 · �σ )σyρσy

+ i(�ε3 · �σ )σzρσz + c.c.], (C1)

δχ
(1)
3 = 1

3

⎛
⎜⎜⎝

0 iε11 iε22 iε33

−iε11 0 ε23 − ε13 ε12 − ε32

−iε22 ε23 − ε13 0 ε31 − ε21

−iε33 ε12 − ε32 ε31 − ε21 0

⎞
⎟⎟⎠ .

(C2)

Using Eqs. (A4), (A5), and (C2), the average fidelity and the
fidelity deviation for Oerr

3 are obtained as

F3 = 2

3
, (C3)

�3 = 2
√

(ε13 − ε23)2 + (ε21 − ε31)2 + (ε12 − ε32)2

3
√

15

= 2
√

2

3
√

15

√
r2

1 + r2
2 + r2

3 , (C4)

where {ri} are replaced random variables of {εij } up to
normalization factor

√
2. Note that the errors of which

directions are parallel to the original operations, i.e., {εii}, do
not contribute to the average fidelity and the fidelity deviation
as shown in Eqs. (C2)–(C4). A mean of the fidelity deviation
over random errors is proportional to the standard deviation of
random variables,

�3 =
√

8

15

δr√
3
. (C5)

where δr = r2
i

1/2
and we assume ri = 0.

2. The case of Oerr
4

After tedious calculations, the first order of error terms
δO

(1)
4 and their contribution δχ

(1)
4 to the χI matrix are

expressed as

δO
(1)
4 = − 1

12
{[ε11

√
3σz + ε12(σx −

√
2σy)]ρ(

√
2σx + σy) + [ε21

√
3σz + ε22(σx +

√
2σy)]ρ(−

√
2σx + σy)

+ [ε31

√
3σx + ε32(

√
2σy + σz)]ρ(−σy +

√
2σz) + [ε41

√
3σx + ε42(−

√
2σy + σz)]ρ(−σy −

√
2σz) + c.c.}, (C6)
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δχ
(1)
4 = 1

12

⎛
⎜⎜⎝

0 0 0 0

0 2
√

2(−ε12 + ε22) ε12 + ε22 + √
3(ε31 + ε41)

√
6(−ε11 + ε21 − ε31 + ε41)

0 ε12 + ε22 + √
3(ε31 + ε41) 2

√
2(ε12 − ε22 + ε32 − ε42) −√

3(ε11 + ε21) − ε32 − ε42

0
√

6(−ε11 + ε21 − ε31 + ε41) −√
3(ε11 + ε21) − ε32 − ε42 2

√
2(−ε32 + ε42)

⎞
⎟⎟⎠ . (C7)

In this case, for a simple calculation, we neglect errors that are parallel to the original operations since the errors do not contribute
to the first-order calculation as shown in the case of Oerr

3 . Using Eqs. (A4), (A5), (C7), and replaced random variables, F4 and
�4 for Oerr

4 are obtained as

F4 = 2

3
, (C8)

�4 = 1

3
√

30

√
(
√

3α+ + δ+)2 + 6(α− + γ−)2 + (β+ +
√

3γ+)2 + 8(β2− + β−δ− + δ2−)

=
√

2

3
√

15

√
R2

1 + 3R2
2 + R2

3 + 3R2
4 + R2

5, (C9)

where the replaced variables are defined as

α± = ε11 ± ε21√
2

, β± = ε12 ± ε22√
2

,

(C10)

γ± = ε31 ± ε41√
2

, δ± = ε32 ± ε42√
2

,

R1 =
√

3α+ + δ+
2

, R2 = α− + γ−√
2

, R3 = β+ + √
3γ+

2
,

R4 = β− + δ−√
2

, R5 = β− − δ−√
2

. (C11)

A mean of �4 over random errors is obtained as

�4 =
√

8

15

δr√
4
. (C12)

3. The cases of Oerr
6 and Oerr

8

From tedious calculations, average fidelities are the same
as 2

3 and means of �6 and �8 over random errors are obtained
as

�6 =
√

8

15

δr√
6
, (C13)

�8 =
√

8

15

δr√
8
. (C14)

From Eqs. (C5) and (C12)–(C14), we infer that the average of
�N (at least for the cases of N = 3n,4n) over random errors
is expressed as

�N =
√

8

15

δr√
N

. (C15)

[1] H. Jeong, Y. Lim, and M. S. Kim, Phys. Rev. Lett. 112, 010402
(2014).

[2] H. K. Cummins, G. Llewellyn, and J. A. Jones, Phys. Rev. A 67,
042308 (2003).

[3] J. A. Jones, Phys. Rev. A 87, 052317 (2013).
[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2000).

[5] P. W. Shor, Phys. Rev. A 52, R2493 (1995).
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