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We show that a Bell inequality test using an optical hybrid state between a polarized single photon and a coherent
field can be highly robust against detection inefficiency. The Bell violation occurs until the efficiency becomes
as low as 67% even though its degree becomes small as the detection efficiency degrades. We consider on/off
and photon number parity measurements, respectively, for the Bell test and they result in similar conditions.
If the detection efficiency is higher than 98.68%, parity measurements give larger Bell violations close to
Cirel’son’s bound, while on/off measurements give larger but moderate violations for realistic values of detector
efficiency. Experimental realization of our proposal seems feasible in the near future for the implementation of a
loophole-free Bell inequality test.
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I. INTRODUCTION

The argument by Einstein, Podolsky, and Rosen (EPR)
provoked debates on the incompatibility between quantum
mechanics and local realism [1]. Around 30 years after the
work of EPR was published, Bell in his celebrated paper
suggested an inequality that enables one to test quantum me-
chanics against local realism [2]. Since then, various versions
of Bell’s inequality have been suggested including that of
Clauser, Horne, Shimony, and Holt (CHSH), known as the
Bell-CHSH inequality [3]. The Bell-CHSH inequality has been
theoretically studied within the frameworks of N-dimensional
systems [4–6] and continuous variables in phase space [7–12].

Meanwhile, various experimental efforts have been made
to observe violation of Bell’s inequality, yet no experiment
has been found to be completely loophole-free. In general,
experiments using atoms [13,14] have suffered from the
locality loophole [15,16], while optical experiments [17–20]
have not been free from the detection (or fair-sampling)
loophole [21]. In order to close the detection loophole for
the Bell-CHSH inequality test, 82.8% of detector efficiency is
required when using a maximally entangled bipartite system.
It was shown that Bell-type inequality with nonmaximally
entangled states could lower the threshold efficiency to 66.7%
[22]. The experimental observation of Bell inequality violation
using partially entangled photons without the fair-sampling
assumption was reported recently [23].

In order to lower the detection efficiency threshold for a
loophole-free Bell test, schemes based on high dimensional
[24–28], multiphoton [29,30], and multimode [31] states have
been suggested. A study on an asymmetric Bell-type inequal-
ity, assuming perfect detection on one side, shows that 43%
of detection efficiency is required [27], while a scheme using
qudit systems requires 61.8% of threshold efficiency [28]. In
principle, macroscopic entanglement enables one to perform
a Bell inequality test free from the detection inefficiency [30].
Continuous variable systems with homodyne detection have
also been investigated to close the detection loophole [32–35].
Atom-fields entanglement to combine the advantages of both
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the atomic and optical systems have been studied in the context
of loophole-free Bell inequality tests [31,34,36–41] and
several related experiments have been reported [42–44]. It was
shown that a hybrid detection scheme, combining homodyne
detection and photodetection, with atom-photon entanglement
may be used for loophole-free Bell tests under moderate
transmission losses and detection efficiencies [40,41].

In this paper, we study optical hybrid entanglement between
a polarized single photon and a coherent-state field for
Bell inequality tests using inefficient detectors. We employ
two different kinds of measurements for the coherent-state
field, photon on/off measurement and photon number parity
measurement, to investigate the Bell-CHSH inequality. We
find that the Bell-CHSH inequality is violated for low coherent
amplitudes (|α| < 1.0) with detection efficiency higher than
67%. When realistic detection efficiency is assumed (i.e.,
smaller than 98.68%), the scheme based on on/off measure-
ments gives larger Bell violation than the one based on photon
number parity measurements, while nearly perfect detector
efficiency provides higher Bell values close to Cirel’son’s
bound 2

√
2 for the parity measurement scheme. However,

threshold values for detection efficiencies over which Bell
violations occur are similar for both the measurement schemes.

II. BELL-CHSH INEQUALITY TEST
WITH OPTICAL HYBRID STATES

In this paper, we are interested in an optical hybrid state
with entanglement between a polarized single photon and a
coherent state,

|�〉 = 1√
2

(|H 〉A|α〉B + |V 〉A|−α〉B), (1)

where |H 〉 and |V 〉 refer to the horizontal and vertical
polarization states of a photon each, and |±α〉 are coherent
states of amplitudes ±α. Such hybrid entangled states are
particularly useful for deterministic quantum teleportation and
resource-efficient quantum computing using linear optics [45]
as well as for information transfer between different types
of qubits [46]. It was shown that this type of entanglement
can be obtained if a weak cross-Kerr nonlinear interaction is
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available [47]. It is highly challenging to implement cross-
Kerr nonlinearity with high fidelity [48,49], while there have
been several proposals to obtain such high-fidelity cross-Kerr
interactions [50–52].

A. Bell-CHSH inequality using on/off and parity measurements

In order to perform Bell inequality tests, an entangled
state should be shared by two locally separate parties. With
regard to the state in Eq. (1), the single-photon part with the
polarization degree of freedom and the coherent-state part with
amplitudes ±α are subscripted by A and B, respectively. Each
party may locally perform unitary operations and dichotomic
measurements. In order to construct a Bell-CHSH inequality,
each measurement outcome is determined as either +1 or
−1. We may choose �̂A = |H 〉〈H | − |V 〉〈V | for polarization
measurements for the single-photon part and

�̂B =
{ |0〉〈0| − ∑∞

n=1 |n〉〈n| (on/off)∑∞
n=0 (|2n〉〈2n| − |2n + 1〉〈2n + 1|) (parity)

(2)

for on/off and photon number parity measurements each.
Outcomes ±1 denote no-click/click events for on/off mea-
surements and even/odd number results for photon number
parity measurements. An arbitrary unitary operation on a
single-photon qubit with the qubit basis of |H 〉 and |V 〉 can be
represented by

U (ξ ) =
(

cos |ξ | ξ

|ξ | sin |ξ |
− ξ∗

|ξ | sin |ξ | cos |ξ |

)
(3)

with complex variable ξ . The displacement operation D (β) =
eβâ†−β∗â is used as a unitary operation on the coherent-state part
(i.e., mode B), where β is a complex variable. A previous result
shows that the displacement operator approximately acts as a
qubit rotation for a coherent-state qubit with basis |±α〉 [12].
The expectation value of the joint measurement is obtained as

E(ξ,β) = 〈ÔA ⊗ ÔB〉, (4)

where ÔA(ξ ) = U (ξ )�̂AU †(ξ ) and ÔB(β) = D(β)�̂BD†(β).
The Bell-CHSH inequality is then defined as
|B(ξ1,ξ2,β1,β2)| � 2 with the Bell function

B(ξ1,ξ2,β1,β2) = E(ξ1,β1) + E(ξ1,β2)

+E(ξ2,β2) − E(ξ2,β1). (5)

We define ξ = −(θ/2)e−iφ and β = |β|ei	 with 0 � θ < π ,
0 � φ, and 	 < 2π for simplicity. Without loss of generality,
we take α to be real because the phase of α may be absorbed
by 	. We obtain the expectation values as

Eon/off(θ,φ,|β|,	)

= 2 cos θe−(|α|2+|β|2) sinh(2|α||β| cos 	)

+ 2 sin θe−(|α|2+|β|2) cos(2|α||β| sin 	 − φ)

− sin θe−2|α|2 cos φ, (6)

Eparity(θ,φ,|β|,	) = cos θe−2(|α|2+|β|2) sinh(4|α||β| cos 	)

+ sin θe−2|β|2 cos(4|α||β| sin 	 − φ)

(7)
by applying on/off and photon number parity measurements,
respectively, on the coherent-state part.

B. Photodetector efficiency and the detection loophole

A physical model of an imperfect photodetector with
detection efficiency p is described by a beam splitter of
transmission coefficient

√
p before a perfect photodetector.

In terms of positive operator-valued measurement with the
photon number basis, a photodetector with efficiency p may
be written as [53]

Ê(n)
p =

∞∑
m=0

(
n + m

n

)
pn(1 − p)m|n + m〉〈n + m|. (8)

Then the effective on/off measurement of detection efficiency
ηB becomes

�̂
on/off
B,eff = Ê(0)

ηB
−

∞∑
n=1

Ê(n)
ηB

=
∞∑

m=0

[2(1 − ηB)m|m〉〈m| −
∞∑

n=0

(
n + m

n

)
ηn

B(1 − ηB)m|n + m〉〈n + m|]. (9)

Similarly, the effective photon number parity measurement is given by

�̂
parity
B,eff = Ê(even)

ηB
− Ê(odd)

ηB
=

∞∑
m=0

∞∑
n=0

[(
2n + m

2n

)
η2n

B (1 − ηB)m|2n + m〉〈2n + m|

−
(

2n + 1 + m

2n + 1

)
η2n+1

B (1 − ηB)m|2n + 1 + m〉〈2n + 1 + m|
]

. (10)

In order to avoid the detection loophole, we assign +1 for a “no-detection” outcome on the polarization part. Provided the
polarization measurement detection efficiency is ηA, the expectation value for the combined measurement is given by

Eeff = ηA〈ÔA ⊗ ÔB,eff〉 + (1 − ηA) TrB[ÔB,effρB], (11)

where ρB is a reduced density matrix obtained by tracing over polarization part A, i.e.,

ρB = TrA (ρ) = 1
2 (|α〉〈α| + |−α〉〈−α|) . (12)
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Each term in Eq. (10) could be directly calculated as〈
ÔA ⊗ Ô

on/off
B,eff

〉
= 2 cos θe−ηB (|α|2+|β|2) sinh(2ηB |α||β| cos 	)

+ 2 sin θe−(2−ηB )|α|2−ηB |β|2 cos(2ηB |α||β| sin 	 − φ)

− sin θe−2|α|2 cos φ, (13)

TrB
[
Ô

on/off
B,eff ρB

] = 2e−ηB (|α|2+|β|2) cosh(2ηB |α||β| cos 	) − 1
(14)

for photon on/off measurements and〈
ÔAÔ

parity
B,eff

〉 = cos θe−2ηB (|α|2+|β|2) sinh(4ηB |α||β| cos 	)

+ sin θe−2(1−ηB )|α|2−2ηB |β|2

× cos(4ηB |α||β| sin 	 − φ), (15)

TrB
[
Ô

parity
B,eff ρB

] = e−2ηB (|α|2+|β|2) cosh(4ηB |α||β| cos 	)

(16)

for photon number parity measurements.

III. OPTIMIZATION

In order to observe violation of the Bell-CHSH inequality,
it is important to find optimizing conditions for local unitary
variables under which the Bell functions have largest values.
The optimizing conditions presented throughout this paper are
numerically found [54], and wherever possible, we try to find
corresponding analytical expressions.

A. Perfect photodetector efficiency

We first suppose perfect efficiencies for all detectors
used for Bell inequality tests. In the case of photon on/off
measurements, optimizing conditions can be obtained as [39]

ξ1 = −π

4
, ξ2 = 0, β1 = −β2 = −|β| (17)

with |β| satisfying

|β| [1 + sinh (2|α||β|)] = |α| cosh (2|α||β|) . (18)

We plot the Bell function in Fig. 1 and note that as the coherent
amplitude |α| increases the maximized Bell value increases up
to |B|on/off

max ≈ 2.61 for |α| ≈ 0.664. However, Fig. 1 also shows
that further increase of |α| results in lower maximized Bell
values. This can be attributed to the fact that the probability
of “no-click” on a photodetector becomes lower when |α|
becomes larger [12].

We also find the optimizing conditions for photon number
parity measurements as

ξ1 = −π

4
, ξ2 = i

π

4
, β1 = −β2 = −i|β| (19)

with |β| satisfying tan [4|α||β|] = (|α| − |β|)/(|α| + |β|)
nearest to zero. One may expect that the Bell value would
increase as |α| increases because probabilities to have even
and odd photon numbers in a coherent state become equal
as |α| → ∞. In practice, we note that Bell value of parity
measurements rapidly approaches Cirel’son’s bound 2

√
2

when |α| 
 1.

Α

FIG. 1. (Color online) Maximized Bell value |B|max for varying
α with perfect detector efficiency. The solid curve refers to photon
on/off measurements, while the dashed curve refers to photon number
parity measurements.

B. Imperfect detection for coherent-state fields

Now we consider the situation of perfect polarization
measurements (ηA = 1) and imperfect coherent field mea-
surements (ηB �= 1). Optimizing conditions for photon on/off
measurements can be obtained by ξ1 = −π/4, ξ2 = 0, and
β1 = −β2 = −|β| to be real with |β| satisfying

|β|e−2(1−ηB )|α|2+|β| sinh(2ηB |α||β|)
− |α| cosh(2ηB |α||β|) = 0. (20)

In this case, the Bell value becomes

Bon/off(ξ1,ξ2,β1,β2)

= 4e−ηB (|α|2+|β|2)[e−(1−ηB )|α|2

+ sinh(2ηB |α||β|)] − 2e−2|α|2 . (21)

Figure 2 shows that the maximum Bell value is obtained
for 0.66 < |α| < 0.71 and the optimizing coherent amplitude

Α Η

Α

Α Η

Α

FIG. 2. (Color online) (a) Maximized Bell value for on/off
measurements |B|on/off

max and (b) optimizing |α|opt for each
coherent measurement detection efficiency. (c) Maximized Bell value
for parity measurements |B|parity

max and (d) optimizing |α|opt. In both the
cases, the detection efficiency ηB for the coherent-state part decreases
by 0.1 from the perfect value (ηB = 1) to ηB = 0.5.
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Α

Η

Α
Η

FIG. 3. (Color online) Maximized Bell-CHSH functions in terms
of detection efficiency η for both modes and coherent amplitude α

for (a) on/off and (b) parity measurement schemes. The detection
efficiency threshold to violate the Bell-CHSH inequality is about
67% when the coherent amplitude is low.

|αopt| monotonically decreases as the detector efficiency
increases. Violation of the Bell-CHSH inequality occurs until
the detection efficiency reaches 0.5. This result is consistent
with the equivalent Bell inequality test using entanglement
between an atom and a coherent state in a cavity [39].

We find that optimizing conditions for photon number parity
measurements are ξ1 = −π/4, ξ2 = iπ/4, and β1 = −β2 =
−i|β| to be pure imaginary. Here, |β| is the solution of

tan(4ηB |α||β|) = |α| − |β|
|α| + |β| (22)

nearest to zero, and the Bell function is

Bparity(ξ1,ξ2,β1,β2)

= 2e−2(1−ηB )|α|2−2ηB |β|2 [cos(4ηB |α||β|) + sin(4ηB |α||β|)].
(23)

The optimizing coherent amplitude |αopt| increases when the
detection efficiency becomes larger. This is opposite to the
case of an on/off measurement scheme, due to the fact when
the efficiency of the photon number parity measurement is
low, |α| should be small to reduce the possibility of parity
flips. In most of the imperfect detector efficiency conditions,
the on/off measurement scheme gives higher violation of the
Bell-CHSH inequality than the parity measurement scheme.
However, the values of the detection efficiency required to
violate the Bell-CHSH inequality are the same (50%) for both
schemes.

Η

Α

Α

Α

Α

Α

Η

ΑΑΑ

Α

Α

FIG. 4. (Color online) Maximum Bell value via detector effi-
ciency with varying coherent amplitude from 0.1 to 0.5 for the
on/off measurement scheme. The right-hand-side figure represents
the boxed region of the left-hand-side one.
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FIG. 5. (Color online) Maximum Bell values against detection
efficiency with varying coherent amplitudes from 0.1 to 0.5 for the
parity measurement scheme. The right-hand-side figure represents
the boxed region of the left-hand-side one.

C. Imperfect detectors for both measurements

We now consider the most realistic case in which both the
polarization measurement and the coherent field measurement
are imperfect (ηA < 1 and ηB < 1). In this case, a nontrivial
calculation is needed to obtain the optimizing conditions. It is
still sufficient to take real ξ and β for optimizing conditions of
photon on/off measurements, but with |β1| �= |β2|. On the other
hand, the optimizing parameters for photon number parity
measurements tend to have different conditions by detection
efficiency of photodetector. When the detection efficiency is
high, we find |ξ1| = |ξ2| = π/4 and β1,β2 to be pure imaginary
for the optimization. If the detector efficiency is low, the
optimizing conditions could be chosen to be the same with
those of the on/off measurement scheme (see the Appendix).

We first assume the same detection efficiency ηA = ηB = η

on the polarization and the coherent field measurements.
Figure 3 shows that the degree of Bell violation and the
optimizing coherent amplitudes for both the measurement
schemes decrease when the detector efficiency η decreases.
For example, with η = 0.8, on/off measurements give the
maximum Bell violation of |B|on/off

max ≈ 2.091 at |α| ≈ 0.458,
while parity measurements give |B|parity

max ≈ 2.035 at |α| ≈
0.293. If detector efficiency becomes η = 0.7, the maximum
Bell value and the optimizing coherent amplitude decrease to
|B|on/off

max ≈ 2.0022 (|α| ≈ 0.155) and |B|parity
max ≈ 2.0006 (|α| ≈

0.078) for each measurement scheme. Figures 4 and 5 reveal
that there is a trade-off between the degree of Bell violation and
the detector efficiency threshold by using different coherent
amplitudes |α|. Employing a low coherent amplitude demands
low detection efficiency in order to see Bell inequality violation
but the degree of the violation would be small. Also we
note from Fig. 6(a) that with symmetric detector efficiency

Η Η

Α

FIG. 6. (Color online) (a) Comparison of Bell violation |B|max

and (b) optimizing coherent amplitude |α|opt between on/off (solid
line) and parity (dashed line) measurements assuming symmetric
detector efficiency η. On/off measurements give higher Bell value
than parity measurements for η < 0.9868.
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Η

Η

Η
Η

FIG. 7. (Color online) Maximized Bell-CHSH value as a function
of detection efficiencies for (a) on/off and (b) parity measurement
schemes. Axis labels ηA and ηB refer to polarization (single
photon) and coherent field measurement efficiencies, respectively.
The optimizing coherent amplitudes were taken for each detection
efficiency.

η lower than 98.68%, on/off measurements provide higher
Bell violation than parity measurements.

We numerically find that the Bell-CHSH inequality vio-
lation occurs until the detection efficiency reaches 67% for
both measurement schemes as presented in Fig. 3. This value
of the detection efficiency is lower than 82.8% obtained by
employing maximally entangled states and similar to the
threshold efficiency for the Bell’s inequality test using non-
maximally entangled states [22]. We note that the maximum
Bell violation occurs at |α| < 0.664 for on/off measurements
of any symmetric detector efficiency higher than the threshold
efficiency 67%. Similarly, the optimizing coherent amplitude
for parity measurements is within the range |α| < 1.0 when the
detector efficiency is between the threshold (67%) and 97.7%
[see Fig. 6(b)].

In real experiments, actual values of the detection efficiency
for the two separate local measurements may be different.
This realistic situation could be studied by taking the effective
joint measurement defined by Eq. (11) with local detection
efficiencies ηA and ηB . We plot the numerically optimized Bell
function together with threshold regions for each measurement
scheme in Fig. 7. The optimizing conditions have been found
through nontrivial calculations as detailed in the Appendix. As
presented in Fig. 8, the on/off measurement scheme provides
higher violation of the Bell-CHSH inequality than the parity
measurement scheme for most values of the detector efficiency.

Η

Η

FIG. 8. (Color online) Subtracted value |B|parity
max − |B|on/off

max , val-
ues for different detection efficiencies ηA and ηB . Each |B|max is
obtained by taking its optimizing coherent amplitude.

Only when the coherent field detection efficiency ηB is close
to 1, parity measurements give higher Bell violation. Figure 7
shows that the conditions for the Bell-CHSH inequality to be
violated are similar for two different measurement schemes.
This can be attributed to the fact that the probability distribu-
tions for two different measurement schemes (i.e., “click” vs
“no-click” for the on/off scheme and “odd” vs “even” or the
parity one) are similar for low coherent amplitudes and low
detection efficiency leads to the same optimizing conditions
for both measurement schemes.

IV. REMARKS

We have studied a Bell inequality test with hybrid en-
tanglement between polarization of a single photon and
a coherent state field. We have investigated two different
kinds of measurements, on/off and photon number parity
measurement, on the coherent field to find Bell violations with
optimizing conditions of perfect and realistic detectors. With
perfect detectors, on/off measurements give the maximum Bell
violation of ≈2.61 at α ≈ 0.664, while parity measurements
give the violation approaching Cirel’son’s bound (2

√
2) for

large values of the coherent amplitude (α 
 1).
In order to see the Bell-CHSH inequality violation without

the detection loophole, the detector efficiency η > 67% is
required for both on/off and parity measurement schemes.
It is important to note that small coherent amplitudes for
hybrid entanglement are needed to obtain the low required
efficiency, while there is a trade-off between the threshold
efficiency and the degree of Bell violation in terms of the
coherent amplitudes. Nevertheless, a coherent amplitude of
|α| < 1.0 is sufficient to obtain the maximum Bell violation
for most cases of the detection efficiency. Comparing two
different measurement schemes, we have found that on/off
measurements provide higher violation of Bell inequality than
parity measurements under realistic conditions (η < 98.68%),
although the violation does not reach Cirel’son’s bound.
However, the threshold values of detection efficiency to
violate Bell inequality are similar between both measurement
schemes.

Our results may be used to experimentally explore
loophole-free Bell inequality tests. Required detection effi-
ciency for a loophole-free Bell test is within reach of current
technology [55–57]. The generation of hybrid entanglement
is a challenging task since it requires a clean cross-Kerr
nonlinearity, while efforts are being made to obtain high-
fidelity cross-Kerr interactions [50–52]. It is also possible,
in principle, to approximately generate arbitrary multimode
entangled states using single-photon sources, coherent states,
and single-photon detectors [58]. In this context, a possible
attempt for the generation of hybrid entanglement is to explore
combinations of experimentally available photon addition
and subtraction techniques [59–64] as investigated for the
generation of some exotic quantum states [65–67].

It is interesting to note that coherent states are considered
most classical among all pure states, while single photons
are typical microscopic quantum systems. In this sense, Bell
inequality tests using the optical hybrid states may reveal
a significant feature of nonlocality between quantum and
classical systems. It will be an interesting future work to
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Η

Η

FIG. 9. (Color online) Optimizing conditions for parity measure-
ments with detection efficiencies ηA and ηB . Shaded areas I and II
are regions where the Bell-CHSH inequality is violated. Region I
has optimizing conditions with real ξ and β, while region II has
optimizing conditions with |ξ | = π/4 and pure imaginary β.

explore quantum nonlocality with optical hybrid entanglement
using “classical” measurements [68,69].
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APPENDIX: OPTIMIZING CONDITIONS
FOR IMPERFECT DETECTOR EFFICIENCY

1. On/off measurements

We have numerically found maximum Bell values and
corresponding optimizing conditions [54]. After numerical
trials, we find that it is sufficient to take real values of
the unitary parameters ξ and β in order to obtain those
maximum Bell values for on/off measurements. Under this
condition, Eqs. (13) and (14) can be represented in terms of θ

and |β| as

〈
ÔA ⊗ Ô

on/off
B,eff

〉 = ∓2 cos θe−ηB (|α|2+|β|2) sinh(2ηB |α||β|) − sin θe−2|α|2 + 2 sin θe−(2−ηB )|α|2−ηB |β|2 ,
(A1)

TrB
[
Ô

on/off
B,eff ρB

] = 2e−ηB (|α|2+|β|2) cosh(2ηB |α||β|) − 1,

where ∓ corresponds to negative or positive β. The Bell function B can be constructed using Eqs. (5) and (11). In order to find
optimizing values, we take derivatives of B to be zero with respect to each parameter as{

∂B

∂θ1
,
∂B

∂θ2
,
∂B

∂β1
,
∂B

∂β2

}
= 0, (A2)

which leads to a set of equations

tan θ1 = e−2(1−ηB )|α|2 (e−ηB |α|2 − e−ηB |β1|2 − e−ηB |β2|2 )

e−ηB |β1|2 sinh(2ηB |α||β1|) − e−ηB |β2|2 sinh(2ηB |α||β2|)
,

tan θ2 = − e−2(1−ηB )|α|2 (e−ηB |β1|2 − e−ηB |β2|2 )

e−ηB |β1|2 sinh(2ηB |α||β1|) + e−ηB |β2|2 sinh(2ηB |α||β2|)
,

[|β1| sinh(2ηB |α||β1|) − |α| cosh(2ηB |α||β1|)](cos θ1 − cos θ2) − e−2(1−ηB )|α|2 |β1| (sin θ1 − sin θ2) = 0,

{[−|β2| sinh(2ηB |α||β2|) + |α| cosh(2ηB |α||β2|)](cos θ1 + cos θ2) − e−2(1−ηB )|α|2 |β2|(sin θ1 + sin θ2)}
+ 2(1 − ηA)

ηA

[−|β2| cosh(2ηB |α||β2|) + |α| sinh(2ηB |α||β2|)] = 0. (A3)

2. Parity measurements

The scheme based on parity measurements undergoes two different optimizing conditions subject to detection efficiencies ηA

and ηB . Region I in Fig. 9 corresponds to optimizing conditions for low efficiency detectors, where real values of ξ and β are
taken. We apply this condition to Eqs. (15) and (16) and obtain the expectation value as

E
parity,low
eff = ηA[∓2 cos θe−2ηB (|α|2+|β|2) sinh(4ηB |α||β|) + sin θe−2(1−ηB )|α|2−2ηB |β|2 ]

+ (1 − ηA)e−2ηB (|α|2+|β|2) cosh(4ηB |α||β|), (A4)
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where θ = −2ξ and ∓ corresponds to negative or positive β. Using Eq. (A2), we obtain a set of equations,

tan θ1 = − e−2(1−2ηB )|α|2 (e−2ηB |β1|2 + e−2ηB |β2|2 )

e−2ηB |β1|2 sinh(4ηB |α||β1|) − e−2ηB |β2|2 sinh(4ηB |α||β2|)
,

tan θ1 = − e−2(1−2ηB )|α|2 (e−2ηB |β1|2 − e−2ηB |β2|2 )

e−2ηB |β1|2 sinh(4ηB |α||β1|) + e−2ηB |β2|2 sinh(4ηB |α||β2|)
,

[|β1| sinh(4ηB |α||β1|) − |α| cosh(4ηB |α||β1|)](cos θ1 − cos θ2) − e−2(1−2ηB )|α|2 |β1|(sin θ1 − sin θ2) = 0,

{[−|β2| sinh(4ηB |α||β2|) + |α| cosh(4ηB |α||β2|)](cos θ1 + cos θ2) − e−2(1−2ηB )|α|2 |β2|(sin θ1 + sin θ2)}
+ 2(1 − ηA)

ηA

[−|β2| cosh(4ηB |α||β2|) + |α| sinh(4ηB |α||β2|)] = 0, (A5)

and find the optimizing conditions.
Optimization for the high detection efficiencies (region II in Fig. 9) can be obtained by taking |ξ1| = |ξ2| = π/4 and β as

pure imaginary number. The expectation value then becomes

E
parity,high
eff = ηAe−2(1−ηB )|α|2−2ηB |β|2 cos(4ηB |α||β| ± φ) + (1 − ηA)e−2ηB (|α|2+|β|2) cosh(4ηB |α||β|), (A6)

where φ is a phase factor of ξ and ± corresponds with negative or positive −iβ. In this case, we take similar steps with Eq. (A2)
but using a set of parameters {φ1, φ2, |β1|,|β2|}, and find optimizing conditions by solving a set of equations

e−2ηB |β1|2 sin (4ηB |α||β1| + φ1) = e−2ηB |β2|2 sin (4ηB |α||β2|−φ1) ,

e−2ηB |β1|2 sin(4ηB |α||β1| + φ2) = −e−2ηB |β2|2 sin(4ηB |α||β2|−φ2),

|β1|[cos(4ηB |α||β1| + φ1) − cos(4ηB |α||β1| + φ2)] + |α|[sin(4ηB |α||β1| + φ1) − sin(4ηB |α||β1| + φ2)] = 0,

|β2|[cos(4ηB |α||β2| − φ1) + cos(4ηB |α||β2| − φ2)] + |α|[sin(4ηB |α||β2| − φ1) + sin(4ηB |α||β2| − φ2)]

+ 2(1 − ηA)

ηA

|β2|e2(1−2ηB )|α|2 = 0. (A7)
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Phys. Rev. A 66, 043803 (2002).
[12] H. Jeong, W. Son, M. S. Kim, D. Ahn, and Č. Brukner, Phys.
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R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 93, 130409
(2004).

[34] S.-W. Ji, J. Kim, H.-W. Lee, M. S. Zubairy, and H. Nha, Phys.
Rev. Lett. 105 170404 (2010).

[35] J. B. Brask, N. Brunner, D. Cavalcanti, and A. Leverrier, Phys.
Rev. A 85, 042116 (2012).

[36] N. Sangouard, J.-D. Bancal, N. Gisin, W. Rosenfeld, P. Sekatski,
M. Weber, and H. Weinfurter, Phys. Rev. A 84, 052122 (2011).

[37] N. Spagnolo, C. Vitelli, M. Paternostro, F. De Martini, and
F. Sciarrino, Phys. Rev. A 84, 032102 (2011).

[38] C. Simon and W. T. M. Irvine, Phys. Rev. Lett. 91, 110405
(2003).

[39] J. Park, M. Saunders, Y.-i. Shin, K. An, and H. Jeong, Phys. Rev.
A 85, 022120 (2012).
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