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We propose a scheme to realize deterministic quantum teleportation using linear optics and hybrid qubits.
It enables one to efficiently perform teleportation and universal linear-optical gate operations in a simple and
near-deterministic manner using all-optical hybrid entanglement as off-line resources. Our analysis shows that our
approach outperforms previous ones when considering both the resource requirements and fault-tolerance limits.
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I. INTRODUCTION

Quantum computers are expected to offer phenomenal
increases of computational power over classical computers [1].
There are many different approaches to implementations of
quantum computers based on various physical systems while
scalable quantum computation in a fault-tolerant manner is still
beyond current technology. Optical models have some promi-
nent advantages such as relatively quick operational time com-
pared to decoherence time [2–4]. However, massive resource
requirements and the gap between the fault-tolerance limit and
the realistic error rate should be significantly reduced [4].

Certain properties of light can be useful to implement
qubits for optical quantum information processing. Typically,
photons as “particles of light” are considered to encode
information with a well-chosen degree of freedom such as
horizontal and vertical polarization states, |H 〉 and |V 〉. A
major difficulty in this approach is to realize two-qubit
gates since photons seldom interact with each other, while
single-qubit operations are straightforward [2–4]. In principle,
scalable quantum computation can be achieved without inline
nonlinear interactions [5], which is often called linear optical
quantum computing (LOQC).

However, its practical implementation is difficult because
LOQC gates are inherently nondeterministic [5]. In the context
of LOQC, quantum teleportation can be used to perform de-
manding two-qubit gates using the gate teleportation protocol.
However, the Bell-state measurement, which forms the key
element of the teleportation protocol, cannot be performed
deterministically using linear optics in this approach. Only two
of the four Bell states can be identified and thus the success
probability cannot exceed 50% [6]. It requires a very large
number of resources in order to increase the success probability
of gate operations for quantum computing [5] or that of the
Bell-state measurement itself [7].

In general, any two distinct field states can be explored
for a qubit basis [4]. Along this line, the coherent-state
quantum computing (CSQC) has been developed with its own
merit [8–12]. In CSQC, two coherent states, |α〉 and |−α〉
with amplitudes ±α, are used to form a qubit basis, and
equal superpositions of coherent states, e.g., |α〉 + |−α〉 [13],
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are required as resources [11]. Using this encoding scheme,
the Bell-state measurement for coherent-state qubits (Bα)
can be performed in a near-deterministic manner as α gets
large [8]. However, a necessary single-qubit operation, i.e.,
Z rotations, produces a cumbersome type of error due to
the nonorthogonality between |α〉 and |−α〉 [9,12]. This
makes it difficult to implement quantum teleportation and gate
operations in a deterministic way [12].

Toward implementations of optical quantum computation,
it is important to compare existing schemes and identify
the most promising and efficient ones. Ralph and Pryde
made such a comparison [4] among major optical schemes
including LOQC based on parity states (pLOQC) [14,15] and
the cluster-state approach [16–18], CSQC, and the nonlinear
Zeno protocol [19,20]. They identified pLOQC and CSQC as
the best ones when considering both the loss threshold for fault-
tolerant quantum computing and the resource requirements [4].

In this paper, we devise an approach based on all-optical
hybrid qubits devised to combine advantages of LOQC
and CSQC. In particular, we show that near-deterministic
quantum teleportation can be performed using linear optics
and hybrid qubits. Our approach enables one to perform near-
deterministic universal gate operations for efficient scalable
quantum computation. Remarkably, it outperforms LOQC and
CSQC when resource requirements and error thresholds are
considered together. Our work thus paves an efficient way to-
ward the optical realization of practical quantum computation.

II. DETERMINISTIC QUANTUM TELEPORTATION
AND UNIVERSAL GATE OPERATIONS

USING HYBRID QUBITS

A. Hybrid optical qubits and single-qubit operations

In our approach, the orthonormal basis to define optical
hybrid qubits is

{|0L〉 = |+〉|α〉, |1L〉 = |−〉|−α〉},
where |±〉 = (|H 〉 ± |V 〉)/√2 and α is assumed to be real
without losing generality. As we see, this approach enables us
to overcome particularly weak points of both LOQC and CSQC
at the same time. The Z-basis measurement can be performed
by a single measurement on either of the two physical modes.
It can be done on the single-photon mode by a polarization
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measurement on the bases |+〉 and |−〉 or on the coherent-state
mode using an ancillary coherent state [9].

In our scheme, the Pauli X operation, X̂, can be performed
by applying a bit flip operation on each of the two modes.
The bit flip operation on the single-photon mode, |+〉 ↔ |−〉,
is implemented by a polarization rotator, and the operation on
the coherent-state mode, |α〉 ↔ |−α〉, by a π phase shifter. An
arbitrary Z rotation (Ẑθ ) is performed by applying the phase
shift operation only on the single-photon mode: {|+〉,|−〉} →
{|+〉,eiθ |−〉}, and no operation is required on the coherent-state
mode. This is a significant advantage over CSQC, in which Z

rotations are highly nontrivial and cause a heavy increase of
the circuit complexity [12].

B. Resource states for universal gate operations

In order to construct a universal set of gate operations, Pauli
X, arbitrary Z (phase) rotation, Hadamard, and controlled-Z
(CZ) gates suffice [1]. In our scheme, the necessary resource
states for universal gate operations are the hybrid pairs,
|H 〉|α〉 + |V 〉|−α〉. We also present an alternative method
using both the two-photon pairs, |H 〉|H 〉 + |V 〉|V 〉, and the
hybrid pairs. As we discuss, each of the two methods has its
own merit, but overall the method using only hybrid pairs
shows better performance. A hybrid pair can be generated
in principle by performing a weak cross-Kerr nonlinear
interaction between a single photon and a strong coherent
state together with a displacement operation [21–23]. It has
been shown that a high-fidelity cross-Kerr nonlinearity can be
obtained [24–26] despite a limitation in optical fibers [27,28].
We need only small-scale hybrid pairs (e.g., α ≈ 1), of which
the demonstration using gradient echo memory [25] would be
experimentally feasible in the foreseeable future.

C. Near-deterministic quantum teleportation using linear optics

A teleportation protocol is required to perform Hadamard
and CZ operations [29]. Using our approach, teleportation
can be performed in a simple and near-deterministic manner.
We emphasize that this is an extremely difficult task in the
framework of LOQC because of the limited success probability
of the Bell state measurement using linear optics up to 50% [6]
or the required large number of modes prepared in single-
photon states for a high-success teleporter [5]. It is also difficult
in CSQC due to the difficulty in performing deterministic Z

rotations, which is the cost of using a nonorthogonal qubit
basis [12].

In our teleportation scheme, the Bell measurement for an
optical hybrid qubit can be performed using two smaller Bell
measurement units as shown in Fig. 1. A coherent-state Bell
measurement, Bα , is implemented by a 50:50 beam splitter and
two photon number parity detectors (PNPDs) [8]. It unambigu-
ously discriminates among all four coherent Bell states, and the
success probability is 1 − exp(−2α2) [8]. A nondeterministic
Bell measurement or type II fusion operation [6], BII, identifies
only two of the Bell states, e.g., (|H 〉|V 〉 ± |V 〉|H 〉)/√2,
using four on-off photodetectors with success probability 1/2
(details of Bα and BII are reviewed in Appendix A).

Suppose that an unknown hybrid qubit, |φ〉 = a|0L〉 +
b|1L〉, is to be teleported using entangled channel |�C〉 ∝

X̂ Ẑ

|φ

|

Bα

BII

φ

|φ

(j, k)

j k

Table **

ΨC

**

Operation 

(even, 0) : j=0, k=0
(odd, 0) : j=0, k=1
(0, even) : j=1, k=0

(0, odd) : j=1, k=1

Flip k (0 ↔ 1)

(0, 0) (H, H) or (V, V):

j=0, k=1(H, V) or (V, H):

j=1, k=1

Failure

X̂ Ẑ
j k

(H, H) or (V, V)
        or (H, V) or (V, H):

Otherwise

Bα BII

No flip

Otherwise

±

±

α±

α±

FIG. 1. (Color online) Scheme for near-deterministic quantum
teleportation for a hybrid qubit using linear optics and photon
detection. An unknown hybrid qubit, |φ〉 = a|0L〉 + b|1L〉, is tele-
ported through channel |�C〉 ∝ |0L〉|0L〉 + |1L〉|1L〉. Bα and BII are
performed on coherent-state modes and photon modes, respectively,
between the qubit and one party of the channel state. All possible
outcomes and corresponding feed-forward operations are presented
in the table. A failure occurs when both Bα and BII fail. The failure
probability is found to be Pf = exp(−2α2)/2. In order to perform
Hadamard and CZ gates, entangled states |Z〉 and |Z′〉 should be
used, respectively, instead of |�C〉.

|0L〉|0L〉 + |1L〉|1L〉. The smaller Bell measurements, Bα and
BII, are performed in each mode together with one part
of the channel |�C〉 as depicted in Fig. 1. According to
the measurement results, appropriate Pauli operations are
determined as shown in the table of Fig. 1, which completes
the teleportation process. For example, if the “upper” detector
of Bα (that employs two PNPDs) detects an odd number of
photons while the “lower” one does not click, the outcome of
Bα is (odd, 0) and we assign j = 0 and k = 1 as shown in the
table of of Fig. 1. At the same time, in the BII measurement
that uses four on-off detectors, if one detector among the
upper two and another from the lower two click, this means
that the outcome is (H,H ) or (H,V ) or (V,H ) or (V,V ) in
Fig. 4 of Appendix A [6]. In this case, we flip the assigned
values as described in the table so that j = 1 and k = 0 are
obtained. (Otherwise, j and k remain unchanged.) Finally, the
feedforward operation X̂j Ẑk on the output hybrid qubit in the
channel completes the teleportation.

The process will be successful unless both Bα and BII fail;
even though the Bα fails, the input state can be fully teleported
if BII is successful, as shown in the table of Fig. 1. This leads
to the failure probability of

Pf = 1
2e−2α2

, (1)
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which outperforms the previous schemes that require massive
overheads with repetitive applications of teleporters [5,12].
For example, a 99% success rate of teleportation is achieved
by encoding with α = 1.4.

Of course, a maximally entangled state, |�C〉, in the hybrid
basis is required in a quantum channel for teleportation. It
can be generated, for example, by combining a hybrid pair
of amplitude

√
2α and a two-photon pair by BI as shown in

Fig. 2(a). A state in the form of |H 〉|α〉|α〉 + |V 〉|−α〉|−α〉
is obtained using a 50:50 beam splitter from the hybrid
pair of amplitude

√
2α. The BI operation then combines it

with the two-photon pair so as to generate |�C〉. Detailed
analysis and an alternative generation scheme are introduced
in Appendix B.

D. Hadamard and CZ operations

In order to perform the Hadamard and CZ gates, entangled
states |Z〉 ∝ |0L〉|0L〉 + |0L〉|1L〉 + |1L〉|0L〉 − |1L〉|1L〉 and
|Z′〉 ∝ |0000〉 + |0011〉 + |1100〉 − |1111〉, where |0000〉 =
|0L〉|0L〉|0L〉|0L〉 and so on, should be used as the teleportation
channel, respectively. We present two different schemes, GI

and Gα , to generate |Z〉 as shown in Fig. 2(b). Using GI,
two BI operations are performed on one two-photon pair
and two hybrid pairs so as to link them. The other method,
Gα , requires three hybrid pairs with BI and Bα operations.
One of those hybrid pairs has amplitude

√
2α to obtain a

three-mode state |+〉|α〉|α〉 + |−〉|−α〉|−α〉 by a 50:50 beam
splitter. Appropriate feedforwards with Pauli operations are
necessary for all BI and Bα operations dependent on the

G GαI

Z|
BI

BI

±α

±α H/V

H/V

±

BI

±α ± H/V ±α

±α ±±α

Bα

±α±α H/V ±H/V

BI(a)

(b)

|ΨC

H/V

FIG. 2. (Color online) Schemes to prepare entangled channels.
(a) A maximally entangled state, |�C〉, is generated using a BI

operation out of a two-photon pair and a hybrid pair of
√

2α. In
a single-photon mode, ± and H |V denote bases {|+〉,|−〉} and
{|H 〉,|V 〉}, respectively, which can be modified by a polarization
rotation before performing the BI operation. A 50:50 beam splitter,
used to split the coherent-state part with amplitude

√
2α into two

modes, is omitted in the figure. (b) Two schemes, GI and Gα ,
to generate |Z〉. In GI, two BI operations are performed on one
two-photon pair and two hybrid pairs so as to link them. The other
method, Gα , requires three hybrid pairs with BI and Bα operations.
One of those hybrid pairs has amplitude

√
2α to obtain a three-mode

state |+〉|α〉|α〉 + |−〉|−α〉|−α〉 by a 50:50 beam splitter (omitted
in the figure). Appropriate feedforwards with Pauli operations are
necessary for all BI and Bα operations dependent on the measurement
outcome.

measurement outcome. The four-qubit entangled state, |Z′〉,
can also be generated in a similar manner with about twice the
resources using either GI or Gα . It should be noted that only
hybrid pairs are required when Gα is chosen as the generation
strategy, while both two photon pairs and hybrid pairs are
required when using GI. Details of all generation schemes of
entangled states are presented in Appendix B. We emphasize
that these states are prepared as off-line resources, while linear
optical elements with photon detections are sufficient for inline
operations.

III. PERFORMANCE ANALYSIS FOR FAULT-TOLERANT
AND SCALABLE QUANTUM COMPUTATION

A. Error analysis

Errors due to photon losses are considered a major detri-
mental factor in optical quantum computing [4]. Some errors
are immediately noticed during gate operations, which are
called locatable errors [4]. Unlocatable errors are detectable
only with an error-correcting code. Losses at single-photon
modes are locatable by BII whenever performing teleportation
for Hadamard or CZ gates. Furthermore, a missing photon
at a single-photon mode is immediately compensated in the
output qubit |φ〉 as far as Bα succeeds, as clearly seen in
Fig. 1. However, losses at coherent-state modes may cause
unlocatable errors besides locatable ones. This is due to the
fact that a coherent state does not contain a definite number of
photons so that it cannot be noticed when a photon is lost.

We analyze locatable and unlocatable errors with loss rate
η. The analytical solution of the hybrid qubit and error rates
under loss effects can be obtained using the master equation,
and the full results are presented in Appendix C. Under the loss
effects, the failure probability Pf for teleportation in Eq. (1)
is modified to

P ′
f = (1 − η)

e−2α′2

2
+ η

2

1 + e2α′2 , (2)

where α′ = √
1 − ηα. If a gate operation fails, the teleported

qubit is assumed to experience depolarization and become
fully mixed. This is equivalent to applying a random Pauli
operation to the qubit; i.e., Z and X Pauli errors occur
independently with equal probabilities. One can also assume
that if a loss occurs in either photon or coherent-state modes,
the hybrid qubit experiences a Pauli Z error with probability
1/2. We also model errors due to losses in the generation
processes of |Z〉 and |Z′〉 as Pauli X and Z errors. We
assume that the decrease in amplitude α by loss can be
compensated whenever using the teleportation scheme by
changing the amplitude of output state of the channel [12].
Based on these models and methods, we have analytically
obtained probabilities of aforementioned errors in terms of η

(Appendix C).
In order to realize scalable quantum computation, it should

be justified that arbitrarily large computation can be imple-
mented with small errors, which is called fault tolerance [30].
In this sense, a fault-tolerant noise threshold can be obtained
such that if the amount of noise per operation is below this
threshold, it is possible to realize arbitrary large-scale quantum
computers with appropriate error corrections [1,31,32].
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We employ an error-correction protocol with several levels
of concatenation based on the circuit-based telecorrection [18].
Using the telecorrection protocol [18], noise thresholds and
resource requirements in cluster-state LOQC [18], pLOQC
[15], and CSQC [12] were previously investigated. In order to
compare our approach with the previous ones, we follow the
same analysis using the seven-qubit STEANE code [33] based
on the telecorrection protocol. We assume our error model for
the lowest level of concatenation. For higher levels, the noise
model and error-correction protocol are identical to those of
Ref. [18]. We perform a numerical simulation (Monte Carlo
method using C++) for one round of the error correction
for the first-level concatenation. The modified telecorrector
circuit is composed of CZ, Hadamard, |+〉 creation, and X-
basis measurement [12].

We carried out a series of simulations for a range of loss
rate η and amplitude α. The resulting rates of unlocatable and
locatable errors are used for the next level of concatenation for
the error correction. If the error rates tend to zero with certain
values of η and α in the limit of many levels of concatenation,
fault-tolerant computing is possible with those values. In this
way, the noise threshold curves are obtained.

B. Resource requirements

Once a fault-tolerant model is determined, the number
of resources required for one round of error correcting may
be considered as another crucial factor for scalability. We
consider two-photon pairs and hybrid pairs to be resources.
We estimate the number of resources required for one round
of error correction in the lowest level of concatenation. It is
assumed, following the estimation in Refs. [4,12], that the total
number of operations in one round of the telecorrection scheme
is about 1000 [4] and resources are used in each operation as
the following fractions [12]: memory 0.284, Hadamard 0.098,
CZ 0.343, diagonal state (hybrid-pair) 0.164, and X-basis
measurement 0.111. We also assume parallel productions of
resource states and no reuse of resources to avoid complicated
techniques used for saving resources.

We have two types of generation schemes, GI and Gα ,
which consume different numbers of resources to produce |Z〉
and |Z′〉. When generating |Z〉 by GI, two BI operations (the
success probability of each operation is 1/2) are used to merge
one two-photon pair and two hybrid pairs (i.e., three resources).
Since the success probability of the two BI operations is
1/4, the average number of required resources is 3 × 4 = 12
(i.e., four two-photon and eight hybrid pairs on average are
required). In Gα , on the other hand, BI and Bα are performed
once each to merge three hybrid pairs. The success probability
is then (1 − e−2α2

)/2 because the failure probabilities of Bα

and BII is e−2α2
and 1/2, respectively, as discussed in Sec. II.

Thus, 6/(1 − e−2α2
) hybrid pairs are required in average.

Likewise, when generating |Z′〉, 48 two-photon pairs and
32 hybrid pairs (80 resource states) are used in GI, while
10/(1 − e−2α2

)3 hybrid pairs are required in Gα .
Therefore, the total number of resources required for one

round of error correction is obtained as 98 × 12 + 343 ×
80 + 164 = 28 780 for GI, while it is 98	6/(1 − e−2α2

)
 +
343	10/(1 − e−2α2

)3
 + 164 for Gα , which reduces to 4182
with increasing α.

C. Comparison with LOQC and CSQC

Ralph and Pryde suggest that LOQC and CSQC are the best
schemes for medium-scale quantum computing considering
both the fault-tolerant thresholds and the resource costs [4].
We here present the results of our numerical analysis in order
to compare the performance of our scheme, when it is applied
to scalable quantum computing, with LOQC and CSQC. As
shown in Fig. 3(a) for GI and Gα , the noise threshold level
is obviously higher than CSQC for all region of α while it
is still lower than that of pLOQC (about 2 × 10−3 [15]). The
threshold peak for each generation scheme appears around
α ≈ 1.08 [Fig. 3(a)]. However, further increase of α lowers
the threshold level due to rapid increase of unlocatable errors,
which are more difficult to correct than locatable ones using the
telecorrection protocol [18]. The noise thresholds of GI appear
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FIG. 3. (Color online) Noise thresholds and resource requirements. (a) Noise thresholds based on two generation schemes, GI and Gα ,
obtained using the seven-qubit STEANE code [33]. (b) Resource requirements estimated for one round of error correction based on the
telecorrection protocol. For GI, a constant number (28 780) of resources (two-photon and hybrid pairs) are required irrespective of amplitude
α, while for Gα the required number of resource states tend to decrease rapidly to 4182 with increasing α. Two curves intersect at α ≈ 0.59.
We can take the lower curve between them by choosing Gα for α > 0.59 and otherwise GI. It shows a remarkable improvement compared to
pLOQC (about 1.8 × 105 [15]) and CSQC (about 104 [12]). (c) Ralph-Pryde diagram [4] for the comparison with pLOQC and CSQC. The
hybrid approach using Gα presented in this paper is shown to outperform pLOQC and CSQC.
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to be slightly larger than those of Gα because Gα requires
preparation of hybrid qubits with amplitude

√
2α from the

beginning, as seen in Fig. 2.
Remarkably, our scheme provides a greatly reduced re-

source cost compared to both CSQC and pLOQC. This is
partly due to the near-deterministic nature of our teleportation
protocol. As presented in Fig. 3(b), resource requirements are
phenomenally reduced by Gα since the success rate of Bα

grows rapidly as α increases. However, the success rate of BI

is constant (1/2) and so are the resource requirements with GI.
The diagram in Fig. 3(c) clearly shows that our scheme (with
Gα) shows better performance than pLOQC and LOQC when
both the resource cost and the noise threshold are considered.

IV. REMARKS

In this paper, we have developed an all-optical hybrid
scheme of quantum computation. We have shown that near-
deterministic quantum teleportation can be performed using
linear optics and hybrid qubits. Our approach enables one
to perform near-deterministic universal gate operations for
efficient scalable quantum computation. This approach was
shown to outperform previous ones when resource require-
ments and error thresholds are considered together. The
required off-line resources states are hybrid pairs in the form of
|H 〉|α〉 + |V 〉|−α〉 and only a small value of the amplitude as
α ≈ 1 is required to demonstrate the maximum performance.

Toward fault-tolerant and scalable quantum computation, a
crucial experimental challenge is to enhance the efficiencies of
the photon detectors. In fact, efficiencies of currently available
detectors [34] are far from the required levels to overcome the
fault-tolerant limits. This is a critical problem in any type of
optical approach to quantum computing (including LOQC and
CSQC). Our scheme requires, as CSQC does, photon number-
resolving detectors for parity measurements, and this is one
reason that its fault-tolerant limit is still lower than pLOQC
(but higher than CSQC).

Efficient preparation of the resource hybrid pairs with high
fidelities along with the current progress of optical controls
[4] would be the next challenge in the development of our
scheme. It is known that the fidelities of hybrid pairs generated
using weak nonlinearities in optical fibers are limited [27,28].
Since we only need small-scale hybrid pairs (e.g. α ≈ 1), their
high-fidelity generation may be possible using gradient echo
memory [25].

One may also consider the possibility that there exists more
than one photon in the single-photon part of a hybrid pair
(or one part of a two-photon pair) due to experimental imper-
fections [35]. There effects may be significantly suppressed
by the BI and BII operations during the generation and inline
processes. (see Appendix D for a detailed discussion).

Given the deterministic nature of our scheme and its
performance over the previous ones, we expect that our work
will pave an efficient way for the optical realization of scalable
quantum computation. There exist experimental obstacles
such as highly efficient detectors and high-fidelity resource
states toward realizations of scalable quantum computation. In
fact, the gaps between fault-tolerance limits and efficiencies
of currently available on-off detectors and photon number-
resolving detectors are still formidable [34]. On the other hand,

demonstration of the teleportation scheme for a hybrid qubit
would be experimentally feasible in the foreseeable future.
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APPENDIX A: REVIEW OF BELL-TYPE MEASUREMENTS

Four entangled coherent states, |α〉|α〉 ± |−α〉|−α〉 and
|α〉|−α〉 ± |−α〉|α〉, can be discriminated by coherent-state
Bell measurement, Bα , implemented by a 50:50 beam splitter
and two photon number parity detectors (PNPDs) as shown in
Fig. 4 [8,10]. The four states after passing through the Beam
Splitter (BS) are

|α〉|α〉 + |−α〉|−α〉 BS−→ 1

Ne

|even〉|0〉,

|α〉|α〉 − |−α〉|−α〉 BS−→ 1

No

|odd〉|0〉,

|α〉|−α〉 + |−α〉|α〉 BS−→ 1

Ne

|0〉|even〉,

|α〉|−α〉 − |−α〉|α〉 BS−→ 1

No

|0〉|odd〉,

where |even〉 = Ne(|√2α〉+|−√
2α〉) and |odd〉 =

No(|√2α〉−|−√
2α〉) (with normalization factors Ne

and No) contain only even and odd photon number states,
respectively. Therefore, parity measurements on each output
mode enable one to discriminate between the four Bell states.

α

IB
PBS

45◦

H

V

BII

PBS

90◦ 45◦

45◦

V

V

H

H

B
BS PNPD

45◦

FIG. 4. (Color online) Three Bell-type measurement elements
used for our scheme. A coherent-state Bell measurement, Bα , is
implemented by a 50:50 BS and two photon number parity detectors
(PNPD) [8]. Bα unambiguously discriminates between all four Bell
states and the success probability is 1 − exp(−2|α|2). It fails only
when no photon is detected at both the detectors. A type I fusion
operation [17], BI, is implemented by polarizing beam splitters
(PBSs), wave plates, and photon detectors. It effectively performs
|+〉〈H |〈H | ± |−〉〈V |〈V | with a success probability 1/2 when only
one photon is detected at either detector [17]. A nondeterministic Bell
measurement or modified version of the typeII fusion operation, BII,
identifies only two of the Bell states, |H 〉|V 〉 ± |V 〉|H 〉, with success
probability 1/2. It succeeds only when one detector from the upper
two and another from the lower two click at the same time.

022326-5



SEUNG-WOO LEE AND HYUNSEOK JEONG PHYSICAL REVIEW A 87, 022326 (2013)

A failure occurs when no photon is detected in both the
detectors due to the nonzero overlap of 〈0| ± √

2α〉 = e−α2
.

When Bα is performed on two hybrid qubits, |ψ〉 =
a|+〉|α〉 + b|−〉|−α〉 and |ψ ′〉 = a′|+〉|α〉 + b′|−〉|−α〉,
coherent-state modes of two qubits are mixed by the 50:50
BS, such that the state evolves as

|ψ〉|ψ ′〉 BS−→ 1

2Ne

(aa′|+〉|+〉 + bb′|−〉|−〉)|even〉|0〉

+ 1

2No

(aa′|+〉|+〉 − bb′|−〉|−〉)|odd〉|0〉

+ 1

2Ne

(ab′|+〉|−〉 + ba′|−〉|+〉)|0〉|even〉

− 1

2No

(ab′|+〉|−〉 − ba′|−〉|+〉)|0〉|odd〉,

and the four possible states of remaining photon modes can be
discriminated from the results of the parity measurements on
the output modes of the BS. We note that its failure probability

|〈0|〈0|ψ〉|ψ ′〉|2 = e−2α2
(|a|2 + |b|2)(|a′|2 + |b′|2) = e−2α2

is lower than that obtained in CSQC [8–12] due to the
orthonormality of the hybrid qubit basis, i.e., |a|2 + |b|2 = 1.

In the single-photon mode, two types of Bell measurements
are used in Fig. 4. A type I fusion operation BI [17] performs
a partial Bell measurement on the polarization states of
photons. Its measurement outcome is either H (when a photon
is detected at the upper detector) or V (when a photon
is detected at the lower detector), which determines the
operation actually carried out as |+〉〈H |〈H | − |−〉〈V |〈V | and
|+〉〈H |〈H | + |−〉〈V |〈V | for H and V clicks, respectively. It
fails when two photons or no photon is detected at detectors,
which occurs with probability 1/2.

A type II fusion operation BII [17] performs an incomplete
Bell measurement with which only two out of the four Bell
states are distinguished [36,37]. It can be implemented by
a polarizing beam splitter (PBS), wave plates, and photon
detectors. It succeeds with probability 1/2 when one detector
from the upper two and another from the lower two click at
the same time in Fig. 4 so that two Bell states can be identified
from the results: |H 〉|V 〉 − |V 〉|H 〉 for the clicks (H,H ) or
(V,V ), and |H 〉|V 〉 + |V 〉|H 〉 for (H,V ) or (V,H ).

APPENDIX B: GENERATING ENTANGLED STATES

A maximally entangled state of hybrid qubits |�C〉 ∝
|0L〉|0L〉 + |1L〉|1L〉 can be generated by either of the two
schemes, GI or Gα , described in Fig. 3. In GI, a hybrid pair
with

√
2 times larger amplitude |ψ√

2α〉 = |H 〉|√2α〉 + |V 〉| −√
2α〉 and a two-photon pair |H 〉|+〉 + |V 〉|−〉 are merged by

the BI operation:

(|α〉|α〉|H 〉 + |−α〉|−α〉 |V 〉)(|H 〉︸ ︷︷ ︸
BI

|+〉 + |V 〉|−〉),

where the coherent-state mode was split into two modes by
a 50:50 BS. Then, the resulting state is associated with the
measurement outcome of BI as

(H) Click : |+〉|α〉|+〉|α〉 − |−〉|−α〉|−〉|−α〉,
(V) Click : |+〉|α〉|+〉|α〉 + |−〉|−α〉|−〉|−α〉,

TABLE I. Feedforwards dependent on the results of Bα

Measurement outcomes of Bα Pauli operations

(even, 0) 1
(odd, 0) Ẑ

(0, even) X̂

(0, odd) Ẑ and X̂

(0, 0) Failure

and thus, by applying a Pauli Z operation on any qubit
mode when the outcome is (H), we obtain |�C〉 whenever
BI operation succeeds with probability 1/2.

In Gα , two |+〉|α〉|α〉 + |−〉|−α〉|−α〉 states, obtained
by applying a 50:50 BS to a hybrid pair with amplitude√

2α, are merged by the Bα operation. An appropriate Pauli
operations dependent on the measurement outcome are applied
on the remaining part so that the same state |�C〉 is pro-
duced whenever Bα succeeds with probability 1 − e−2α2

(see
Table I). For example, when the measured outcome is (odd,
0), the resulting state is |+〉|α〉|+〉|α〉 − |−〉|−α〉|−〉|−α〉 and
a Pauli Z operation on one qubit changes it to |�C〉.

A hybrid entangled state |Z〉 ∝ |0L〉|0L〉 + |0L〉|1L〉 +
|1L〉|0L〉 − |1L〉|1L〉 can be generated by either GI or Gα as
shown in Fig. 5. In GI, one two-photon pair in |H 〉|+〉 +
|V 〉|−〉 and two hybrid pairs in |H 〉|α〉 + |V 〉|−α〉 are merged
by two BI operations, and a Pauli Z operation is applied on the
outgoing mode of each BI when the measurement outcome is
(H). Then, |Z〉 is obtained when both BI operations succeed
with probability 1/4. In Gα , three hybrid pairs are merged by
BI and Bα as shown in Fig. 5. Here again a Pauli Z operation is
applied on the outgoing mode when the outcome of BI is (H),
and likewise appropriate Pauli operations (see Table I) are also
applied after Bα operation on the remaining qubit (denoted by
dotted circle in Fig. 5). Thus the total success probability is
given as (1 − e−2α2

)/2 since BI and Bα are used once each in
the generation process.

A four-qubit entangled state |Z′〉 ∝ |0L〉|0L〉|0L〉|0L〉 +
|0L〉|0L〉|1L〉|1L〉 + |1L〉|1L〉|0L〉|0L〉 − |1L〉|1L〉|1L〉|1L〉 can
also be generated by either GI or Gα as shown in Fig. 5.
Two photon pairs and one |Z〉 state (with

√
2 times larger α)

are merged by two BI operations in GI, while two hybrid pairs
and one |Z〉 state (all have

√
2 times larger α) are merged

by two Bα operations in Gα . All BI and Bα are followed by
appropriate Pauli operations dependent on their outcomes. The
success probability of GI is (1/2)4 as it uses four BI operations,
while it is (1 − e−2α2

)3/2 for Gα as it uses one BI and three Bα

operations.

APPENDIX C: ERROR PROBABILITIES
IN LOSSY ENVIRONMENT

In our numerical analysis, we consider errors caused by
photon losses, which are major obstacles to practical optical
quantum computation. The evolution of optical qubits in a
lossy environment can be described by solving a master
equation dρ/dt = γ (Ĵ + L̂)ρ with Ĵ ρ = ∑

i âiρâ
†
i and L̂ρ =

− 1
2

∑
i(â

†
i âiρ + ρâ

†
i âi) [38], where âi(â

†
i ) is the annihilation

(creation) operator for ith mode. If the initial state is a hybrid
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FIG. 5. (Color online) Two schemes, GI and Gα , for generating |Z〉 and |Z′〉 states. In a single-photon mode, ± and H |V denote bases
{|+〉,|−〉} and {|H 〉,|V 〉}, respectively, which can be modified by a polarization rotation. A Pauli Z operation (omitted in figure) is performed
on the output qubit of BI when the measurement outcome of BI is (H ). Likewise, for Bα appropriate Pauli operations are performed on the
remaining qubit (denoted by dotted circle) according to the measurement results as shown in Table I.

qubit |ψ〉 = a|+〉|α〉 + b|−〉|−α〉, it evolves into a mixed
state,

|ψ〉 η−→ (1 − η)

(
1 + e−2ηα2

2
|ψ ′+〉〈ψ ′+|

+ 1 − e−2ηα2

2
|ψ ′−〉〈ψ ′−|

)

+ η

(
1

2N+2
a,b

|φ+〉〈φ+| + 1

2N−2
a,b

|φ−〉〈φ−|
)

, (C1)

where the loss rate is defined as η = 1 − e−γ t . Here |ψ ′±〉 =
a|+〉|α′〉 ± b|−〉|−α′〉 with α′ = √

1 − ηα are possible re-
sulting states of a hybrid qubit when only the amplitude of
the coherent state is reduced, while |φ±〉 = N±

a,b|0〉(a|α′〉 +
b|−α′〉) with normalization factors N±

a,b are possible remain-
ing coherent states when loss occurs in the single-photon
mode. The loss rate η is considered a known value and the
states |ψ ′+〉 and |φ+〉 do not contain any logical errors. On
the other hand, |ψ ′−〉 and |φ−〉 contain Pauli Z errors. Note
that the probabilities of the states |φ±〉 depend on a and
b since coherent state qubits are carrying information in a
nonorthogonal basis. We here choose the worst case of the error
rate, which is obtained from the condition of the minimum
value of N−

a,b. This results in N±
a,b = 1 and the state (C1)

becomes(
(1 − η)

1 + e−2ηα2

2
|ψ ′+〉〈ψ ′+| + η

2
|φ+〉〈φ+|

)

+
(

(1 − η)
1 − e−2ηα2

2
|ψ ′−〉〈ψ ′−| + η

2
|φ−〉〈φ−|

)
Z

, (C2)

where the last two terms represent the states conveying Pauli
Z errors.

Based on the above result, we can investigate all possible
errors caused by losses in our scheme. The failure probability
of teleportation, Pf in Eq. (1), is changed to P ′

f in Eq. (2) by
losses. The modified error probability P ′

f is a weighted sum
of the error probabilities obtained using the loss rate η for the
photon in the single-photon mode and the reduced amplitude

of the coherent state α′. The component in the second term,
2/(1 + e2α′2

), corresponds to the failure probability of the
coherent-state teleportation in the presence of loss obtained
in Ref. [12].

If a Hadamard or CZ gate fails, this means that a hybrid-Bell
measurement failed (or both the hybrid-Bell measurements
failed in the case of a CZ gate). In this case, it can be shown
that the output qubit(s) experience depolarization and become
fully mixed. This can be modeled in our scheme by applying a
random Pauli operation to the qubit, i.e.; Z and X Pauli errors
occur independently with equal probabilities.

The loss in a photon part can be detected whenever
performing a BII operation in teleportation and the loss is
compensated once the teleportation succeeds (i.e., if either BII

or Bα is successful done in the hybrid-Bell measurement). If
photon loss at a photon part (which occurs with probability η)
is noticed, it means that a Pauli Z error might have occurred
with probability 1/2 as implied in Eq. (2).

We also consider errors that may occur in quantum memory
that is used to store qubits that are not undergoing gate
operations. In quantum memory, losses in either photon or
coherent-state mode induce Pauli Z errors with the rate

p = (1 − η)
1 − e−2ηα2

2
+ η

2
= 1

2

{
1 − (1 − η)e−2ηα2}

,

which is obtained by summing the probabilities of the last two
terms in Eq. (C2).

The entangled states |Z〉 and |Z′〉 are necessary resources
for Hadamard and CZ gates in our scheme. Losses in the
generation processes of |Z〉 and |Z′〉 may cause errors in output
qubits of Hadamard and CZ gates. We consider these errors
by assuming that losses occur immediately after the resource
states are produced [12,18]. In this model, photon loss at one
qubit in |Z〉 induces a Pauli Z error, while loss at the other
qubit induces a Pauli X error in a teleportation process for a
Hadamard gate. The error probability for both Pauli Z and X

errors is p, which obtained exactly in the same way as the one
obtained in quantum memory from Eq. (2). Losses in any qubit
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of |Z′〉 induce a Pauli Z error in a CZ gate with probability p

per qubit.
The preparation of the diagonal qubits (i.e., hybrid pairs)

is required for the telecorrection protocol. We also consider
possible errors in the preparation of a diagonal qubit by
assuming that loss occurs immediately after its generation so
that it may convey a Pauli Z error with probability p. It is also
assumed that there is no additional error caused by the X-basis
measurement used in the telecorrection protocol.

APPENDIX D: EFFECTS OF MULTIPHOTON
CONTRIBUTIONS

Due to experimental imperfections, there could be more
than one photon in one part of a two-photon pair (or in the
single-photon part of a hybrid pair). First, in the off-line
preparation process using BI, multiphotons in the single-
photon part can be partially detected (for example, by the
case when detectors simultaneously click in a BI operation),
and such cases can simply be discarded. Such errors only
result in a slight increase of the resource requirement (given
that the multiportion contribution is slight compared to the
single-photon contribution, which is a reasonable assumption
[35,39]).

First, we point out that roughly half of the multiphoton
contributions will be discarded by BI during the generation
process. To explain this, we use an approximate approach: let
us assume that the generated state (for the case of a two-photon
pair but the same analysis apply a hybrid pair) is

∝|H 〉|H 〉 + |V 〉|V 〉 + λ(|2H 〉|2H 〉 + |2V 〉|2V 〉),
where |2H 〉 (|2V 〉) is a two-photon state with the horizontal
(vertical) polarization and λ is assumed to be a small
value. Considering a typical down-conversion process, we can
assume that λ is very small and the probability of having three
photons (or more) in one mode is negligible [35,39]. We also
ignore λ2 factors in the following calculations because λ is
already very small. Due to the symmetry, it is sufficient to
consider the following four possible possibilities (out of total
eight), |2H 〉|V 〉 or |2V 〉|V 〉 or |2H 〉|H 〉 or |2V 〉|V 〉 (upper
and lower modes in order), as the input to the PBS of the BI

process shown in Fig. 4.
The two PBSs used for a BI process are assumed to pass

“H” polarizations and to reflect “V”. Note also that detectors
used for a standard BI process require single-photon detectors
that discriminate among 0, 1, and more than 1 photon [17].
For the first two cases, |2H 〉|V 〉 or |2V 〉|V 〉, all the photons
go to either the upper direction together or the lower by the
first PBS in Fig. 4. These cases are all failures and are not
much different from those without multiphoton contributions.
For the third case, |2H 〉|H 〉, one photon goes to the upper

part and the two photons go to the lower part. This result is
considered a “success” and the two-photon contribution goes
into the inline process. For the fourth case, |2V 〉|V 〉, the two
photons go to the upper part and one photon goes to the lower
part. The two detectors then recognize that there exists more
than one photon. (Note that even though the detectors used for
the BI operation discriminate between a single photon and two
or more photons, they cannot resolve more than two photons.)
This case is a failure and is simply discarded. Therefore, we
can conclude that the multiphoton contributions are reduced to
about half by the BI operations during the resource-generation
stage (with a slight increase of the resource cost).

Next, for the remaining multiphoton contributions in the
inline process, we can make the same analysis as above with
the four cases for the two input modes. It should be noted
that a standard BII operation use four on-off detectors, and
two of those detectors click when the result is a success. If
the “surplus” photon goes to one of those two detectors, the
result is considered as a success, but success events possibly
convey unlocatable Pauli Z error with a probability 1/2. On
the other hand, if the “surplus” photon goes to one of the other
two detectors, the result is a failure, i.e., a locatable error. For
example, if the input state is |2H 〉|V 〉 + |2V 〉|H 〉, all possible
cases for the success events in front of the second PBSs are
|H 〉|2H 〉, |2H 〉|H 〉, |V 〉|2V 〉, |2V 〉|V 〉, |H 〉|2V 〉, |2H 〉|V 〉,
|V 〉|2H 〉, and |2V 〉|H 〉. If (H,V ) or (V,H ) clicks occur at the
detectors, with probability 1/2, the result is a “correct” success
and the multiphoton contribution will simply disappear at the
detectors. However, if (H,H ) or (V,V ) events occurs, the result
is an “incorrect” success and it will deliver an unnoticed Pauli
Z error to the teleported qubit. All other cases in front of
the second PBSs such as |H 〉|HV 〉, |HV 〉|H 〉, |V 〉|HV 〉, and
|HV 〉|V 〉 are detected as failures.

Finally, when there is photon loss, there is some additional
possibility of errors caused by the multiphoton contributions.
For example, the multiphoton contribution may cause a “click
at a wrong detector” and a “photon missing at a correct
detector.” This type of error cannot be noticed and thus is
an unlocatable error.

In summary, the multiphoton contributions play a role to
increase the resource cost and decrease the noise threshold.
However, based on the discussions above, we can expect that
the effects of multiphoton contributions are relatively very
small because most of them would have been discarded by BI

or detected by BII (and some even disappear by BII without any
cost) during the generation and inline processes. We also point
out that, of course, such multiphoton effects, which are not
considered in most of the references, are present not only in
our scheme but also in any LOQC-type approaches (including
pLOQC) where two-photon pairs, generated by the parametric
down-conversion, are used as resources [40].
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