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We consider procedures to realize an approximate universal-NOT gate in terms of average fidelity and fidelity
deviation. The average fidelity indicates the optimality of operation on average, while the fidelity deviation
does the universality of operation. We show that one-qubit operations have a sharp trade-off relation between
average fidelity and fidelity deviation, and two-qubit operations show a looser trade-off relation. The genuine
universality holds for operations of more than two qubits, and those of even more qubits are beneficial to
compensating imperfection of control. In addition, we take into account operational noises which contaminate
quantum operation in realistic circumstances. We show that the operation recovers from the contamination by a
feedback procedure of differential evolution. Our feedback scheme is also applicable to finding an optimal and
universal NOT operation.
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I. INTRODUCTION

Quantum information offers advantages in a variety of tasks
over classical counterparts, by virtue of fundamental properties
of quantum physics [1]. Quantum theory imposes, on the other
hand, certain restrictions on quantum tasks [2]. For example, an
arbitrary quantum state cannot be cloned, called the no-cloning
theorem, so that the superluminal (i.e., faster than light)
communication via entanglement is prohibited [3,4]. Another
quantum task of the universal-NOT (UNOT) gate that transforms
an arbitrary input state to its orthogonal is also restricted
by quantum theory, while its classical NOT task is perfectly
realized by bit-flip operation [5,6]. This is because the UNOT

operation cannot be implemented by a unitary operation but
by an antiunitary operation, violating the conditions of trace
preservation and complete positivity that a physical procedure
obeys [7–9].

An approximate realization of the UNOT task can never-
theless be done by a physical operation assisted by ancillary
qubits [5,6]. The approximate operation is the most optimal
when it yields the average fidelity 2/3 [5]. Such an optimal
operation has been extensively studied for the last decade both
theoretically [5,6,10] and experimentally [11–13] in order to
clarify capabilities and limitations of quantum information
processing. In another perspective, the optimal operation of
the UNOT gate is closely related to other important quantum
tasks such as quantum cloning, quantum state estimation,
and entanglement tests [5,10,11,14,15]. In particular, the
UNOT gate is equivalent to the transposition by some unitary
transformation [14,15]. This implies that the optimal UNOT

operation enables one to approximately test if a quantum state
is entangled with negative partial transposition [16,17].

A physical operation has been evaluated in terms of the
fidelity between its output state and the target of the task. In
particular, the average fidelity over all possible input states
has been employed as an optimality measure of the operation
to the task. However, the average fidelity itself tells nothing
about the universality of operation, the condition that the task is
performed equally for all possible input states. On a theoretical
side, universality can be imposed on a quantum operation by
requiring it to result in an equal fidelity for all input states. On

the other hand, such a requirement is nontrivial in experiments
where imperfections of control and noises by environment
arise. It is thus desirable to consider a measure to quantify
the condition for the operation to be universal over all input
states. As such a measure, we employ fidelity deviation, which
is defined by the standard deviation of fidelity over all possible
input states.

In this paper, we consider procedures to realize an approx-
imate universal-NOT gate. For this purpose, we characterize
its approximate operations in terms of average fidelity F and
fidelity deviation �. In the characterization, it is shown that
one-qubit operations have a sharp trade-off relation between
F and �; two-qubit operations exhibit a less sharp trade-off
relation, including the one-qubit relation as an upper bound.
The genuine universality of � = 0 holds for n-qubit operations
with (n − 1) ancillary qubits if n � 3, whereas, no matter
how many qubits are involved, the optimality is bounded
in the average fidelity of 2/3. Nevertheless, the operations
of more than three qubits can be beneficial to get more
universality against imperfection of control. We can easily
find a quantum UNOT operation which has rather high fidelity
deviation even though its average fidelity is very close to its
maximum. Therefore, investigating the universality and the
optimality is important in the realization of UNOT operations.
In addition, considering some realistic circumstances, we take
into account operational noises which contaminate quantum
operation once optimized. We find a case where such a polluted
operation is far from the universality no matter how close
its average fidelity is to the maximum of 2/3. To protect an
operation against operational noises, we suggest a feedback
scheme using a differential evolution, showing that our scheme
recovers the operation from the contamination as far as the
noises fluctuating slowly compared to the operation. It is
discussed that our scheme of feedback is applicable to find
an optimal UNOT operation with no a priori knowledge except
the number of qubits.

This paper is organized as follows. In Sec. II, we introduce
our approach for the optimality and the universality by employ-
ing average fidelity F and fidelity deviation �. Section III is
devoted to analyses of quantum operations for the UNOT task on
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the two-dimensional space of (F ,�). In Sec. IV, we investigate
the effects of operational noises on optimal UNOT operation
and we suggest a feedback scheme to cure the contaminated
operation by noise. Remarks are given in Sec. V.

II. AVERAGE FIDELITY AND FIDELITY DEVIATION

A task is realized by a physical operation Ô that transforms
an input state |�〉 to its target state |�t 〉. Some tasks can-not
be ideally realized as restricted by quantum laws, such as
quantum cloning [3]. It is thus desirable to find an approximate
but optimal operation as close as possible to a given task.

The quality of a found operation Ô is commonly quantified
by a quantum fidelity f , which is defined by the transition
probability between the output state Ô|�〉 and the target state
|�t 〉 of an input state |�〉:

f [�] = |〈�t |Ô|�〉|2. (1)

For a given operation, the fidelity varies in general on input
states. If not, the quantum operation is said to be universal.
The universality can thus be thought of as associated with
the fluctuation of the fidelity f over the input states. In that
sense, by the universal operation, the task can be performed
equally for all possible input states. However, in some realistic
circumstances, it is difficult to achieve universality even for
the universal operation, due to noise(s) during the physical
process and/or an unavoidable interaction with environment. It
is thus necessary to introduce a measure to quantify how much
the fidelity f fluctuates, depending on the input states, and
to examine whether to reduce it by altering the experimental
parameters. In this section, we propose to employ the average
fidelity for quantifying the optimality of an operation and the
fidelity deviation for quantifying the universality.

The average fidelity F is defined as

F =
∫

d� f [�], (2)

where the integral is over all possible input states |�〉 and
d� is a normalized Haar measure,

∫
d� = 1. The measure F

quantifies, on average, how well operation Ô transforms input
state |�〉 to their target states |�t 〉; the value F = 1 implies
the task is perfectly performed for all possible inputs, while
F = 1/2 performs a random task. The fidelity deviation � is
given in terms of the standard deviation of f ,

� =
[∫

d� f [�]2 − F 2

]1/2

. (3)

The fidelity deviation � has a minimum of 0 if f = F for all
input states and otherwise it increases. Note

�2 �
∫

d� f [�] − F 2 = F (1 − F ) � 1

4
, (4)

where the last equality holds when F = 1/2. Thus, � is
bounded as 0 � � � 1/2. By the two measures F and �, we
characterize a task operation, as a point on the two-dimensional
space of (F,�).

III. CHARACTERIZATION OF UNOT OPERATIONS ON
THE SPACE OF (F,�)

In this section, we consider approximate operations for
implementing the UNOT task and place them on the space
(F,�). An optimal UNOT operation was found among three-
qubit operations [5,6]. It is questioned whether there exist any
UNOT operations among one- or two-qubit operations. We try
to answer this question and generalize to an arbitrary number
of qubits.

A. One-qubit UNOT operations

An input state of all possible pure states is given in the
Bloch representation by

ρ̂in = |�〉〈�| = 1
2 (1̂ + aT σ ), (5)

where 1̂ is the identity operator, a = (ax,ay,az)T = Tr(σ †ρ̂in)
is a Bloch vector of unit norm in three-dimensional real vector
spaceR3, and σ = (σ̂x,σ̂y,σ̂z)T is a vector with its components
being Pauli operators σ̂j (j = x,y,z). Note that all pure states
are located on the surface of the Bloch sphere with |a|2 = 1.
The UNOT task is supposed to transform each input ρ̂in to its
orthogonal state or the Bloch vector a to its antipodal −a:

ρ̂⊥
in = |�⊥〉〈�⊥| = 1

2 (1̂ − aT σ ). (6)

The state ρ̂⊥
in is the target state of the UNOT task. To find a

physically realizable (approximate) operation for the UNOT

gate, we consider an arbitrary one-qubit unitary operation,
given by

Û = exp

(
−i

ϑ

2
nT σ

)
= cos

ϑ

2
1̂ − i sin

ϑ

2
(nT σ ), (7)

where n = (nx,ny,nz)T is a unit vector. The operation trans-
forms ρ̂in to the output state,

ρ̂out = Û ρ̂inÛ
† = 1

2 (1̂ + bT σ ), (8)

where b = Ra and R is a rotation matrix on R3. The operation
Û can be understood as a rotation R, on the Bloch vector a, of
the angle ϑ along axis n [1,18]. Note that the output state is
also pure, i.e., |b|2 = 1.

The fidelity f = Tr(ρ̂⊥
in ρ̂out) between the output state ρ̂out

and the target state ρ̂⊥
in is given by [19]:

f [a] = 1
2 (1 − aT Ra). (9)

The average fidelity over all possible input states or all Bloch
vectors a on the Bloch surface is given by

F1Q =
∫

da f [a] =
∫

da
1

2
(1 − aT Ra), (10)

where da is the (normalized) Haar measure over the surface
of the Bloch sphere [20]. The subscript “1Q” stands for one
qubit.

Equation (10) is evaluated in a spherical coordinate sys-
tem, where aT = (sin θ cos φ, sin θ sin φ, cos θ ) and da =

1
4π

sin θ dθ dφ. The diagonal components aiRiiai are inte-
grated to be 1

3Rii , while the nondiagonal aiRij aj are to vanish.
Alternatively, one may utilize Schur’s Lemma (Sec. 2.2 in
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Ref. [21]), [
OgXOT

g

]
G

= 1

d
Tr(X) Id , (11)

where Id is an identity matrix in d-dimensional real vector
space Rd , Og is an irreducible orthogonal representation of an
element g in a given group G, and [Fg]G denotes the average
of Fg over all elements g ∈ G: [Fg]G ≡ ∫

dg Fg , where dg is
the (normalized) Haar measure such that

∫
dg = 1. This holds

for every matrix X on Rd . By applying the lemma (11) to the
group O(3) of three-dimensional rotations, the second term in
Eq. (10) results in∫

da aT Ra = 1

3
Tr(R), (12)

where we used the fact that every Bloch vector a is given
by some rotation R from a certain reference z, a = Rz,
and the average over the Bloch sphere is equal to that over
the rotation group O(3),

∫
da RT

g(a)RRg(a) = ∫
dg RT

g RRg =
1
3 Tr(R)I3. Both methods result in

F1Q = 1
2 − 1

6 Tr(R), (13)

where Tr(R) = 2 cos ϑ + 1 (see Appendix A). The maximum
of F1Q is given to be 2/3 when ϑ = π and the minimum
is 0 when ϑ = 0 or 2π . It is remarkable that the maximal
average fidelity of one-qubit operation is already equal to that
of three-qubit UNOT operation [5,6]. In this case, the found
optimal operation is in the form of Eq. (7) with ϑ = π and n
an arbitrary unit vector.

We investigate the fidelity deviation of one-qubit operations
for the UNOT task. The square of the fidelity deviation is

�2
1Q =

∫
da f [a]2 − F 2

1Q

= 1

4

[∫
da

(
aT Ra

)2 − 1

9
Tr(R)2

]
. (14)

To evaluate �2
1Q in Eq. (14), we use a generalized identity of

Schur’s lemma in Eq. (11) to the tensor product of the two real
vector spaces Rd ⊗ Rd , given for each matrix X on Rd ⊗ Rd ,[

(Og ⊗ Og)X
(
OT

g ⊗ OT
g

)]
G

= αId2 + βD + γ P, (15)

where

α = (d + 1)Tr(X) − Tr(XD) − Tr(XP)

d(d − 1)(d + 2)
,

β = −Tr(X) + (d + 1)Tr(XD) − Tr(XP)

d(d − 1)(d + 2)
,

γ = −Tr(X) − Tr(XD) + (d + 1)Tr(XP)

d(d − 1)(d + 2)
.

Here, P is a swap matrix P(xi ⊗ xj ) = xj ⊗ xi , or equivalently,

P =
d−1∑
i,j=0

(xj ⊗ xi)(xi ⊗ xj )T

and

D =
(

d−1∑
i=0

xi ⊗ xi

) ⎛
⎝d−1∑

j=0

xj ⊗ xj

⎞
⎠

T

,

where {xi} is an orthonormal basis set in Rd . Then, using the
identity of Eq. (15), we rewrite the first term in Eq. (14),∫

da(aT Ra)2

=
∫

da (a ⊗ a)T (R ⊗ R) (a ⊗ a)

= 1

15
[Tr(R ⊗ R) + Tr(R ⊗ R D) + Tr(R ⊗ R P)], (16)

where we used the similar reasoning below Eq. (12). Note that
Tr(R ⊗ R) = Tr(R)2, Tr(R ⊗ R D) = Tr(RRT ) = Tr(I3) = 3,
and Tr(R ⊗ RP) = Tr(R2). Then Eq. (14) is rewritten as

�2
1Q = 1

4

{
1
15 [Tr(R)2 + 3 + Tr(R2)] − 1

9 Tr(R)2
}

= 1
5

[
1
2 − 1

6 Tr(R)
]2 = 1

5F 2
1Q, (17)

where we used the relation Tr(R)2 − Tr(R2) = 2 Tr(R) in
Appendix A. The final form of the fidelity deviation �1Q is
given by

�1Q = 1√
5
F1Q. (18)

We note that this relation holds for arbitrary one-qubit
operations as well as the optimal operations. This relation is
represented by a segment OP1 in the space (F,�), as shown in
Fig. 1. Equation (18) clearly shows the sharp trade-off relation
between the conditions for one-qubit operations of UNOT task
to be optimal and universal: The larger the average fidelity,
the larger the fidelity deviation. Thus, there is no one-qubit
operation that satisfies both universality and optimality as
the condition �1Q = 0 demands F1Q = 0, i.e., an identity
operation, even though the maximal average fidelity is equal
to that of the three-qubit UNOT gate.
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FIG. 1. (Color online) Accessible region of quantum operations
for the UNOT task in terms of average fidelity F and fidelity deviation
�. A one-qubit operation lies at a point on line OP1, where O is the
origin. An operation assisted by one qubit (or two qubits) lies inside
or on triangle OP1P2 (or OP1P3). The (blue) dashed line stands for
a mathematical boundary of quantum operations [see Eq. (4)].
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V̂n−1

V̂1

V̂2
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FIG. 2. (Color online) A quantum circuit for task U-NOT with
(n − 1) ancillary qubits. The part inside the dashed small (large) box
corresponds to one(two)-qubit assisting circuit.

B. n-Qubit operations assisted by (n − 1) qubit(s)

We generalize one-qubit to n-qubit operations, by employ-
ing a specific type of logic circuit, as seen in Fig. 2. In the
circuit, the first qubit is the system and the rest of the (n − 1)
qubit(s) are ancillary. The case of n = 1 was investigated in
the previous section. The circuit operation consists of local
unitary V̂j and conditional unitary Ûj . The local unitary
operator V̂j on the ancillary qubit j is defined such that
V̂j |0〉j = √

vj |0〉j + √
1 − vj |1〉j , where vj is a real number,

satisfying 0 � vj � 1. The conditional unitary operator Ûj

acts on the system under the condition that ancillary qubits k

are in the state |1〉k for all k � j .
When the circuit operation is applied on an input state |�〉

of the system and the states |0〉 of the ancillary qubits, the
output state ρ̂out becomes, partially tracing over the ancillary
qubits,

ρ̂out =
n−1∑
k=0

wkŴk|�〉〈�|Ŵ †
k = 1

2

(
1̂ + bT σ

)
. (19)

Here, positive wk are functions of vj ’s,

v1 (k = 0),
(1 − v1) · · · (1 − vk)vk+1 (1 � k � n − 2),
(1 − v1) · · · (1 − vn−2)(1 − vn−1) (k = n − 1),

(20)

satisfying
∑n−1

k=0 wk = 1, and the unitary operators Ŵk are
given by

Ŵk = ÛkÛk−1 · · · Û0. (21)

Note that the output state ρ̂out is not necessarily a pure state, i.e.,
|b|2 � 1, due to the entanglement created during the process.
Nevertheless, it is remarkable that the circuit can be understood
as a stochastic unitary map, in Eq. (19), characterized by the set
of the local unitary operators Ŵk and the probability weights
wk . In other words, the circuit can be replaced by a stochastic
circuit on the system in which the unitary operation Ŵk is
applied in the probability wk . In this sense, the entanglement
presented in the circuit is not necessarily demanded. The
stochastic representation of operation in Eq. (19) significantly
reduces the calculations in the characterization of the average
fidelity and the fidelity deviation.

Consider the average fidelity FnQ (where the subscript
“nQ” stands for n-qubit). The fidelity of the output state in

Eq. (19) to the target state ρ̂⊥
in is given by

f [a] = Tr(ρ̂⊥
in ρ̂out) =

n−1∑
k=0

wkfk[a], (22)

where fk[a] = (
1 − aT Rka

)
/2 and the rotation matrices Rk ∈

R3 are associated with Ŵk . Each Ŵk and thus Rk is given by
the rotation angle ϑk and axis nk , as in Eq. (7). The average
fidelity FnQ is given as

FnQ =
∫

da

(
n−1∑
k=0

wkfk[a]

)
=

n−1∑
k=0

wk F1Q,k, (23)

where F1Q,k is the average fidelity by a one-qubit operation
Ŵk , as in Eq. (10). It is clear that 0 � FnQ � 2/3, as FnQ is a
statistical mean of average fidelities of one-qubit operations.
The maximum FnQ = 2/3 is attained when F1Q,k are all equal
to 2/3, or equivalently ϑk = π for all k. This result holds
for an arbitrary number of ancillary qubits. It thus seems that
increasing the number of ancillary qubits does not improve the
average fidelity or optimality for the UNOT task.

The square of the fidelity deviation �2
nQ is given from

Eqs. (22) and (23) as

�2
nQ =

∫
da

(
n−1∑
k=0

wkfk[a]

)2

− F 2
nQ =

n−1∑
k,l=0

wkwlCkl, (24)

where Ckl are elements of covariance marix C, defined by

Ckl =
∫

da fk[a]fl[a] − F1Q,kF1Q,l. (25)

Note that C is symmetric, i.e., Ckl = Clk . Each element of C
is bounded, as shown in Appendix B, by

Ckk = �2
1Q,k − 1

2�1Q,k�1Q,l � Ckl � �1Q,k�1Q,l, (26)

where �1Q,k is the fidelity deviation of one-qubit operation Ŵk .
The equality for the lower bound holds when the two rotation
axes nk and nl are orthogonal to each other, i.e., nT

k nl = 0,
and the upper bound is reached when nk and nl are parallel or
antiparallel, i.e., nT

k nl = ±1. By Eq. (26), the fidelity deviation
�2

nQ in Eq. (24) is upper bounded,

�2
nQ �

(
n−1∑
k=0

wk�1Q,k

)2

= 1

5
F 2

nQ, (27)

where we used Eqs. (18) and (23). The equality holds when
nT

k nl = ±1 for all pairs of k 	= l. The lower bound of �2
nQ is

given as

�2
nQ �

n−1∑
k=0

w2
k�

2
1Q,k − 1

2

n−1∑
k 	=l

wkwl�1Q,k�1Q,l

� 3 − n

2

n−1∑
k=0

w2
k�

2
1Q,k, (28)

where we used Eq. (26) and the inequality
∑

k 	=l(wk�1Q,k −
wl�1Q,l)2 � 0. The two equalities successively hold when
nT

k nl = 0 and wk�1Q,k = const for all pairs of k 	= l.
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Assisted by single ancillary qubit. Based on the above
results, let us consider two-qubit operations. The circuit is
depicted inside the small dashed box in Fig. 2. The stochastic
probabilities wk (k = 0,1) are given by Eq. (20), w0 = v1, and
w1 = 1 − v1. The average fidelity F2Q ranges from 0 to 2/3.
When nT

0 n1 = 0 and w0�1Q,0 = w1�1Q,1, the lower bound
of �2

2Q in Eq. (28), (1/2)
∑

k=0,1 w2
k�

2
1Q,k , is attained and

it is equal to (1/4)(
∑

k=0,1 wk�1Q,k)2 = F 2
2Q/20. Thus, the

following inequalities hold:

1

2
√

5
F2Q � �2Q � 1√

5
F2Q. (29)

This implies a trade-off relation of F2Q and �2Q for two-qubit
operations, as represented by the triangle OP1P2 in Fig. 1.
The trade-off relation in Eq. (29) is looser than one-qubit
operations in the sense that for given average fidelity F we can
always find a two-qubit operation whose fidelity deviation is
smaller than that of one qubit. The most optimal and universal
operation is given when the operations Ŵ0 and Ŵ1 satisfy
ϑ0 = ϑ1 = π for their angles and nT

0 n1 = 0 for their axes,
and the stochastic probabilities w0 = w1 = 1/2. The fidelity
deviation is reduced to �2Q = 1/3

√
5 ≈ 0.15 for the optimal

operations of F2Q = 2/3. We note that the circuit operations
we have considered include all possible two-qubit operations
and the current results hold, in general, as far as two qubits are
involved.

Assisted by two ancillary qubits. Consider three-qubit
operations, as shown in the large dashed box in Fig. 2. The local
one-qubit unitary V̂2 and controlled-controlled-Û2 operators
are additionally employed for the task, and the stochastic
probabilities wk are given by w0 = v1, w1 = (1 − v1)v2, and
w2 = (1 − v1)(1 − v2). The lower bound �3Q = 0 is reached
when the three vectors nk are mutually orthogonal and
wk�1Q,k = const, ∀k. Thus, we arrive at the trade-off relation,
for three-qubit operations,

0 � �3Q � 1√
5
F3Q. (30)

This relation is represented by the triangle OP1P3 in Fig. 1.
The most optimal and genuinely universal operation of F3Q =
2/3 and �3Q = 0 is attained when the stochastic unitary
operations Ŵk are given by their rotation angles ϑk = π and
their axes mutually orthogonal nT

k nl = 0 with wk = 1/3 for all
pairs of k 	= l. In terms of a stochastic map, the most optimal
UNOT operation leads to

ρ̂in �→ ρ̂out = 1
3 (σ̂x ρ̂inσ̂x + σ̂y ρ̂inσ̂y + σ̂zρ̂inσ̂z)

= 2
3 ρ̂⊥

in + 1
3 ρ̂in. (31)

This map is equivalent to the one found in Refs. [6,22].
The result in Eq. (30) still holds for more than two ancillary

qubits. Our analyses show that it is important to employ both
indicators of the average fidelity and the fidelity deviation to
evaluate a quantum operation of the UNOT task, because there
exist operations whose average fidelity F are close to 2

3 but
fidelity deviation � may be arbitrarily large, as implied by
line P1P3 of Fig. 1. It is understood that such a situation could
be the case in experiments, as in Refs. [12,13], which will be
discussed further in Sec. IV.

Before closing this section, we remind one that the three-
qubit operations we have considered are specifically those as in
the circuit in Fig. 2. One might question if there exist any three-
qubit operations whose average fidelity is larger than 2/3 when
sacrificing the universality. This question is worth investigating
as the universality was assumed in previous works [5,6,12,13].
However, this is not the case. Consider an arbitrary three-qubit
operation,

Ûarb =

⎛
⎜⎜⎝

u00 u01 · · · u07

u10 u11 · · · u17
...

...
. . .

...
u70 u71 · · · u77

⎞
⎟⎟⎠. (32)

The average fidelity F3Q is a function of the matrix elements
ujk (j,k = 0,1, . . . ,7),

F3Q = 2
3 − 1

6 (|u00 + u44|2 + |u10 + u54|2
+ |u20 + u64|2 + |u30 + u74|2). (33)

The unitary condition ÛarbÛ
†
arb = 1̂ leads to 0 � F3Q � 2/3.

This proof can straightforwardly be generalized to arbitrary
n-qubit operations.

There arises another question: Is there any advantage
in using more than two ancillary qubits? The answer is
affirmative: Added qubits can be used to compensate or
to absorb imperfection of operations, if any. To see this,
suppose that a stochastic operation Ŵk satisfies ϑk = π and
wk = 1/3 for all k = 0, 1, 2 and two rotation axes are not
perfectly orthogonal with the angle π

2 − α for small α, say
nT

0 n1 = nT
0 n2 = 0 and nT

1 n2 = cos (π
2 − α) � α, neglecting

higher order terms than α2. Then, even though the optimality
is achieved with F3Q = 2/3, the universality is broken as
�3Q � 2α/3

√
15 	= 0. In such circumstance, universality can

be cured by extending the circuit from three to four qubits with
Ŵ3 chosen such that ϑ3 = π and n3 is at the opposite direction
to n2 by α on the plane n1-n2; that is, nT

3 n0 = 0, nT
3 n1 =

nT
2 n1 � α, and nT

3 n2 = cos 2α � 1 − 2α2. By choosing the
stochastic probabilities w0 = w1 = 1/3 and w2 = w3 = 1/6,
then, the fidelity deviation becomes �4Q � 0 up to α2,
while keeping F4Q � F3Q = 2/3. This example opens a
possibility of recovering the universality without sacrificing
any optimality when operations suffer from the imperfection.

IV. FEEDBACK SCHEME TO STABILIZE
A QUANTUM OPERATION

Implementing a quantum operation suffers from noise in
realistic circumstances. To protect against noise, we consider
a feedback procedure with a differential evolution method,
which is known as an efficient heuristic method for global
optimization [23]. The adoption of such a feedback procedure
is also beneficial to finding a quantum operation of itself. In
this section, we introduce the differential evolution briefly
and apply it to the problem of finding an optimal UNOT

operation among three-qubit operations. We show that the
feedback scheme works so well that it consistently finds
optimal UNOT operations, equivalent to the one in Ref. [5].
By introducing an operational noise which alters operational
parameters unexpectedly, we show that the contaminated
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operation is cured by the feedback scheme as long as the
noise fluctuates slowly.

A. Effects of operational noise

Unitary operations on d-dimensional Hilbert space are
parametrized by (d2 − 1)-dimensional real vectors p =
(p1,p2, . . . ,pd2−1)T as

Û (p) = exp (−ipT G), (34)

where G = (ĝ1, ĝ2, . . . , ĝd2−1)T is a vector whose components
are SU(d) group generators ĝj (j = 1, 2, . . . , d2 − 1) [24–26].
Components of p are control parameters. Such a unitary
operation can be realized by multiport beam splitters for
an optical system [27] or pulse sequences for a nuclear
magnetic resonance system [28]. Based on the analysis of the
previous section for the UNOT gate, we consider three-qubit
unitary operations Û (p) on eight-dimensional Hilbert space
with 82 − 1 = 63 control parameters. Note that the number
of control parameters can be reduced if any restriction on
quantum operations is imposed, even though we assume no
restrictions throughout this paper.

In the presence of noise, an operation Û (p) becomes
imperfect with fluctuation of p [29]. We choose a noise model
in which fluctuation arises when dialing the control parameters
pj such that

p → p + η ε, (35)

where ε is a random stochastic error vector whose components
εj are random between −π and π . The factor η, normalized
in [0,1], stands for the degree of inaccuracy in control. This
type of noise is supposed to occur in implementing Û (p) and
it is called an operational noise.

For UNOT operations, we present the effects of operational
noise on average fidelity F and fidelity deviation � in Fig. 3.
The average fidelity F decreases and the fidelity deviation
� increases as the degree of noise η increases. That is, the
performance of the operation is degraded, as expected. It is
remarkable that for a small noise the average fidelity F remains
close to its maximum 2/3 but the fidelity deviation � becomes
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FIG. 3. Average fidelity F (left) and fidelity deviation � (right)
of the optimal UNOT operation, when contaminated by operational
noise of degree η. For each η, we perform 1000 simulations of Monte
Carlo, averaging F and � by the sample. Error bars are their standard
deviations. Both F and � are degraded by the operational noise and
such behaviors become conspicuous with increasing η. Dashed lines
are for a random operation, Fr = 1/2 and �r � 0.150, and the dotted
line in the left graph is F = 2/3 � 0.666.

rather large toward that of random operation, �r = 1/3
√

5.
For instance, when η = 0.1, averaged over 1000 samples, F

is 0.633 ± 0.018, which is about the value in an experiment
[12,13], whereas � is rather high, 0.095 ± 0.027, compared
to �r � 0.150 (see Fig. 3). In other words, F is degraded by
about 25% from its maximum 3/2 to that of random operation,
Fr = 1/2, whereas � is increased by about 65% to �r . The
results again support the importance of the fidelity deviation
in experimentally implementing a universal operation.

B. Recovery from the contamination

Our differential evolution scheme of feedback is to find a set
of values for control parameters p for an optimal and universal
NOT operation. The differential evolution algorithm follows
[23]. To begin with, we consider Npop operations by which
we are to develop approximate solutions. Then, we have Npop

parameter vectors pi (i = 1, 2, . . . , Npop), each of which con-
sists of 63 components pj,i ∈ [−π,π ] (j = 1,2, . . . ,63). All
of these 63 × Npop parameters are chosen initially at random.

Step 1. We generate Npop mutant vectors νi according to

νi = pa + D (pb − pb) , (36)

where we randomly selected a, b, and c among Npop parameter
vectors, as far as them being mutually different. The free
parameter D, called a differential weight, is a real and constant
number we choose.

Step 2. After that, the parameter vectors pi =
(p1,i , p2,i , . . . , p63,i)T are reformed to trial vectors τ i =
(τ1,i , τ2,i , . . . , τ63,i)T by the following rule: For each j ,

τj,i ← pj,i if rj > CR τj,i ← νj,i otherwise, (37)

where rj ∈ [0,1] is a randomly generated number and the
crossover rate CR is another free parameter we choose in
[0,1].

Step 3. Lastly, the trial vector τ i is taken to be pi for the
next iteration if it yields a larger fitness value than pi , and
otherwise pi is retained. Here the fitness ξ of a given operation
Û (p) is defined by

ξ = F − �, (38)

where F and � are the average fidelity and fidelity deviation
for Û (p), respectively. It tells us how fit Û (p) is to an optimal
and universal NOT operation [34]. Steps 1–3 are repeated until
the maximum iterations.

We perform Monte Carlo simulations. In the simulation,
we take Npop = 10, and the free parameters D = 0.1 and
CR = 0.03 which optimize our simulation. At every iteration,
the fitness of all the operations is evaluated to select suitable
parameters pi for the next iteration, as described in step 3. We
terminate the feedback procedure on 1000 iterations. Figure 4
presents the average fidelity F and the fidelity deviation � of
the best among Npop operations at every 20 iterations. Both F

and � are statistically averaged by 1000 trials of simulations.
As seen in Fig. 4, F converges to its ideal maximum
2/3 ≈ 0.667 and � also converges to zero. We obtain F =
0.663 ± 0.002 and � = 0.006 ± 0.002 in 1000 iterations. This
result shows that our feedback scheme can be used to search
the optimal and universal NOT operation with no a priori
knowledge on it, once the number of qubits is fixed [30].
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FIG. 4. Searching an optimal and universal NOT operation by our
feedback scheme of differential evolution in terms of average fidelity
F (left) and fidelity deviation � (right). For each iteration, we perform
1000 Monte Carlo simulations in averaging F and � with their error
bars. As iterated, F and � steadily approach their ideal optima,
F = 2/3 (dashed line) and � = 0. We obtain F = 0.663 ± 0.002
and � = 0.006 ± 0.002 in 1000 iterations.

We also perform a Monte Carlo simulation to test if
our feedback scheme is able to recover the operation once
contaminated by the operational noise. We assume that the
noise fluctuates slowly compared to the operation, which is
the case in most experiments for quantum tasks [31,32]. Two
cases are investigated in which the abrupt fluctuation of noise
occurs at every 50 or 100 iterations. Considering the large
degree of noise in Eq. (35), we take η = 0.5 for Fig. 5. Here,
the operation initially optimized is polluted by the noise at
every 50 or 100 iterations, on which the average fidelity F

and the fidelity deviation � suddenly deteriorate close to
those of random operation. As the feedback goes on, however,
they steadily recover to those of the optimal and universal
operation. Note that the degree of recovery depends on both
the frequency and the degree of noise, as one may expect.

V. REMARKS

We have investigated procedures for realizing an approxi-
mate UNOT gate by characterizing its approximate operations
in terms of average fidelity F and fidelity deviation �. The
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FIG. 5. Recovery of contaminated operation by the feedback
scheme in terms of average fidelity F (left) and fidelity deviation �

(right). The operational noise is assumed to occur at every 50 (dashed
line) or 100 (solid line) iterations with the noise degree η = 0.5.
The dotted line in the left panel is F = 2/3 � 0.666. Whenever the
noise occurs, F and � suddenly deteriorate close to those of random
operation. As iterated, however, they steadily recover to those of the
optimal and universal NOT operation. The degree of recovery depends
on the frequency of noise.

average fidelity F represented the optimality of operation on
average, while the fidelity deviation � roughly represents the
fluctuation of the fidelity over the input states (reciprocally,
“universality”). The approximate operations could be charac-
terized as a point on the two-dimensional space of (F,�), by
which we analyzed the operation with respect to the optimality
and the universality.

We showed that some of the one-qubit operations can reach
the average fidelity of 2/3, the maximum limit attained by
a three-qubit optimal UNOT gate, but lose their universality
with high fidelity deviation. It was proved that there exists a
quantum operation for an arbitrary number of qubits such that
it leads to the average fidelity of (but not larger than) 2/3. The
one-qubit operations showed a sharp trade-off relation, i.e.,
a linear relation between F and �. Similar behaviors were
observed for two-qubit operations, exhibiting a less sharp
trade-off relation, i.e., a triangular region on the space of
(F , �), which includes the one-qubit relation of trade-off as
an upper bound. They could have the most universality of
� = 1/3

√
5 ≈ 0.15. The genuine universality of � = 0 was

shown to hold for n-qubit operations with (n − 1) ancillary
qubits as far as n � 3. Even though three-qubit operations
suffice to optimally perform the UNOT gate, it was shown
that more-qubit operations can be beneficial against certain
involved imperfections.

In some realistic circumstances, operational noises may
arise in imperfect control of operation. The noises contaminate
quantum operations even once they are optimized. We empha-
sized the existence of a case such that a polluted operation is far
from the universality no matter how much its average fidelity
is close to the maximum of 2/3. This result supported again
the importance of the fidelity deviation. In order to protect an
operation against operational noises, we proposed a feedback
scheme of using a differential evolution. It was shown that our
scheme recovers the operation from the contamination, as far
as the noises fluctuatinge slowly compared to the operation.
We showed that our scheme of feedback is also applicable
in finding an optimal and universal NOT operation with no a
priori knowledge except the number of qubits.

We expect that our proposal of employing the measure of
average fidelity and fidelity deviation will be applied to other
universal quantum tasks such as cloning, teleportation, and
inseparability tests. Its modifications are eligible for partially
universal tasks which involve a subset of states.
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APPENDIX A: Tr(R) AND Tr(R2)

We evaluate the traces of rotation matrices on three-
dimensional real vector space R3. For this purpose, it is useful
to represent a rotation matrix R in Rodrigues’ form [33]

R = I3 − sin ϑS + (1 − cos ϑ) S2, (A1)
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where ϑ is the rotation angle and I3 is the identity matrix on
R3. Here, S is the skew-symmetric matrix of cross product of
the rotation axis n = (nx,ny,nz)T , defined as

Sij =
∑

k={x,y,z}
εijk nk =

⎛
⎝ 0 nz −ny

−nz 0 nx

ny −nx 0

⎞
⎠, (A2)

where εijk is the Levi-Civitá symbol. The square of S in
Eq. (A2) is written as

S2 = n ⊗ nT − I3. (A3)

From Eqs. (A2) and (A3) we obtain

Tr(I3) = 3, Tr(S) = 0, and Tr(S2) = −2. (A4)

Thus, the trace of R is given as

Tr(R) = 2 cos ϑ + 1, (A5)

which depends on the rotation angle ϑ but not on the rotation
axis n. An alternative way to obtain Tr(R) is to find and sum
eigenvalues of R. As R has eigenvalues of {1,e±iϑ }, their
summation is equal to Eq. (A5).

We now prove the relation

Tr(R)2 − Tr(R2) = 2 Tr(R), (A6)

which was used in deriving Eq. (17). We first calculate R2 by
using Eq. (A1),

R2 = 1̂3 − 2 sin ϑ S + [2(1 − cos ϑ) + sin2 ϑ]S2

− 2 sin ϑ(1 − cos ϑ)S3 + (1 − cos ϑ)2S4. (A7)

Noting that Tr(S3) = 0 and Tr(S4) = 2 and using Eqs. (A4),
we obtain the trace of R2,

Tr(R2) = 4 cos2 ϑ − 1 = Tr(R)2 − 2 Tr(R). (A8)

This proves the relation in Eq. (A6).

APPENDIX B: PROOF OF EQ. (26)

In order to prove Eq. (26), we recall the definition of Ckl as
in Eq. (25). Substituting Eq. (22) into Eq. (25), we get

Ckl = 1

4

[ ∫
da(aT Rka)(aT Rla)

−
∫

da db(aT Rka)(bT Rlb)

]

= 1

4

[ ∫
da(a ⊗ a)T (Rk ⊗ Rl)(a ⊗ a)

− 1

9
Tr(Rk)Tr(Rl)

]
. (B1)

Let us define a couple of quantities:

A1 = Tr
(
RkRT

l + RkRl

)
, A2 = Tr(Rk)Tr(Rl),

(B2)
A3 = Tr(Rk) + Tr(Rl).

Then we rewrite the first term in Eq. (B1) by using Schur’s
lemma, as in Eq. (16), so that∫

da (a ⊗ a)T (Rk ⊗ Rl) (a ⊗ a)

= 1

15

[
Tr(Rk)Tr(Rl) + Tr

(
RkRT

l

) + Tr(RkRl)
]

= 1

15
(A1 + A2) . (B3)

Then, Ckl of Eq. (B1) is reduced to

Ckl = 3A1 − 2A2

62 × 5
. (B4)

Using Eq. (A1), A1 is explicitly calculated:

A1 = 2
[

cos ϑk cos ϑl + (cos ϑk + cos ϑl)

+ ∣∣nT
k nl

∣∣2
(1 − cos ϑk) (1 − cos ϑl)

]
. (B5)

Noting that the last (third) term in Eq. (B5) is semipositive, A1

is upper bounded by

A1,max = 4 cos ϑk cos ϑl + 2 = A2 − A3 + 3. (B6)

It reaches the upper bound A1,max when two rotation axes nk

and nl are parallel or antiparallel, i.e., |nT
k nl| = 1. On the other

hand, A1 is lower bounded by

A1,min = 2 (cos ϑk cos ϑl + cos ϑk + cos ϑl)

= 1
2 (A2 + A3 − 3) . (B7)

The lower bound A1,min is reached when nk and nl are
orthogonal to each other or nT

k nl = 0.
By substituting Eq. (B6) into Eq. (B4), the upper bound of

Ckl is given by

Ckl,max = A2 − 3A3 + 9

62 × 5
= [3 − Tr(Rk)][3 − Tr(Rl)]

62 × 5
.

Reminding one of �1Q = [3 − Tr(R)]/6
√

5 in Eq. (17),

Ckl,max = �1Q,k�1Q,l. (B8)

Using Eq. (B7), similarly, the lower bound of Ckl is given by

Ckl,min = − 1
2�1Q,k�1Q,l. (B9)

In the case of k = l, |nT
k nl| = 1 and thus

Ckl = �2
1Q,k. (B10)
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