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Quantum teleportation between particlelike and fieldlike qubits using hybrid entanglement
under decoherence effects
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We study quantum teleportation between two different types of optical qubits, one of which is “particlelike”
and the other “fieldlike,” via hybrid entangled states under the effects of decoherence. We find that teleportation
from particlelike to fieldlike qubits can be achieved with a higher fidelity than that in the opposite direction.
However, teleportation from fieldlike to particlelike qubits is found to be more efficient in terms of the success
probabilities. Our study shows that the direction of teleportation should be considered an important factor in
developing optical hybrid architectures for quantum information processing.
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I. INTRODUCTION

In optical implementations of quantum information pro-
cessing (QIP), some physical degrees of freedom of light
are used for qubit encoding [1–3]. For example, horizontal
and vertical polarization states |H 〉 and |V 〉 of a single
photon may be used to form a qubit basis. This type of
encoding is referred to as particlelike encoding [3] because
individual photons are information carriers. It is also called
dual-rail encoding as it uses two distinct optical modes for a
qubit [4]. In this type of approach, single-qubit gates can be
easily realized using linear optics elements, while two-qubit
operations are generally difficult to implement. Alternatively,
one may encode information into two distinct states of a
field mode such as the vacuum and single-photon [5] or
two coherent states of distinct amplitudes [6–9]. This type of
encoding is called fieldlike encoding (or single-rail encoding)
[3]. The coherent-state encoding has advantages for the Bell-
state measurement [10,11], and quantum computation schemes
[7,8] based on its distinctive teleportation method [10,12] have
been developed. Each of the two encoding schemes has its own
advantages and disadvantages for QIP [13,14].

There have been studies on QIP based on hybrid structures
using both particlelike and fieldlike features of light [15–21].
This type of “hybrid architecture” may be used to make up
for the weaknesses in both types of qubit structures. Indeed,
a near-deterministic universal quantum computation with a
relatively small number of resources is found to be possible
using linear optics with a hybrid qubit composed of photon
polarization and a coherent state [21]. In this regard, it is
important to fully investigate such hybrid architectures, and
information transfer between different types of qubits would be
a crucial task. The quantum teleportation protocol [22,23] can
be used for such information transfer from one type of system
to another. For example, Ralph et al. discussed a scheme
to perform teleportation between dual-rail (polarization) and
single-rail (vacuum and single-photon) qubits [24]. In addition,
in order to address practical conditions for such information
transfer, it would also be important to include decoherence
effects caused by photon losses that are typical in optical
systems.
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In this paper, we study quantum teleportation between
particlelike and fieldlike qubits under decoherence effects. We
first consider teleportation between polarization and coherent-
state qubits and that between a polarization qubit and a qubit
of the vacuum and single photon. In our study, in general,
teleportation from particlelike to fieldlike qubits shows higher
fidelities under decoherence effects compared to teleportation
in the opposite direction. However, teleportation from fieldlike
to particlelike qubits is, in general, more efficient in terms of
the success probabilities. This implies that the “direction” of
teleportation should be considered to be an important factor
when developing optical hybrid architectures for QIP.

This paper is organized as follows: In Sec. II, the time
evolution of the two hybrid entangled states under photon
losses is investigated. The degrees of entanglement for the
hybrid channels are calculated in Sec. III. The average fidelities
and success probabilities of teleportation are in Secs. IV and V.
Section IV deals with teleportation between polarization and
coherent-state qubits while Sec. V is devoted to investigate
teleportation between polarization and single-rail Fock state
qubits. In Sec. VI, the issue of postselection is discussed
and investigated. We conclude the paper with final remarks in
Sec. VII.

II. TIME EVOLUTION OF TELEPORTATION CHANNELS

The first kind of teleportation channel considered in this
paper is a hybrid entangled state of the photon polarization
and coherent state:

|ψpc〉 = 1√
2

(|H 〉p|α〉c + |V 〉p|−α〉c), (1)

where |±α〉 are coherent states of amplitudes ±α. We assume
that α is real for simplicity throughout the paper without loss
of generality. The other one is a hybrid channel of the photon
polarization and the single-rail photonic qubit:

|ψps〉 = 1√
2

(|H 〉p|0〉s + |V 〉p|1〉s), (2)

where |0〉 and |1〉 denote the vacuum and the single photon
state in the Fock basis, respectively, comprising a fieldlike
(single-rail) qubit. Here, p, c, and s respectively stand for
polarization, coherent-state, and single-rail Fock-state qubits.
It is known that the hybrid channel |ψpc〉 can in principle
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be produced using a weak cross-Kerr nonlinear interaction
between a polarization (dual-rail) single-photon qubit and a
coherent state [15,17,25]. However, it is highly challenging to
perform the required nonlinear interaction with high efficiency
[26–28]. The hybrid channel |ψps〉 can be generated using a
parametric down conversion, a Bell state measurement with
polarization qubits, and an adaptive measurement [24].

We consider decoherence caused by photon loss (dissipa-
tion) on the teleportation channels. The dissipation for state ρ

is described by the master equation under the Born-Markov
approximation with a zero-temperature environment [29]:

∂ρ

∂τ
= Ĵ ρ + L̂ρ, (3)

where τ is the system-bath interaction time. Lindblad su-
peroperators Ĵ and L̂ are defined as Ĵ ρ = γ

∑
i aiρa

†
i and

L̂ρ = −∑
i γ (a†

i aiρ + ρa
†
i ai)/2, where γ is the decay con-

stant determined by the coupling strength of the system and
environment, and ai is the annihilation operator for mode i.
Throughout this paper, we assume that the decay constant γ is
the same for modes p, c, and s (i.e., the photon loss occurs at
the same rate for all modes).

The formal solution of Eq. (3) is written as ρ(τ ) =
exp[(Ĵ + L̂)τ ]ρ(0), where ρ(0) is the initial density operator
at τ = 0. By solving this equation we obtain the decohered
density matrix for the initial state of the hybrid channel |ψpc〉
in Eq. (1) as

ρpc(t ; α) = 1
2 [{t2|H 〉p〈H | + (1 − t2)|0〉p〈0|} ⊗ |tα〉c〈tα|
+ {t2|V 〉p〈V | + (1 − t2)|0〉p〈0|} ⊗ |− tα〉c〈−tα|
+ t2Q(t)(|H 〉p〈V | ⊗ |tα〉c〈−tα| + H.c.)], (4)

where the parameter t = e−γ τ/2 describes the amplitude decay,
and Q(t) ≡ exp[−2α2(1 − t2)] reflects the reduction of the
off-diagonal coherent-state dyadic |α〉 〈−α| and its Hermitian
conjugate. We define the normalized time as r = (1 − t2)1/2

which gives a value r = 0 at τ = 0 and r = 1 at τ = ∞.
Likewise, we obtain the decohered density matrix ρps(t) for
the initial state in the channel in Eq. (2) as

ρps(t) = 1
2 [{t2|H 〉p〈H | + (1 − t2)|0〉p〈0|} ⊗ |0〉s〈0|
+ {t2|V 〉p〈V | + (1 − t2)|0〉p〈0|} ⊗ {t2|1〉s〈1|
+ (1 − t2)|0〉s〈0|} + t3(|H 〉p〈V | ⊗ |0〉s〈1| + H.c.)].

(5)

As shown in Eqs. (4) and (5), photon loss induces (i) the
decay of the amplitude of coherent state as |α〉 → |tα〉, (ii) the
transition of polarization states |H 〉p 〈H | and |V 〉p 〈V | into
the vacuum state |0〉p 〈0|, which causes an escape error out of
the qubit space, (iii) the transition of the single-photon Fock
state |1〉s 〈1| into the vacuum state |0〉s 〈0|, which is a flip
error of the qubit, and (iv) the decrease of the coefficients of
coherence (off-diagonal) terms with t2Q(t) in Eq. (4) and t3

in Eq. (5).

III. ENTANGLEMENT OF HYBRID CHANNELS

The negativity of state ρ, known as a measure of entangle-
ment, is defined as [30,31]

N (ρ) = ‖ρTB ‖ − 1 = 2
∑
λi<0

|λi |, (6)

where ρTB is the partial transpose of ρ about one mode of
composite system (say mode B here), ‖·‖ denotes the trace
norm and the λi are negative eigenvalues of ρTB . We calculate
the negativity of the decohered channel ρpc given in Eq. (4) as

N (ρpc(t ; α))

= t2

2N2+N2−

{
[Q(t) − 1](N2

+ + N2
−)

+
√

16Q(t)N2+N2− + [1 − Q(t)]2(N2+ + N2−)2
}
, (7)

where N± = [2 ± 2 exp(−2t2α2)]−1/2 are normalization fac-
tors for equal superpositions of coherent states |±〉 =
N±(|tα〉 ± |−tα〉). This is obtained by representing the
coherent-state-qubit part of Eq. (4) in the orthogonal basis
{|±〉} and performing calculations following Eq. (6). The
negativity of the decohered entangled channel ρps in Eq. (5) is
also obtained as

N (ρps) = t4. (8)

The degrees of entanglement for the two channels are plotted
in Fig. 1, and we find that entanglement contained in |ψps〉
is more robust to decoherence than that of |ψpc〉. Obviously,
state |ψpc〉 is more entangled when α is larger at the initial
time. As α → 0, the initial state approaches a product state
with no entanglement. However, when the initial value of α

is larger, the slope of the decrease of entanglement is steeper
(i.e., entanglement disappears more rapidly). The reason for
this is that state |ψpc〉 becomes a more “macroscopic” quantum
superposition, fragile to decoherence, when α is large. This
feature has been pointed out in a number of previous stud-
ies [10,32–35] with various versions of continuous-variable
superpositions and entangled states. In our case, when α ≈ 1,
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FIG. 1. (Color online) Negativity N of hybrid channels ρpc

(dotted, dot-dashed, and dashed curves) and ρps (solid curve) in
Eqs. (4) and (5), against the normalized time r under decoherence.
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entanglement seems most robust to decoherence considering
both the initial value and the decreased slope of entanglement.

IV. TELEPORTATION BETWEEN POLARIZATION
AND COHERENT-STATE QUBITS

We now consider quantum teleportation using the hybrid
channels. Besides the hybrid channels, Bell-state measure-
ments and single-qubit unitary transforms, σx and σz opera-
tions, at the receiver’s site are required to complete the telepor-
tation process. In order to avoid unrealistic assumptions, we
assume throughout the paper that only linear optics elements
are available besides the hybrid quantum channels.

In this section, we first investigate quantum teleportation
between polarization and coherent-state qubits through the
decohered entangled state ρpc in Eq. (4). For convenience, we
use the arrow A → B for the teleportation from qubit type
A to type B when a hybrid entangled state composed of two
qubits with types A and B is used as the teleportation channel.
For example, p → c indicates teleportation from polarization
to coherent-state qubits, and vise versa for c → p.

A. Teleportation fidelities

The teleportation fidelity F is defined as F = 〈ψt| ρout |ψt〉
where |ψt〉 is the target state of teleportation and ρout is the
density operator of the output qubit. Due to the nonorthog-
onality of two coherent states, it is not trivial to define the
fidelity between a polarization qubit and a coherent-state
qubit. In the case of teleportation from a polarization qubit,
|ψt〉p = a |H 〉p + b |V 〉p, to a coherent-state qubit, it would be
reasonable to choose the target state as

|ψt〉c = N (a |tα〉c + b |−tα〉c), (9)

where N = {1 + (ab∗ + a∗b) exp(−2t2α2)}−1/2 is the normal-
ization factor. We note that we take a dynamic qubit basis
{| ± tα〉} in order to reflect the decrease of the amplitude
under photon losses [10], and that t is considered a known
value. Conversely, for the teleportation of opposite direction
(c → p) the state in Eq. (9) is considered the input qubit and
|ψt〉p = a |H 〉p + b |V 〉p is considered the target state.

The Bell-state measurement, an essential part of quantum
teleportation, discriminates four Bell states:

|B1,2〉pp′ = 1√
2

(|H 〉p|H 〉p′ ± |V 〉p|V 〉p′), (10)

|B3,4〉pp′ = 1√
2

(|H 〉p|V 〉p′ ± |V 〉p|H 〉p′). (11)

The Bell-state measurement in polarization modes can
be performed by a 50 : 50 beam splitter, two polarizing
beam splitters, and photon detectors [36], which discriminates
only |B3,4〉pp′ successfully. The net effect of this process is
equivalent to taking the inner product of the total density
matrix |ψt〉p 〈ψt| ⊗ ρp′c(t ; α) with a Bell state, and an appro-
priate unitary transform is applied to reconstruct the original
state. For example, when one of the Bell states, |B1〉pp′ ,
is measured, the output state for the teleportation from a
polarization to a coherent-state qubit for an input state |ψt〉p is
given as

ρ
p→c
out = pp′ 〈B1|{|ψt〉p〈ψt| ⊗ ρp′c(t ; α)}|B1〉pp′

Tr[|B1〉pp′ 〈B1|{|ψt〉p〈ψt| ⊗ ρp′c(t ; α)}] . (12)

In this case, no unitary transform is required. In the cases of
the other outcomes, the required unitary transforms for the
coherent-state part are

Zc : |±tα〉c → ±|±tα〉c,
(13)

Xc : |±tα〉c → |∓tα〉c,

after which the state of Eq. (12) is obtained. One or both
of these operations should be applied depending on the
Bell-state measurement outcome [10]. It is relatively easy
to perform Xc using phase shifter, while the implementation
of Zc is nontrivial [10,13]. The displacement operation can
approximate the Zc operation [7,10] but it becomes effective
only for α � 1.

Therefore, we slightly modify the Bell measurement to
obtain different success outcomes (instead of |B3,4〉pp′) to avoid
the Zc operation. A Hadamard operation on the first mode, and
a bit-flip operator X with a Hadamard operation on the second
input mode in {|H 〉 , |V 〉} basis respectively transforms the
Bell states to

|B1〉pp′ → |B3〉pp′ , |B2〉pp′ → |B1〉pp′ , (14)

|B3〉pp′ → |B4〉pp′ , |B4〉pp′ → |B2〉pp′ . (15)

When the Bell-measurement setup is applied after this transfor-
mation, we can discriminate the initial states |B1〉pp′ and |B3〉pp′

before the above transformation as successful outcomes. In this
way, only the Xc operation is necessary on the output state of
teleportation.

Inserting explicit forms of ρp′c(t ; α) in Eq. (4) and |ψt〉p =
a |H 〉p + b |V 〉p into (12) gives

ρ
p→c
out = |a|2 |tα〉c 〈tα| + |b|2 |−tα〉c 〈−tα| + Q(t) (ab∗ |tα〉c 〈−tα| + a∗b |−tα〉c 〈tα|)

1 + e−2α2 (ab∗ + a∗b)
. (16)

We find the fidelity between the output state ρ
p→c
out in Eq. (16) and the target state |ψt〉c = N (a |tα〉c + b |−tα〉)c as

Fp→c = c〈ψt| ρp→c
out |ψt〉c = |a|2|a + bS|2 + |b|2|aS + b|2 + 2Q(t)Re [ab∗(a + bS)(a∗S + b∗)]

N−2{1 + e−2α2 (ab∗ + a∗b)} , (17)

where S = 〈tα| − tα〉 = exp(−2t2α2) is the overlap between the dynamic qubit basis states.
We now find the average teleportation fidelity over all possible input states. For convenience, we parametrize the unknown

values of the input state as a = cos[θ/2] exp[iφ/2] and b = sin[θ/2] exp[−iφ/2], where 0 � φ < 2π and 0 � θ < π . The
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average of Fp→c(θ,φ) in Eq. (17) over all input states is then obtained using Eq. (19) as

Fp→c(t) = 〈Fp→c(θ,φ)〉θ,φ = 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφFp→c(θ,φ)

= Q(t)

Q(t) − 1
{2G[|a|4] + [2S2 + 2Q(t)]G[|a|2|b|2] + [SQ(t) + S]G[ab∗ + a∗b] + S2Q(t)G[a2b∗2 + a∗2

b2]}, (18)

where G[f ] for arbitrary value or function f = f (θ,φ) is

G[f ] =
〈

f

1 + Q(t)S(ab∗ + a∗b)
− f

1 + S(ab∗ + a∗b)

〉
θ,φ

,

(19)

with〈 |a|4
1 + x(ab∗ + a∗b)

〉
θ,φ

= x + −1+3x3

tanh[x]

8x3
, (20)

〈 |a|2|b|2
1 + x(ab∗ + a∗b)

〉
θ,φ

= −x + −1−x2

tanh[x]

8x3
, (21)

〈
ab∗ + a∗b

1 + x(ab∗ + a∗b)

〉
θ,φ

= 1

x
− ln

[
1 + x

1 − x

]
1

2x2
, (22)

〈
a2b∗2 + a∗2b2

1 + x(ab∗ + a∗b)

〉
θ,φ

= 2 − x2

4x3
ln

[
1 + x

1 − x

]
− 1

x2
, (23)

for arbitrary value x independent of θ and φ.
Now, we consider teleportation from a coherent-state

qubit to a polarization qubit. The Bell-state measurement for
coherent-state qubits can be performed using a 50:50 beam
splitter and two photon-number parity measurements [10].
The input qubit of the form of Eq. (9) together with the
coherent-state part of channel ρpc′(t ; α) passes through the
50:50 beam splitter and evolves as

(a|β〉 + b|− β〉)c|β〉c′ → a|
√

2β〉c|0〉c′ + b|0〉c|
√

2β〉c′

(a|β〉 + b|− β〉)c| − β〉c′ → a|0〉c|−
√

2β〉c′

+ b|−
√

2β〉c|0〉c′ , (24)

where β = tα. We note that the photons move to either of the
two modes so that only one of the two detectors can detect any
photon(s). The projection operators Oj for the outcomes j of
the two parity measurements can then be written as

Ô1 =
∞∑

n=1

|2n〉A〈2n| ⊗ |0〉B〈0|, (25)

Ô2 =
∞∑

n=1

|2n − 1〉A〈2n − 1| ⊗ |0〉B〈0|, (26)

Ô3 =
∞∑

n=1

|0〉A〈0| ⊗ |2n〉B〈2n|, (27)

Ô4 =
∞∑

n=1

|0〉A〈0| ⊗ |2n − 1〉B〈2n − 1|, (28)

where subscripts 1, 2, 3, and 4 represent the four Bell states

|B1,2〉cc′ ∝ |α〉c|α〉c′ ± |− α〉c|−α〉c′ , (29)

|B3,4〉cc′ ∝ |α〉c|− α〉c′ ± |−α〉c|α〉c′ , (30)

respectively. In addition, the error projection operator Ôe =
|0〉A〈0| ⊗ |0〉B〈0| should also be considered because there is
possibility for both detectors not to register anything, even
though such probability approaches zero for α � 1.

In the calculation to obtain the output density matrix
when the element of the parity measurement Ô1 is mea-
sured, the terms such as |0〉c|

√
2β〉c′ and |0〉c|−

√
2β〉c′ in

Eq. (24) are erased from the resultant density matrix due to
the orthogonality of vacuum state in these terms and nonzero
number states contained in Ô1. Other terms form the same
factor

∑∞
n=1〈2n|√2β〉〈±√

2β|2n〉 = cosh(2β2) − 1, which is
factored out into the normalization factor. When Ô2, Ô3,
and Ô4 are measured in the parity measurements, the unitary
transforms required are Pauli matrices (σz)p, (σx)p, and (σy)p

in the basis set of {|H 〉 , |V 〉}, respectively.
The overall effect of the Bell-state measurement and unitary

transform is found to be replacement of |tα〉c′ (〈tα|c′) with
a (a∗) and |−tα〉c′ (〈−tα|c′) with b (b∗) in the teleportation
channel ρpc′(t ; α) in Eq. (4). We obtain, after the normalization,

ρ
c→p
out = Trcc′ {(Ô1UBS)cc′[ρpc′(t ; α) ⊗ |ψt〉c〈ψt|](U †

BS)cc′ }
Tr{(Ô1UBS)cc′[ρpc′(t ; α) ⊗ |ψt〉c〈ψt|](U †

BS)cc′ }
= t2|a|2|H 〉p〈H | + t2|b|2|V 〉p〈V | + (1 − t2)|0〉p〈0|

+ t2Q(t)(ab∗|H 〉p〈V | + a∗b|V 〉p〈H |), (31)

where UBS represents the beam splitter operator. The fidelity
is then

Fc→p(θ,φ) = p〈ψt|ρc→p
out |ψt〉p

= t2[|a|4 + |b|4 + Q(t)|a|2|b|2], (32)

and its average can be calculated in a similar way as for
Eq. (18):

Fc→p(t) = t2

(
2

3
+ Q(t)

3

)
. (33)

We also consider the classical limits of teleportation fidelity
for comparison. Here, a classical limit means the maximum
average fidelity of teleportation (disembodied transport of an
unknown quantum state) by means of a classical communica-
tion channel without any entanglement. It is well known that
the classical limit of fidelity for teleporting a qubit using the
standard teleportation protocol is 2/3 [37]. It can be directly
applied when teleporting a coherent-state qubit to a polariza-
tion qubit (c → p). However, due to the nonorthogonality of
two coherent states, the classical limit for teleportation from
polarization to coherent-state qubits (p → c) is larger than 2/3.
A simple way to consider the classical limit is as follows: The
optimal output state of teleportation without quantum entan-
glement is ρcl = |a|2 |tα〉 〈tα| + |b|2 |−tα〉 〈−tα|, where the
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FIG. 2. (Color online) Average fidelities of teleportation from
polarization to coherent-state qubits (p → c, dot-dashed curves) and
of teleportation in the opposite direction (c → p, dashed curves) for
several values of α. The classical limits F

p→c
cl (solid lines) for p → c

and 2/3 (dotted lines) for c → p are plotted for comparison.

amplitude decay was also considered. This state is obtained by
preparing either state |tα〉 〈tα| or state |−tα〉 〈−tα| depending
on the measurement outcomes of the input state. The average
fidelity with the target state |ψt〉c is

F
p→c
cl (t) = 〈〈ψt |ρcl|ψt 〉〉θ,φ

= S + 3S3 − (S4 − 1)

4S3
sinh−1

[
S√

1 − S2

]
. (34)

In the limit of α → ∞ where the two-basis coherent states
become orthogonal, F

p→c
cl (t) approaches 2/3.

In Fig. 2, we plot the time evolution of average telepor-
tation fidelities for different coherent-state amplitudes α =
0.1, 1, 2, 10 against the normalized time r . When α is large,
the teleportation fidelities of both directions p ↔ c decrease
rapidly down to the classical limit after short time as shown
in Fig. 2(d). This result is in agreement with the fast decay of
entanglement in the channel presented in Fig. 1. When α is
relatively small, the average fidelity for the teleportation p ↔ c
is close to 1 in spite of the small amount of entanglement in
the channel shown in Fig. 1. This can be attributed to the effect
of nonorthogonality between coherent states |tα〉 and |−tα〉.

In our analysis, as implied in Fig. 2, the fidelity of
teleportation from polarization to coherent-state qubit (p → c)
is shown to be always larger than that of teleportation in the
opposite direction (c → p). In the region over the classical
limit 2/3, the gap between these two fidelities for a given r

decreases as α becomes larger as shown in Fig. 2. This gap
can be obtained and explained as follows: In the limit of large
α, the output state of the teleportation (p → c) in Eq. (16) can
be approximated as

ρ
p→c
out ≈ |a|2 |tα〉c 〈tα| + |b|2 |−tα〉c 〈−tα|

+Q(t)(ab∗|tα〉c〈−tα| + a∗b|− tα〉c〈tα|). (35)

The comparison between the output state for p → c in Eq. (35)
and the output state for c → p in Eq. (31) implies that the
difference between Fc→p and Fp→c for large values of α can be

attributed to the term (1 − t2) |0〉p 〈0| in Eq. (31). The fidelity
between the output state in Eq. (35) and the target state |ψt〉c
is |a|4 + |b|4 + 2Q(t)|a||b| and its average is calculated to be
[2 + Q(t)]/3. By subtracting Eq. (33) from this, we obtain the
gap between the two fidelities as (1 − t2)[2 + Q(t)]/3. In the
limit of α → ∞, the gap at time tcl that satisfies Fc→p(tcl) =
2/3 approaches zero.

In further detail, the difference between Fp→c and Fc→p

can be explained by two effects: (i) the overlap between
|tα〉 and |−tα〉 which is dominant at the region tα � 1, and
(ii) the effect that the polarization qubit turns into the vacuum
state by photon loss so that the output can no longer be in
the original qubit space: this is not the case for the dynamic
qubit basis using |±tα〉. In the case of p → c, the vacuum
introduced by photon loss is detected during the Bell-state
measurement and discarded by virtue of its particlelike nature.
This filtering effect in the Bell-state measurement for the
polarization qubits enhances the fidelity Fp→c over Fc→p.
While the average fidelity Fp→c is always higher than the
classical limit, Fc→p degrades below its classical limit because
of the vacuum component in the output state.

B. Success probabilities

An event of the teleportation process should be discarded
either when the Bell-state measurement fails or when the
appropriate unitary transform is unavailable. Due to these
discarded events, the success probability of the teleportation
process becomes less than unity. We first consider the
teleportation of p → c. The Bell-state measurement for the
teleportation of p → c is to distinguish the four Bell states
of polarization qubits. This type of Bell-state measurement
can identify only two of the four Bell states [36]. As briefly
explained in the previous subsection, the choice of two
successful outcomes can be made arbitrary with a few simple
gate operations. We here take |B1〉pp′ and |B3〉pp′ as successful
outcomes and discard the other results. Considering these
inherent limitations, the success probability of teleportation
p → c cannot exceed 1/2. Beside these, a failure of the
Bell-state measurement also occurs when the photon is lost
from the channel in the polarization qubit part. Such loss
can be immediately noticed at the detectors used for the
Bell-state measurement and should be considered for the
success probability.

The success probability for a specific input state is

P (θ,φ) = Tr[(|B1〉pp′ 〈B1| + |B3〉pp′ 〈B3|){|ψt〉p〈ψt|
⊗ ρp′c(t ; α)}].

In fact, the explicit form of P (θ,φ) is obtained during the
normalization of the output state ρ

p→c
out as the inverse of the

normalization factor as implied in Eqs. (12) and (16). We
find Pp→c(θ,φ) = t2(1 + A sin θ cos φ)/2 and the total success
probability over all of the input states can be calculated by

Pp→c(t) = 〈Pp→c(θ,φ)〉θ,φ = t2

2
. (36)

On the other hand, teleportation for c → p can be performed
with a high probability close to unity only using linear optics.
This is due to the two following reasons: First, the Bell-state
measurement for the coherent-state qubits, required for the
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FIG. 3. (Color online) Success probability for teleportation be-
tween polarization and coherent qubits for different coherent state
amplitudes (α = 0.1, 1, 0.54, 10) against the normalized time r under
decoherence.

sender’s site in this process, can discriminate between all four
Bell states [10]. Second, the single-qubit unitary transforms for
the polarization qubit, to be performed in the receiver’s site, are
straightforward for any outputs. The results are discarded only
when no photons are detected in the Bell-state measurement.
Of course, when loss caused by decoherence occurs, the parity
measurement scheme used for the Bell-state measurements in
the coherent-state basis cannot filter out “wrong results” in
the polarization part, which is obviously different from the
Bell-state measurement with polarization qubits, and this type
of error will be reflected in the degradation of the fidelity.

The success probability of c → p teleportation for a given
input state is then obtained by

Pc→p(θ,φ) =
∑

i

〈U †
BSÔiUBS〉 = (1 − S)/(1 + S sin θ cos φ),

(37)
where the Ôi are the projection operators introduced in the
previous subsection and UBS is the operator for the 50:50
beam splitter. The success probability of all input states can be
calculated in the same way described above, and the result is

Pc→p(t) = S−1 − 1

2
ln

(
1 + S

1 − S

)
. (38)

The success probabilities in Eqs. (36) and (38) are plotted
and compared for several values of α in Fig. 3. The success
probability Pp→c(t) is invariant under the change of α, while
Pc→p(t) becomes larger as α increases. As the hybrid channel
undergoes decoherence, both Pp→c(t) and Pc→p(t) decrease
due to photon losses. The decrease of Pc→p(t) becomes
negligible for α � 1 as the proportion of the vacuum state in
the coherent state is very small. When α ≈ 0.54, probabilities
Pp→c(t) and Pc→p(t) become comparable for all ranges of r .

V. TELEPORTATION BETWEEN POLARIZATION
AND SINGLE-RAIL FOCK-STATE QUBITS

In this section, we go on to investigate teleportation between
polarization and single-rail Fock-state qubits (p ↔ s) using the
hybrid state ρps(t) in Eq. (5). Let us first consider teleportation

from a polarization qubit to a single-rail Fock-state qubit
(p → s). When |B1〉pp′ is detected in the Bell-state measure-
ment for input state |ψt〉p = a |H 〉p + b |V 〉p, the output state
can be obtained using Eq. (12) as

ρ
p→s
B1,2

= |a|2|0〉s〈0| + |b|2t2|1〉s〈1| + |b|2(1 − t2)|0〉s〈0|
+ t(ab∗|0〉s〈1| + a∗b|1〉s〈0|), (39)

and no unitary transform is required. If |B2〉pp′ is measured,
a single-qubit operation (σz)s is required to reconstruct ρ

p→s
B1,2

in Eq. (39). A phase shifter, described by exp(iϕa†a) with
ϕ = π , can be used to perform this operation. The Bell-state
measurement using linear optics cannot identify |B3〉pp′ or
|B4〉pp′ . Furthermore, the (σx)s operation required to implement
the bit flip, |0〉 ↔ |1〉, is difficult to realize using linear optics.
We thus take only |B1〉pp′ and |B2〉pp′ as successful Bell
measurement outcomes. The probability to obtain either of
these outcomes is found to be

Pp→s(θ,φ) = Tr[(|B1〉pp′ 〈B1| + |B2〉pp′ 〈B2|)
×{|ψt〉p〈ψt| ⊗ ρp′s(t ; α)}]

= t2/2 (40)

and is independent of the input state. The fidelity of state of
Eq. (39) to the target state |ψt 〉s = a |0〉s + b |1〉s is

Fp→s(a,b) = s〈ψt |ρp→s
B1,2

|ψt 〉s

= |a|4 + |b|4t2 + (1 − t2)|a|2|b|2 + 2t |a|2|b|2.
(41)

The average fidelity is obtained using Eq. (18) as

Fp→s(t) = t2 + 2t + 3

6
. (42)

Let us now consider the teleportation in the opposite
direction s → p. The Bell measurement in the single-rail
Fock-state qubit part can be performed as follows: After
passing through a 50:50 beam splitter, two of the Bell states are
changed as follows: |B3〉ss′ = 2−1/2(|1〉s |0〉s′ + |0〉s |1〉s′) →
|1〉 |0〉 and |B4〉ss′ = 2−1/2(|1〉s |0〉s′ − |0〉s |1〉s′) → |0〉 |1〉. As
the result, the two Bell states can simply be discriminated using
two photodetectors at two output ports of the beam splitter.
However, the other two Bell states cannot be distinguished us-
ing linear optics. If the outcome of the Bell-state measurement
is |B3〉ss′ or |B4〉ss′ , the output state after an appropriate unitary
transform is

ρB3,4 = t4|a|2 + t2(1 − t2)|b|2
4P3

|H 〉p〈H | + t2|b|2
4P3

|V 〉p〈V |

+ t2(1 − t2)|a|2 + (1 − t2)(2 − t2)|b|2
4P3

|0〉p〈0|

+ t3(ab∗|H 〉p〈V | + a∗b|V 〉p〈H |)
4P3

, (43)

with success probability P3,4(θ,φ) = [(2 − t2)|b|2 + t2|a|2]/4
obtained in the same way as Eq. (40). The average success
probability is found to be Ps→p(t) = 〈P3,4(θ,φ)〉θ,φ = 1/2.
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The fidelity of ρB3,4 to the target state |ψt 〉p = a |H 〉p
+ b |V 〉p is straightforwardly obtained as

Fs→p(θ,φ) = p〈ψt |ρB3,4 |ψt 〉p

= t4|a|4 + t2(1 + 2t − t2)|a|2|b|2 + t2|b|4
4P3

,

(44)

and the average fidelity over all possible input states is

Fs→p(t) = t4A1 + t2A2 + t2(1 + 2t − t2)A3, (45)

where

A1 =
〈 |a|4

4P3

〉
θ

= c2
1 − 4c1c2 + 3c2

2 + 2c2
2 ln

[
c1
c2

]
2(c1 − c2)3

,

A2 =
〈 |b|4

4P3

〉
θ

= −3c2
1 + 4c1c2 − c2

2 + 2c2
1 ln

[
c1
c2

]
2(c1 − c2)3

, (46)

A3 =
〈 |a|2|b|2

4P3

〉
θ

= c2
1 − c2

2 − 2c1c2 ln
[

c1
c2

]
2(c1 − c2)3

,

with c1 = t2 and c2 = 2 − t2.
We plot the teleportation fidelities in Fig. 4(a) and the suc-

cess probabilities in Fig. 4(b). We observe that the teleportation
fidelity of p → s is higher than that of s → p because loss in
the polarization qubit can be detected during the Bell-state
measurement and discarded, while its success probability is
thus lower, as shown in Fig. 4(b). The teleportation s → p
succeeds with probability 1/2 regardless of r because any
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FIG. 4. (Color online) (a) Teleportation fidelities of polarization
to single-rail Fock-state qubit p → s (blue dot dashed) and the
opposite s → p (red dashed). Teleportation fidelities of polarization
to coherent-state qubit (black dot dashed) and the opposite direction
(black dashed) are drawn for comparison. (b) Success probability
of teleportation of polarization to single-rail Fock-state qubit p → s
(blue dot dashed) and the opposite s → p (red dashed).

decohered single-rail Fock-state qubit remains within the
original qubit space and loss is not detected during the
Bell-state measurement. Comparing Figs. 2 and 4, we observe
that the teleportation fidelity of p ↔ c with small α is higher
than that of p ↔ s, although ρps contains more entanglement
than ρpc as shown in Fig. 1. This can also be understood as the
effect of the basis overlap in coherent-state qubits.

VI. TELEPORTATION WITH POSTSELECTION
ON PHOTON ARRIVAL

We attempt in this section to take into account the effect
of postselection on the photon arrival at the receiver’s site,
while in the previous sections the teleportation fidelity and
success probability were calculated considering all of the
cases regardless of whether the photon arrived successfully
or not (nonpostselected teleportation). It was clearly pointed
out in Ref. [38] that considering only the postselected data to
calculate the fidelity without resorting to operational means of
the postselection can be misleading. In the context of our work,
it should be noted that the input qubit to be teleported is an un-
known one and should remain unknown after the teleportation
for successive use in QIP. There exists a linear-optical method
to implement quantum-nondemolition detection of single
photons that leaves the polarization invariant [39] by adopting
additional teleportation of the received single-polarization
qubit through an ideal polarization-entangled state, which
reduces the fraction of vacuum state. We shall now assume that
the method in Ref. [39] is employed to implement postselection
for the polarization mode.

We first observe that postselection diminishes the difference
between the teleportation fidelities of the two opposite direc-
tions by filtering out the vacuum portion in the output state in
the polarization mode p. Using the postselection scheme [39],
the output state of teleportation from coherent to polarization
qubits in Eq. (31) is converted to

ρpost
c→p = |a|2 |H 〉p 〈H | + |b|2 |V 〉p 〈V |

+Q(t)(ab∗|H 〉p〈V | + a∗b|V 〉p〈H |), (47)

thus the coherence terms decrease by the factor Q(t) =
exp[−2α2(1 − t2)] due to the decoherence of the coherent-
state part of the channel. The average fidelity using Eq. (18)
is F

post
c→p = [2 + Q(t)]/3. When α � 1, Q(t) ≈ 1 for all r and

F
post
c→p(t) ≈ 1 as well. The comparison of Eqs. (35) and (47)

shows that the two output forms become identical for α � 1 in
which the overlap between coherent states | ± α〉 is negligible.

In the case of s → p, the postselected output state is

ρpost
s→p = t2|a|2 + (1 − t2)|b|2

4P3
|H 〉p〈H | + |b|2

4P3
|V 〉p〈V |

+ t(ab∗|H 〉p〈V | + a∗b|V 〉p〈H |)
4P3

, (48)

and the average fidelity is changed to

F post
s→p(t) = t2A1 + A2 + (1 + 2t − t2)A3. (49)

When this is compared with Fp→s(t) in Eq. (42), we find that
the two fidelities are again very similar. We find that the largest
difference between Fp→s(t) and F

post
s→p(t) is less than 0.01.
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FIG. 5. (Color online) Success probabilities after postselection
for output qubits in the polarization part for (a) teleportation
between polarization and coherent-state qubits (p ↔ c) and for (b)
teleportation between polarization and single-rail Fock-state qubits
(p ↔ s). In panel (a), the curve for Pp→c is overlapped with the one for
Pp→c when α = 10. One can see that the success probabilities from
the fieldlike to particlelike qubits are lower than the opposite ones,
which is contrary to the cases without postselection for the output
qubits in the polarization part.

It should also be noted that postselection decreases the
success probability of teleportation into the polarization qubit.
The postselection protocol [39] is limited by the polarization
Bell measurement with its success probability 1/2, and failures
occur also due to the vacuum part [with a factor of 1 − t2

for states in Eqs. (31) and (43)]. A factor of t2/2 should
thus be multiplied in overall and the postselected probabilities
P

post
c,s→p(t) = t2Pc,s→p(t)/2 are lowered below Pp→c,s(t), respec-

tively. Probabilities P
post
c→p(t) and Pp→c(t) become identical only

when α � 1. We have plotted success probabilities in Fig. 5.

VII. REMARKS

We have investigated quantum teleportation between two
different types of optical qubits under the effects of deco-
herence caused by photon losses: one type is particlelike
such as photon-polarization qubit and the other is fieldlike
such as coherent-state or Fock-state qubits. The teleportation
fidelities and success probabilities depend on the “direction”
of teleportation; namely, whether teleportation is performed

from one type of qubit to the other or from the latter to the
former.

The average fidelity of teleportation from particlelike to
fieldlike qubits is shown to be larger than the opposite direction
under decoherence. This is due to the asymmetry of photon
losses in the hybrid channel as well as to the possibility of
detecting losses in Bell-state measurements. In the case of
teleportation from a single-photon qubit using the polarization
degree of freedom, the sender can notice photon loss during the
Bell-state measurement in the polarization qubit part by virtue
of its particlelike nature (i.e., definite number of particles).
Since the cases with losses are discarded, this enhances
the teleportation fidelity. Even with a teleportation channel
containing very small entanglement, it is possible to obtain a
large teleportation fidelity by filtering the failures in Bell-state
measurements.

The nonorthogonality of the two coherent states that
form a qubit basis is another major factor that affects the
teleportation fidelity. For example, the fidelity of teleportation
from polarization to coherent-state qubits with small α is
always higher than that with large α due to the larger overlap of
the qubit basis for smaller α. However, in order to make a fair
comparison, it is important to note that this nonorthogonality
for small α also increases the classical limit of quantum
teleportation.

In terms of success probabilities, teleportation from field-
like to particlelike qubits shows higher values. For example, in
the case of teleportation from coherent-state to polarization
qubits, the success probability increases up to 1 as the
amplitude of the coherent-state qubit becomes large.

The effect of postselection has been investigated as a trial
to increase the fidelity on the particlelike sides. As a result,
the fidelities of the teleportation from fieldlike to particlelike
qubits increase and become almost the same as those in the
opposite direction. However, the additional resources (i.e.,
preparation of additional polarization entangled states) and
the decrease of the success probabilities are the price to be
paid.

Our work may provide useful information in the context of
information transfer between systems of different properties.
As an example, since a coherent state with a large amplitude
contains a large number of photons, the hybrid channel
in Eq. (1) can be considered to be entanglement between
microscopic and macroscopic systems [35,40–45]. Our study
may be a framework to study information transfer between
microscopic and macroscopic systems.
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