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Using macroscopic entanglement to close the detection loophole in Bell-inequality tests
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We consider a Bell-like inequality performed using various instances of multiphoton entangled states to
demonstrate that losses occurring after the unitary transformations used in the nonlocality test can be counteracted
by enhancing the size of such entangled states. In turn, this feature can be used to overcome detection inefficiencies
affecting the test itself: a slight increase in the size of such states, pushing them towards a more macroscopic
form of entanglement, significantly improves the state robustness against detection inefficiency, thus easing the
closing of the detection loophole. Differently, losses before the unitary transformations cause decoherence effects
that cannot be compensated using macroscopic entanglement.
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I. INTRODUCTION

Quantum mechanics reveals a world quite different from the
classical one. Probably the most surprising consequence of the
basic assumptions of quantum mechanics is that local realism
is no longer tenable. This is proved by violation of Bell’s
inequality [1]. However, the undoubtedly impressive successes
in the experimental violation of local realism have not yet
reached the stage where the violation of Bell’s inequality
free from well-known experimental loopholes is possible:
while the locality loophole can be handled by using ultrafast
analyzers and photonic information carriers, which guarantee
the spacelike distribution of particles outside the light cone [2],
considerable efforts have been directed towards the closure
of the detection loophole through the use of various sorts of
quantum states and measurement schemes [3,4].

While this sets the underlying motivations for our investi-
gation, the following identifies the somehow counterintuitive
path that we propose to take in order to solve the issue of the
detection loophole: we consider an optical setting for the vio-
lation of Bell’s inequality and argue that only a slight increase
in the macroscopic nature of the two-mode optical resource to
be used in the test is sufficient to close the detection loophole.
Here, “macroscopic entanglement” should be intended as the
entanglement between macroscopically distinguishable states
(we use the term “macroscopicity” accordingly) [5]. The
achievement of macroscopic entanglement is one of the most
stimulating topics, at all levels, in modern quantum mechanics
in light of the intrinsic interest in the observation of quantum
phenomena on a macroscopic scale. Endeavors in this sense
are made difficult due to the fact that entanglement between
macroscopically distinguishable states appears to be possible
only under very selective conditions [6,7] and it would easily
be destroyed by the interaction with the surrounding world [8].
However, we show that by considering optical states that are
very close to experimental realization and are nevertheless
endowed with a non-negligible macroscopic character, the
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experimental requirements for the closure of the detection
loophole can be significantly lowered.

II. BELL-INEQUALITY TESTS WITH MACROSCOPIC
ENTANGLEMENT UNDER EFFECTS OF LOSSES

We first focus on entanglement between photon number
states

|ψn〉 = 1√
2

(|nH 〉|nV 〉 + |nV 〉|nH 〉), (1)

where |nH 〉 (|nV 〉) denotes a state of n photons, all with
horizontal (vertical) polarization in a single spatial mode.
State (1) is equivalent to a Greenberger-Horne-Zeilinger
(GHZ)-type entangled state |H 〉⊗2n + |V 〉⊗2n [9]: it is obvious
that local unitary operations and spatial mode rearrangement
can convert one to the other. These types of states have
been experimentally demonstrated for values of n up to 5
with fidelity 0.56 (n = 4 with 0.78) [9,10]. The components
|nH 〉 and |nV 〉 of Eq. (1) can be considered macroscopically
distinguishable when n is large.

Suppose now that, experimentally, we only have extremely
inefficient detectors, such as human eyes, so that only
macroscopic difference can be noticed. Notice that such a
possibility has been recently considered in the context of
experimental revelation of entanglement and nonlocality in
entangled states involving macroscopic components [11–13]
as well as quantum-to-classical transition [12,14–16]. If n is
large enough, the two states can still be discriminated using two
inefficient detectors, A and B, and a polarization beam splitter
(PBS) as shown in Fig. 1. If only detector A (B) clicks, one
can tell that the input state was |nH 〉 (|nV 〉). The measurement
scheme fails only when the relevant detector misses all the
incoming photons. Assuming that efficiency of each detector
is η, the success probability Ps for the scheme is

Ps = 1 − (1 − η)n, (2)

which can be made arbitrarily close to unity by increasing n,
for any nonzero value of η. Distinguishability between the two
states can be made arbitrarily good by increasing the photon
number.
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FIG. 1. (Color online) (a) Bell inequality test using entangled
polarization state and on/off photodetectors under photon loss. States
|nH 〉 and |nV 〉 are discriminated by Alice using a polarization beam
splitter (PBS) and two photodetectors A and B. A local unitary
operation, U , is required when performing a Bell inequality test.
Photon loss is modeled by a beam splitter (BS) with transmittivity
η. BS1 and BS2 are employed to consider losses both before and
after the unitary operation, respectively. Bob undergoes the same
procedure with his chosen unitary operation. (b) Analogous setup
for entangled coherent state, |ECS〉, and homodyne detection. Two
component states, |α〉 and | − α〉, of an entangled coherent state are
distinguished by homodyne detection.

Let us introduce the measurement operator

Ô =
n∑

k=1

(|kH 〉〈kH | − |kV 〉〈kV |) + |0〉〈0|, (3)

whose last term is necessary to include a no-click event at both
the A and B photodetectors in Fig. 1(a), a case that should be
included in a loophole-free Bell test. The correlation function
is constructed as

Ep(θa,θb,η) = Traba′b′ [Ôa ⊗ Ôb|�n(θa,θb,η)〉〈�n(θa,θb,η)|]
(4)

where the superscript p is used to indicate that polarization-
entangled states are used and

|�n(θa,θb,η)〉 = B̂p

aa′(η,θa) ⊗ B̂p

bb′ (η,θb)|ψn〉ab|00〉a′b′ . (5)

We have introduced B̂p

jj ′ (η,θj ) = B̂jj ′(η)Ûp(θj ) (j =
a,b) with B̂ab(η) = e

ζ

2 (â†b̂−âb̂†) the operator of a beam
splitter of transmittivity η = (cos ζ )2 and Ûp(θj ) =
exp[iθj (|nH 〉j 〈nV | + H.c.)] a rotation about the x axis of the
Bloch sphere of a polarization qubit {|nH 〉,|nV 〉}j encoded
in mode j (∀n∈N). As such unitary operation depends on
the photon number n, it needs the nonlinear Hamiltonian
Ĥn = g(ân

H â
†n
V eiφ + H.c.) to be realized: by choosing the

interaction time, any value of θj can be obtained. One can in
principle implement this type of highly nonlinear Hamiltonian
by decomposing it into series of Gaussian unitaries and cubic
operations [17,18].

Using the correlation function (4), it is straightforward
to construct the Bell function [19] Bp(θa,θb,θ

′
a,θ

′
b,η) =

Ep (θa,θb,η) + Ep (θa,θ
′
b,η) + Ep (θ ′

a,θb,η) − Ep (θ ′
a,θ

′
b,η),
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FIG. 2. (Color online) The optimal Bell function of the entangled
polarization state against η for two cases depicted in Fig. 1 (a). (a)
The case of photon losses after the unitary operation that is equivalent
to inefficient detection. As photon number n increases, nonlocality
shown by Bell-inequality violations gets more robust against photon
losses. The detection-inefficiency threshold decreases to 35.6% for
n = 4. (b) The case of photon losses before the unitary operation.

which should satisfy |Bp| � 2 under the assumptions of local
realism. In our case, the correlation function is

Ep(θa,θb,η) = (1 − η)2n − [1 − (1 − η)n]2 cos[2(θa + θb)].

(6)

In Fig. 2(a) we have plotted the optimized Bell function
|Bp|max against detection efficiency η for several values of
n. For n = 1, the efficiency of minimum violation (detection-
inefficiency threshold) is 82.8%, which is a well known
value for the maximally entangled qubit states [20]. As
it can be clearly seen, when n grows (hence increasing
the macroscopic nature of the entangled state at hand),
the detection-inefficiency threshold decreases, thus showing
that low efficiencies can be compensated by an enhanced
macroscopic character.

We now address an important point. As we are interested in
the effects of low-efficiency detectors, we have so far consid-
ered losses after the unitary rotations and prior to the detection
[i.e., only BS2 was considered in Fig. 1(a)]. What happens
if losses occur before the unitary operations as modeled by
BS1 in Fig. 1(a)? In order to assess this case, we only need to
replace B̂jj ′ (η,θj ) in Eq. (5) with B̂p

jj ′ (η,θj ) = Ûp(θj )B̂jj ′(η)
(j = a,b). In this case [see Fig. 2(b)], the configuration
with increasing photon number becomes very fragile against
photon losses. This is due to the fact that losses before the
unitary operations must be treated as decoherence rather than
detection inefficiency. As the effective decoherence rate is
faster for larger n, simply increasing it and using local unitary
operations cannot cure the corresponding spoiling effects. For
more plausible results we need to consider both effects at once.
This is the reason why we do not indicate the case of higher
n despite the fact that n = 4 is not sufficiently macroscopic.
More discussions will be presented at the end of the paper.

As a second significant example, we consider the entangled
coherent state (ECS) [21]

|ECS*〉 = N (|α,α〉 + | − α, − α〉), (7)

where |±α〉 is a coherent state of amplitude ±α ∈ C and
N = [2(1 + e−4|α|2 )]−1/2 is a normalization factor. Such states
can be generated using a 50:50 beam splitter and coherent-state
superpositions, |α〉 + | − α〉, which have been experimentally
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FIG. 3. (Color online) The optimized Bell parameter for an
ECS. Similarly to polarization-entangled states, by increasing the
macroscopic character of the state (given in this case by the amplitude
α), the Bell parameter becomes more robust for photon losses. For
α = 1, the detection-inefficiency threshold is about 50%.

demonstrated [22]. Recently, a nonlocal generation of the
entangled coherent state was successfully demonstrated [23].

The setup that we consider in this case is illustrated
in Fig. 1(b) but BS1 is ignored for now. Similarly to our
previous example, we take unitary operations ÛECS

jj ′ (θj )(j =
a,b) embodied by effective rotation performed in the space
spanned by the basis {|α〉,| − α〉}. For large values of |α|,
such transformations can be performed approximately using
a properly arranged cascade of single-mode Kerr-like nonlin-
earities and displacement operations [12,24,25]. A Bell test
can then be constructed by using homodyne measurements,
whose outcomes are dichotomized in a way that a logical
outcome +1 (−1) is associated to positive (negative) ex-
pectation values of the in-phase quadrature operator of each
mode. In Refs. [12,24–27], some of us have proven that this
approach can be successfully applied to the exploration of
nonclassicality tests, including multipartite nonlocality and
quantum contextuality.

Here, we model inefficient homodyne detectors in a way
fully analogous to what has been done previously for photode-
tectors [cf. Fig. 1(b)]. For simplicity and without limitations
to the validity of our analysis, in what follows we assume
α ∈ R. We study the behavior of the optimized Bell parameter
|BECS(θa,θb,θ

′
a,θ

′
b,η)|, which has been constructed using the

correlation functions EECS(θa,θb,η) = P++ + P−− − P+− −
P−+, where we have defined the probabilities

Pkl =
∫ ks

ki

dx

∫ ls

li

dy〈xaxb|Tra′b′ [|	(θa,θb,η)〉〈	(θa,θb,η)|]|xaxb〉
(8)

with |	(θa,θb,ηa′b′ )〉 = B̂ECS
aa′ (η,θa) ⊗ B̂ECS

bb′ (η,θb)|ECS*〉ab

|00〉a′b′ , B̂ECS
jj ′ (η,θj ) = B̂jj ′ (η)ÛECS(θj ) (j = a,b), the sub-

scripts k,l = ± that correspond to the assigned measurement
outcomes ±1 and the integration limits +s = ∞,+i = −s =
0, and −i = −∞. Moreover, |xa〉 (|xb〉) is an eigenstate
of the quadrature operator x̂a = â + â† (x̂b = b̂ + b̂†) with
eigenvalue xa (xb).

In Fig. 3 we plot the Bell parameter against the homodyne
detector efficiency η for various choices of α. It is clear in
this case too that by increasing the macroscopic character of

the state (i.e., by increasing α), we gain in robustness and the
violation of the Bell inequality is possible even for large losses.
For instance, at α = 1, violation is possible for 50% detection
efficiencies, which sets an important benchmark. Comparing
with the previous case, ECS is more robust to detection ineffi-
ciency than the polarization-entangled state under the same av-
erage photon number. For example, the detection-inefficiency
threshold is about 0.83 for the polarization-entangled state
of two photons, but it is about 0.5 for the ECS. Moreover,
by addressing the case of photon losses occurring before the
local unitary operations, modeled by BS1 in Fig. 1(b), one can
also see that an opposite effect, very much similar to the one
observed for the polarization-entangled state, is in order: larger
values α imply a larger detection-inefficiency threshold for
the violation of the Bell-CHSH inequality. This can be easily
understood and verified by studying the Markovian master
equation ∂t� = γ â�â† − γ

2 (â†â� + �â†â) with � the density
matrix of a boson with associated annihilation (creation)
operator â (â†), γ the loss rate, and t the interaction time.
Decoherence described by this master equation is equivalent
to the beam splitter loss: the relation between the beam splitter
loss η before the unitary operation and the loss rate γ in the
master equation is given by η = exp[−γ t].

We now extend our analysis to an entangled thermal state
(ETS) [28]

ρETS
ab (θa,θb) = N+

∫ ∫
d2αd2βP TH

α

× (V,d)P TH
β (V,d)|ECS*〉ab〈ECS*| (9)

with |ECS*〉=|α,β〉+|−α,−β〉, N± = [2(1±e−4d2/V/V 2)]−1,
and P TH

α (V,d) = 2
π(V −1) exp[−(2|α − d|2)/(V − 1)] the

Gaussian thermal distribution with variance V =
2(n − d2) + 1 (n is the mean photon number) and center
d (with respect to the origin of the phase space). This
state can be created by entangling two single-mode thermal
states mutually displaced by d and has been used to prove
the possibility to violate local realism with coarse-grained
homodyne measurements and thermal local states [12].

We subject Eq. (9) to the local rotations ÛECS
jj ′ (θj ) used in

order to assess an ECS and eventually arrive at the following
expression for the correlation function CETS(θa,θb) that en-
ters in the Bell parameter BETS(θa,θb,θ

′
a,θ

′
b) = CETS(θa,θb) +

CETS(θ ′
a,θb) + CETS(θa,θ

′
b) − CETS(θ ′

a,θ
′
b)

CETS(θa,θb)=V1V2{e4iθa gη(θa)[Qgη(θb)s(θb)

+ ie2d2/V V1h(θb)(f−,η(θb) − e8iθbf+,η(θb))]

+V1h(θa)[ie2θb[2i+(V θb/d
2)]gη(θb)s(θb)(f−(θa)

− e8iθbf+(θa)) + 4V1h(θb)(e8iθaf−,η(θb)f+,η(θa)

+ e8iθa f−,η(θa)f+,η(θb))]} (10)

where s(θi) = sgn(θi) and

h(θi) = e[2(d4+θ2
i )/d2V ],

gη(θj ) = erfi

[ √
2ηθj

d
√

V 2 − η2V (V − 1)

]
,

V1 = (1/8)(1 + V 2e
4d2

V )−1,
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FIG. 4. (Color online) (a) The optimized Bell function against
the dimensionless decoherence parameter γ t and d for V = 10. The
floor of the figure shows the limit for local realistic theories. (b)
The optimized Bell function against γ t for V = 1.001, d = 5 (solid
curve), V = 10, d = 5 (dashed curve), and V = 10, d = 10 (dotted
curve).

V2 = e−4i(θa+θb)−[2(1+V 2)(θ2
a +θ2

b )/d2V ],

Q = 8e4iθb+[2V (θ2
a +θ2

b )/d2],

f±,η(θj ) = erf

[ √
2η(d2 ± iV θj )

d
√

1 + η2(V − 1)

]
. (11)

While a detailed study of the behavior of BETS against V and
d is provided in Ref. [12], here we mention that the effects that
detection inefficiencies have on the violation of the Bell-CHSH
inequality can indeed be compensated for a large violation of
Bell’s inequality by increasing the displacement amplitude d.
This means that photon losses at detectors can be overcome by
increasing the amplitude d of the initial thermal state. However,
photon losses before the measurements at the detectors (for
example, during the generation process of the ETS), which will
cause decoherence of the state itself, may reduce entanglement
and destroy the violation of Bell-CHSH inequality. This is what
we now ascertain.

We can exploit the formulation of the lossy evolution of
a bosonic system given by Phoenix [29] to find out that
the correlation function to use for the evaluation of the Bell
parameter of an ETS affected by losses at a rate γ can be
explicitly calculated, although the analytic expression turns
out to be quite lengthy. In Fig. 4(a), we show the behavior of
the Bell parameter against the separation d between the thermal
components and the dimensionless dissipation parameter γ t

for V = 10 (arbitrary choice). Evidently, already for modest
values of d an ETS violates the Bell-CHSH inequality for
any value of the decoherence parameter. Larger values of V

simply require a larger threshold in d to show violation of
the Bell-CHSH inequality, which is therefore still a property
of our genuinely macroscopic states affected by decoherence.
In Fig. 4(b) we have compared the Bell functions obtained
assigning the value of V and d. We see that the increase of V

does not boost the decrease of BETS with γ t . Indeed, the slopes
of the curves in Fig. 4(b) of an ETS with V = 10 and d = 5
(dashed curve) and of a (nearly) pure ECS with V = 1.001
and d = 5 (solid curve) are very close to each other. Clearly, a
larger separation in phase space (i.e., larger d) causes a quicker
destruction of the violation of the Bell-CHSH inequality.

We finally consider a more realistic situation where losses
before the unitary operation is present together with detection
inefficiency. We include both the effects in our calculations
by using beam splitter operations before and after the unitary
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FIG. 5. (Color online) (a) The optimal Bell function for three
values of n in an entangled polarization state plotted against η when
5% losses occur before the unitary operation. (b) The analogous
quantity calculated for an ECS having α = 1,1.5, and 2 and subjected
to 15% losses.

operation as B̂jj ′(η2)Û (θj )B̂jj ′′(η1), where η1 (η2) is the
parameter determining losses before the unitary operation
(the effects of detection efficiency). The results in Fig. 5(a)
show that the entangled polarization state of n = 3 causes the
required detection efficiency to be larger than 61% for 5%
losses before the unitary operation. As shown in Fig. 5(b),
the ECS is found to be significantly more efficient: at α = 2,
an ECS shows Bell violations when detection efficiency is
larger than 
17% for 15% losses. Considering that about
250 m length for traveling photons would be sufficient to
be free from the locality loophole [2], this range of values
is not far from experimental reality when using telecom
fibers [30].

III. CONCLUSIONS AND OUTLOOK

We discussed several examples of entangled multiphoton
states to show that macroscopic quantum correlations may
indeed be used in order to overcome limitations in funda-
mental tests of physics performed with inefficient detectors:
the detection loophole can be made less relevant in Bell
tests conducted by using states involving a large number
of excitations and, as such, verging towards classicality. In
contrast to this, losses occurring before the local operations
needed to run a Bell-like test affect the quality of the test itself
in a way that cannot be corrected by simply considering a more
macroscopic resource. Our results reveal a relation between
macroscopic entanglement and measurement efficiency in
Bell inequality tests. They reinforce in an unexpected way
the idea that quantum features are indeed observable at
larger, quasimacroscopic scales. As we have shown, state
macroscopicity can in fact be used to magnify such features
and ascertain them in a more reliable way.
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