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Production of entanglement with highly mixed states
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We study production of entanglement with highly mixed states. We find that entanglement between highly
mixed states can be generated via a direct unitary interaction even when both states have purities arbitrarily close
to zero. This indicates that purity of a subsystem is not required for entanglement generation. This result is in
contrast to previous studies where the importance of the subsystem purity was emphasized.
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Entanglement is considered a genuine quantum correlation
that cannot be described by any classical means. Meanwhile,
thermal states, particularly when they are in heavy mixtures,
are regarded as classical states. In general, generating entangle-
ment using a classical state is much more difficult than when
using a nonclassical state. For example, it was shown that
nonclassicality is a prerequisite of generating entanglement of
light fields using a beam splitter [1].

On the other hand, it is possible to generate entanglement
with highly mixed thermal states under certain conditions
[2–6]. Bose et al. showed [3] that entanglement always arises
between a two-level atom and a thermal field inside a cavity
irrespective of the temperature of the thermal state as long as
the atom was initially in a pure excited state. In their work,
the Jaynes-Cummings (JC) interaction was used to model the
cavity interaction. This indicates that the purity of the atom
forces the atom and the thermal state to become entangled
even when the thermal state is extremely mixed. Kim et al.
showed [3] that two atoms can become entangled through
their interactions with a thermal field when the two atoms are
initially in their pure states. Jeong and Ralph also pointed out
[6] that entanglement between thermal states at arbitrarily high
temperatures can be generated using a cross-Kerr nonlinear
interaction if an ancillary microscopic superposition is used
with a conditioning measurement.

Indeed, these are not the end of the investigations. For
example, another interesting question would be whether a
thermal state at an arbitrarily high temperature can ever be
entangled with a mixed atomic state by a direct unitary
interaction. It also remains unanswered whether entanglement
may be generated between thermal states at arbitrarily high
temperatures by a direct unitary interaction. In this paper,
we study several examples to answer these questions. We
conclude that entanglement between two highly mixed states
can be generated solely by a unitary interaction even when
both states have purities arbitrarily close to zero. Our results
show that subsystem purity is not a necessary condition for
generating entanglement by a direct unitary interaction. Thus
the importance of the initial purity in entanglement generation
depends on the interaction model.

Reference [3] shows that entanglement is always generated
from a pure excited atom and a thermal field through a JC
interaction irrespective of the temperature of the field. If both
the atomic state and the cavity field are in thermal states with
a same temperature, entanglement disappears in the infinite-

temperature limit [3]. The reason for this is that the total state
becomes proportional to the identity as the temperature goes to
infinity [3]. However, it is possible to prepare the initial atomic
state in an independent manner from the temperature of the
field. Here we examine such examples where both parties are
in mixed states but their degrees of purities are independently
varied.

We first consider an atomic state p |e〉〈e| + (1 − p) |g〉〈g|
with 0 � p � 1 and a thermal-field state, ρ th = (1 −
λ)

∑
n λn |n〉〈n|, where |g〉 (|e〉) is the ground (excited) state of

the atom and |n〉 is the photon-number state of the field. We also
note that λ = exp[−h̄ω/(kBT )], where kB is the Boltzmann
constant, T is the temperature, h̄ is the Plank constant, and ω

is the frequency of the optical field. In our analysis, the purity of
state ρ is quantified by the linear entropy Tr[ρ2]. The purities of
the atomic and field states are thenPatom = 2(p − 1/2)2 + 1/2
and Pfield = (1 − λ)/(1 + λ), respectively. We take p and λ as
independent control parameters of purities of the atom and
the field. The purity of the atom is 1 when p = 1 while it
shows the minimum value 1/2 when p = 1/2, and the purity of
the field can be characterized by 0 � λ � 1. The initial states
evolve through a JC interaction, HJC = g(|e〉〈g| a + |g〉〈e| a†),
where g is the coupling strength and a (a†) is the annihilation
(creation) operator of the field mode. After the interaction
with time t , we make a local projection on the field mode into
a subspace spanned by |n〉 and |n + 1〉, then the total state
becomes

p

⎛
⎜⎜⎜⎝

Pn−1S
2
n−1 0 0 0

0 PnC
2
n iPnCnSn 0

0 −iPnCnSn PnS
2
n 0

0 0 0 Pn+1C
2
n+1

⎞
⎟⎟⎟⎠

+ q

⎛
⎜⎜⎜⎝

PnC
2
n−1 0 0 0

0 Pn+1S
2
n+1 −iPn+1CnSn 0

0 iPn+1CnSn Pn+1C
2
n 0

0 0 0 Pn+2S
2
n+1

⎞
⎟⎟⎟⎠ ,

(1)

where Cn = cos(gt
√

n + 1), Sn = sin(gt
√

n + 1), Pn = (1 −
λ)λn, and q = 1 − p. We use negativity of partial trans-
pose (NPT) as an entanglement measure [7–9], defined by
−2min(0,ε), where ε is the minimum eigenvalue of the partial
transpose of the density matrix with respect to one of its parties.
Since the projection is a local operation, observing nonzero
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FIG. 1. Negativity of partial transpose (NPT) of the projected
density matrix in Eq. (1) versus (interaction strength g)×(interaction
time t) for entanglement between an atom and a thermal state
discussed in the text. The projection basis on the field mode is
{|n〉〈n| , |n + 1〉〈n + 1|} with n = 0 (thick), n = 10 (dashed), and
n = 100 (thin). The temperature of the field is assumed to be infinite
for panels (a)–(c) and the purity p of the atomic state is (a) 1, (b) 0.9,
and (c) 0.8. The atom is assumed to be maximally mixed (p = 1/2)
for panels (d)–(f) and λ of the field is (d) 0, (e) 0.1, and (f) 0.2 in
order of decreasing purity.

NPT of the projected density matrix indicates that the original
total state has entanglement.

A nonzero value of NPT for Eq. (1) with any value of n is
evidence of the atom-field entanglement. Values of the NPT
for several choices of n with normalizations of Eq. (1) are
presented in Fig. 1. If the atom was initially in a pure excited
state (p = 1), entanglement of the projected density matrix
with n = 0 shows entanglement except when gt = nπ/2. As
shown in Fig. 1, the cases with the other projections (n = 10
and 100) of the density matrix lead to the conclusion that the
entanglement always exists for t > 0. This is in agreement
with the result of Ref. [3].

Figure 1 shows that the NPT tends to disappear as the
purity of the atom decreases. In Fig. 1, we also observe similar
behavior when the initial atom is in a maximally mixed state
(|g〉〈g| + |e〉〈e|)/2 and the temperature of the field increases
from 0 to infinity. It seems that a certain degree of purity is
required to generate entanglement. However, the method used
here is merely to find a sufficient condition of the presence
of entanglement, and we cannot confirm that there is no
entanglement in the original state when the NPT is zero for
the projected density matrix [3].

We now consider an entanglement generation scheme
between two harmonic oscillators via a cross-Kerr nonlinear
interaction. This type of interaction has been explored to
study entanglement involving thermal states [6,10–12]. It
is analogous to the scheme in the previous example: the

atomic state is replaced by a superposition of the vacuum
and the single photon, and the JC interaction is replaced by a
cross-Kerr nonlinear interaction. A limitation of the cross-Kerr
interaction using fibers in implementing certain quantum
gates [13] has been pointed out [14–16]. However, we are
here interested in possibility of entanglement generation using
possible physical interactions in any systems. It was pointed
out that a nonzero conditional phase shift with a high fidelity
is possible in a cross-Kerr interaction between pulses with
unequal group velocities [17]. Hosseini et al. demonstrated
the feasibility of achieving a large cross-Kerr interaction at the
single-photon level based on a memory-based approach [18].

The cross-Kerr interaction between modes a and b is
described by an interaction Hamiltonian HKerr = χa†ab†b
where χ is the nonlinear interaction strength. One mode is
prepared as a superposition of the vacuum and the single-
photon state, generally in a mixture

ρm = 1
2 (|0〉〈0| + r|0〉〈1| + r|1〉〈0| + |1〉〈1|), (2)

where the purity, Tr[ρ2
m] = (1 + r2)/2, is characterized by

a real value r . The other mode is prepared as a displaced
thermal state, ρ th = ∫

d2αP th
α (V,d)|α〉〈α|, where P th

α (V,d) =
2[π (V − 1)]−1 exp(− 2|α−d|2

V −1 ) and |α〉 is a coherent state of
amplitude α. The variance V is related to the average photon
number n̄ as V = 2(n̄ − d2) + 1, and d corresponds to the
displacement of the state from the origin in phase space. Note
that the purity of ρ th is independent of d since the displacement
is a unitary operation. After a cross-Kerr interaction with an
interaction time t = π/λ, the total state becomes

1
2

{|0〉〈0| ⊗ ρ th(V,d) + |1〉〈1| ⊗ ρ th(V, − d)

+ r|0〉〈1| ⊗ σ (V,d) + r|1〉〈0| ⊗ σ (V, − d)} , (3)

where σ (V,d) = ∫
d2αP th

α |α〉〈−α|. We make local projec-
tions on the total state into a subspace spanned by sets {|0〉,|1〉}
and {|+〉γ ,|−〉γ } where |±〉γ ≡ N±(|γ 〉 ± |−γ 〉) with N± =
{2(1 ± exp[−2γ 2])}−1/2. The projected state ργ is then⎛
⎜⎜⎜⎝

N 2
+Cγ N+N−Sγ rN 2

+Cγ −rN+N−Sγ

N+N−Sγ N 2
−Cγ rN+N−Sγ −rN 2

−Cγ

rN 2
+Cγ rN+N−Sγ N 2

+Cγ −N+N−Sγ

−rN+N−Sγ −rN 2
−Cγ −N+N−Sγ N 2

−Cγ

⎞
⎟⎟⎟⎠

+Rγ

⎛
⎜⎜⎜⎝

N 2
+ N+N− rN 2

+ −rN+N−
N+N− −N 2

− −rN+N− rN 2
−

rN 2
+ −rN+N− N 2

+ N+N−
−rN+N− rN 2

− N+N− −N 2
−

⎞
⎟⎟⎟⎠ ,

(4)

where

Cγ = 4

V + 1
exp

[
− 2

V + 1
(γ 2 + d2)

]
cosh

[
4γ d

(V + 1)

]
,

Sγ = 4

V + 1
exp

[
− 2

V + 1
(γ 2 + d2)

]
sinh

[
4γ d

(V + 1)

]
,

Rγ = 4

V + 1
exp

[
− 2

V + 1
(V γ 2 + d2)

]
.

We assumed that γ and d are real without loss of generality.
Notice that Tr[ργ (r)] �= 1 because the local projection is not
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FIG. 2. NPT of the projected density matrix for Eq. (4) against
displacement d of the displaced thermal field. We choose the
amplitude γ = 2 for the projection basis |±〉γ with several values
of V , and the normalized purity r is (a) 1 and (b) 0.1. Unless the
microscopic superposition is totally mixed as r = 0, entanglement is
observed for d � √

V for any values of V .

an unitary operation. The absolute scale of the NPT is not
important for the purpose of our study, because any nonzero
value is meaningful enough.

We numerically calculated the NPT of ργ (r)/Tr[ργ (r)]
for some values of V , d, and r , and present the results in
Fig. 2. When d = 0, the NPT is zero regardless of the value
of V . In this case, the original state is separable because
σ (V,0)T = σ (V,0) in Eq. (3): the density matrix is then
invariant under a partial transpose on one side. However, we
can observe entanglement for any values of V with d � √

V

as far as r is nonzero in Eq. (2).
As the next step, we consider two slightly different

entanglement generation schemes where conditioning mea-
surements are used in addition to unitary interactions [6]. After
the Kerr interaction between a microscopic state in Eq. (2) and
a thermal state, we measure out the microscopic part on the
basis (|0〉 ± |1〉)/√2 [6]. The resultant state of the remaining
mode is highly nonclassical exhibiting singular behavior on
its Wigner function [6]. After we transmit this state through a
50 : 50 beam splitter, the state becomes

ρBS(±) = N

∫
d2αP th

α (V,d){|δ〉〈δ| ⊗ |−δ〉〈−δ| + |−δ〉
×〈−δ| ⊗ |δ〉〈δ| ± r|δ〉〈−δ| ⊗ |−δ〉〈δ| ± r|−δ〉
× 〈δ| ⊗ |δ〉〈−δ|}, (5)

where δ = α/
√

2 and N = (2 ± 2r exp[−2d2/V ]/V )−1. The
NPT of the locally projected density matrix by sets
{|+〉γ ,|−〉γ } for both parties is plotted in Fig. 3. One can
observe that entanglement between thermal states is generated
even when they are highly mixed (V � 1) unless the initial
microscopic state was totally mixed with r = 0. Interestingly,
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FIG. 3. NPT of locally projected state of ρBS(+) with (a) r = 1 and
(b) r = 0.1. We used γ = 2 for the projection basis. Entanglement is
always observed for large values of V � 1 even when d = 0 unless
r = 0.
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FIG. 4. NPT of the locally projected state of ρT T (+) versus the
displacement d with (a) r = 1 and (b) r = 0.1. The amplitude of the
projection basis is γ = 2 as in Figs. 2 and 3. Each curve corresponds
to V = 10 (solid), 500, (dashed), and 1000, (dotted). Nonzero values
of d much larger than

√
V are required to observe entanglement

compared to ρBS(+) cases.

a high mixture (V � 1) enables one to observe entanglement
even with d = 0 and a small value of r .

The other entanglement-generation scheme between two
macroscopic thermal states is as follows: The microscopic
state successively interacts with two thermal states via the
cross-Kerr interactions, and it is measured out along the basis
(|0〉 ± |1〉)/√2. The resultant state is

ρT T (±) = N
{
ρ th

a (V,d) ⊗ ρ th
b (V,d) + ρ th

a (V,−d)

⊗ ρ th
b (V,−d) ± rσa(V,d) ⊗ σb(V,d) ± rσa(V,−d)

⊗ σb(V, − d)
}
. (6)

We also project this state into a subspace spanned by sets
{|+〉γ ,|−〉γ } for each mode, then calculate the NPT which is
presented in Fig. 4. Again, an initial microscopic state with
any value of r > 0 is useful to generate entanglement between
thermal states regardless of V . Here, however, a condition of
d � √

V is required to clearly observe entanglement.
We now come to a natural question: Can two highly mixed

states, when their purities become arbitrarily small, still be
entangled through a direct unitary interaction? Here we simply
prepare two identical displaced thermal states and apply the
cross-Kerr interaction directly between those states. In order
to calculate the effect of the interaction, we first point out
that two-mode states where each mode has a definite photon
number parity are eigenstates of the cross-Kerr interaction
for time t = π/χ so that U = exp[iπa†ab†b]. It works as
a controlled-phase gate on the |±〉γ basis where |±〉γ is

FIG. 5. (Color online) NPT of ρψ
γ with γ = 2. In this case V is the

only parameter that adjusts the purities of both parties simultaneously.
We can always obtain the entanglement even in V → ∞ limit with
sufficient displacement d � √

V . This indicates that nonzero purity
of the system is sufficient to generate entanglement.
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defined in the above Eq. (4) [19]: U |+〉γ |±〉γ = |+〉γ |±〉γ
and U |−〉γ |±〉γ = ± |−〉γ |±〉γ . Based on this, we calculate
the evolution of the two thermal sates under U as

U |α〉|β〉 = 1
2

(|α〉|β〉 + |α〉|−β〉 + |−α〉|β〉−|−α〉|−β〉)
≡ |ψ〉 (7)

and ρψ = ∫
d2αd2βP th

α (V,d)P th
β (V,d)|ψ〉〈ψ |. The locally

projected density matrix with basis {|+〉γ ,|−〉γ } is

ρψ
γ =

⎛
⎜⎜⎜⎝

X2
γ Xγ Sγ Sγ Xγ −S2

γ

Xγ Sγ Xγ Yγ S2
γ −Sγ Yγ

Sγ Xγ S2
γ Yγ Xγ −Yγ Sγ

−S2
γ −Sγ Yγ −Yγ Sγ Y 2

γ

⎞
⎟⎟⎟⎠ , (8)

where Xγ = Cγ + Rγ and Yγ = Cγ − Rγ in terms of Cγ ,
Sγ , and Rγ defined in Eq. (4). We plot the results in Fig. 5,
which shows that entanglement is generated even in the high
-temperature limit as long as d � √

V . We observe that two
thermal states at arbitrarily high temperatures are entangled

through a direct unitary interaction as long as the condition
d � √

V is satisfied.
In summary, we have studied several examples to explore

entanglement generation involving highly mixed physical
systems. Our results reveal some interesting facts concerning
the generation of entanglement involving such highly mixed
systems. The purity of initial states is not necessarily a
prerequisite for entanglement generation. It rather depends
on the model of the interaction between the initial states. In
particular, we have shown that entanglement between thermal
states can be generated via a direct unitary interaction even
when both states have purities arbitrarily close to zero.
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