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We propose a scheme for testing high-dimensional Bell inequalities in phase space. High-dimensional Bell in-
equalities can be recast into the forms of a phase-space version using quasiprobability functions with the complex-
valued order parameter. We investigate their violations for two-mode squeezed states while increasing the dimen-
sion of measurement outcomes and finally show the robustness of high-dimensional tests to detection inefficiency.
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I. INTRODUCTION

Quantum nonlocality confirms the validity of quantum
mechanics against the local-realistic theories by violations of
the constraints on the correlation between local measurement
outcomes. Such constraints, called Bell inequalities, were first
proposed by Bell [1], and to date, many versions have been
proposed and investigated [2–4]. Probably the best known
version of Bell inequalities is Clauser, Horne, Shimony,
and Holt’s (CHSH) inequality [2], which has been used for
verifying nonlocal correlations in a two-dimensional Hilbert
space. However, since most physical systems are composed
of many particles with many degrees of freedom and thus
exhibit their properties in a higher-dimensional Hilbert space,
studying high-dimensional quantum correlation is essential.
Recently, orbital angular momentum states of photon pairs [5]
and hyperentangled states [6] have been of great interest. It
has been shown that high-dimensional versions of quantum
information processing offer some advantages, e.g., a robust
quantum key distribution [7], superdense coding [8], and fast
high-fidelity quantum computation [9].

Several types of high-dimensional Bell inequalities have
been proposed and investigated in various ways. For example,
the type proposed by Collins et al. [3] is in the form of
a combination of joint probabilities, which we will call
the CGLMP inequality throughout this paper. The violation
of the CGLMP inequality was demonstrated for arbitrary
high-dimensional entangled states and experimentally realized
for three-dimensional systems [10]. The type proposed by
Son et al. [4], which we will call the SLK inequality, is
in the form of a combination of correlation functions. A
generalized structure of high-dimensional Bell inequalities
was formulated both in joint probability and correlation
function representation where two representations are in
Fourier transform relations [11].

Phase-space formalism has been used successfully for
describing various quantum properties (especially for optical
quantum states) since any quantum state can be perfectly
characterized by quasiprobability functions, such as the
Wigner function, the Q function, and the P function [12].
Bell inequalities in the forms of the CHSH inequality and
the CH inequality (another version of two-dimensional Bell
inequality [13]) were proposed by the Wigner and Q functions,
respectively [14]. Recently, a generalized version merging the
CHSH and CH types was formulated, which provides a way of
testing quantum nonlocality using quasiprobability functions

with an arbitrary nonpositive order parameter (which includes
the Q function and the Wigner function) [15]. However, so far,
high-dimensional quantum nonlocality has been rarely studied
in phase-space formalism, in spite of a recent study [16],
probably because of the difficulty in discriminating multilevel
outcomes efficiently.

Indeed, the inefficiency of realistic detectors is one of the
biggest problems when implementing a Bell inequality test
for optical quantum states. The lowest efficiency bound for
observing the violation of local realism free from the detection
loophole is known to be very high (e.g., about 83% for a Bell-
CHSH inequality test using an entangled photon pair), and such
a high efficiency is extremely difficult to achieve using current
technology. It was shown that the Q function permits the lowest
bound efficiency for observing nonlocality in phase space [15].
An entanglement witness was proposed in phase space, which
enables detecting entanglement (but not nonlocality) even with
significantly low detection efficiencies [17]. Very recently, it
was shown that high-dimensional Bell tests provide a lower
bound for detection-loophole-free nonlocality tests [18].

In this paper we present a scheme for testing high-
dimensional Bell inequalities in phase-space formalism and
show their robustness to detection inefficiencies. The CHSH
inequality can be tested in phase space [14], exploiting the
fact that the Wigner function is given as an expectation of the
parity measurement on photon number outcomes, i.e., W (0) =
(2/π )〈(−1)n̂〉. This is a projection of photon number statistics
of a given quantum state to the two-dimensional Hilbert space
with two outcomes, +1 and −1. In our approach we increase
the number of outcomes to an arbitrary number d by mapping
the photon number into a discrete phase in polar representation,
and thus, the outcomes are given as a complex variable 〈ωn̂〉,
where ω = exp(2πi/d). The expectation value of d-level
outcomes can be regarded as a generalized quasiprobability
function with a complex order parameter. This approach
has been already used in [16] to demonstrate the violation
of the CGLMP inequality for two-mode squeezed vacuum
states. In this paper, we (i) reformulate the CGLMP and
SLK inequalities in the forms of generalized structure using
quasiprobability functions, (ii) investigate their violations for
two-mode squeezed vacuum states with different numbers of
outcomes, and (iii) finally show that the CGLMP inequality
can offer more robust nonlocality tests to detection inefficiency
than the CHSH inequality.

This paper is organized as follows. In Sec. II we reformulate
two types of high-dimensional Bell inequalities, CGLMP
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and SLK, in the complex-variable representation. We then
investigate their violations for two-mode squeezed vacuum
states in Sec. III and compare their tendencies as the number
of measurement outcomes d increases. We also investigate
the effect of detection inefficiencies on the violations of
high-dimensional Bell inequalities by comparing it to the
two-dimensional case. Finally, we discuss and conclude our
study in Sec. IV.

II. HIGH-DIMENSIONAL BELL INEQUALITIES IN THE
COMPLEX-VARIABLE REPRESENTATION

In this section, we reformulate two types of high-
dimensional Bell inequalities, CGLMP and SLK, in the
complex-variable representation. Suppose that each observer
independently chooses one of two observables, A1 or A2, for
Alice and B1 or B2 for Bob with outcomes k for Alice and
outcomes l for Bob, where k,l ∈ {0,1, . . . ,N − 1}. Outcomes
of each observable are binned to d subsets by assigning
complex variables ωk and ωl , where ω = exp(2πi/d). We
can define a correlation function based on complex variables
and then rewrite two types of Bell inequalities in the complex-
variable representation.

A. Mapping correlation functions to complex variables

A correlation function of two separately measured out-
comes is generally given in the form

C =
N−1∑
k,l=0

µ(k,l)P (A = k,B = l), (1)

where P (A = k,B = l) is the joint probability of Alice
and Bob obtaining outcomes k and l and µ(k.l) is the
correlation weight as a function of outcomes k and l. We
assume here that the correlation weight µ(k,l) satisfies certain
conditions [11]: (C1) The correlation expectation vanishes
for a bipartite system with a locally unpolarized subsystem,∑

k µ(k,l) = 0,∀l and
∑

l µ(k,l) = 0,∀k. (C2) The correlation
weight is unbiased over possible outcomes of each subsystem
(i.e., translational symmetry within modulo d), µ(k,l) =
µ(k + γ,l + γ ),∀γ . (C3) The correlation weight is uniformly
distributed modulo d, |µ(k + 1,l) − µ(k,l)| = |µ(k,l + 1) −
µ(k,l)|,∀k,l. These are naturally required conditions for a
symmetrical and locally unbiased nature assigned to the
correlation functions.

A correlation weight ωk−l satisfies all these conditions
(though it is not a unique type), which is obtained by extending
correlation functions to complex variables. Higher-order (n)
correlations are represented by the nth power of correlation
weight ωn(k−l), where n is a positive integer. Thus, the nth
order correlation function is

C(n) =
N−1∑
k,l=0

ωn(k−l)P (A = k,B = l), (2)

which shows the periodicity of C(d+n) = C(n). Note that any
Hermitian observable operator Ĥ can be associated with
a unitary operator Û by the simple correspondence Û =
exp(iĤ ). Therefore, any N -dimensional outcomes of A and B

can be mapped into complex values ωk and ωl with a given d.

B. CGLMP inequality

We can reformulate the CGLMP inequality in complex-
variable representation. The CGLMP function was originally
proposed as a combination of joint probabilities [3] and can
be written in a generalized form [11]:

B =
2∑

a,b=1

d−1∑
k′,l′=0

εab(k′,l′)P (ωAa = ωk′
,ωBb = ωl′), (3)

with coefficients

ε11(k′,l′) = 1 − 2 ˙(k′ − l′)
d − 1

, ε12(k′,l′) = 1 − 2 ˙(l′ − k′)
d − 1

,

ε21(k′,l′) = −1 + 2 ˙(l′ − k′)
d − 1

, ε22(k′,l′) = 1 − 2 ˙(k′ − l′)
d − 1

,

where the overdot implies the positive residue modulo d. The
Bell function (3) should be bounded by 2 in local-realistic the-
ories. The joint probability P (ωA = ωk′

,ωB = ωl′ ) indicates
the probability that the outcomes by positive residue modulo d

of A and B are equal to k′ and l′, respectively. This is the expec-
tation of the projection operator

∑m−1
p=0 |pd + k′〉〈pd + k′| ⊗∑m−1

q=0 |qd + l′〉〈qd + l′| in d-dimensional Hilbert space,
where we assume that N = dm and m is an integer.

We can rewrite the CGLMP function in terms of the corre-
lation functions (2). On the basis of the generalized formalism
in [11], any Bell-type inequality can be written by the sum of
high-order correlation functions C(n) in complex space:

B =
2∑

ab=1

d−1∑
n=0

fab(n)C(n)
ab , (4)

where the coefficients fab(n) are functions of the correlation
order n and the measurement configurations a,b. Note
that it is sufficient to consider first-order to d − 1-order
correlation functions due to the periodicity C(d+n) = C(n).
The zeroth-order correlation has no meaning as it simply shifts
the value of B by a constant value and is thus here chosen
to vanish, i.e.,

∑
a,b fab(0) = 0. The CGLMP inequality can

then be recast into

BCGLMP = 2

d − 1

d−1∑
n=1

1

1 − ω−n

[
C

(n)
11 − ω−nC

(n)
12

−C
(n)
21 + C

(n)
22

]
� 2, (5)

where C
(n)
ab = ∑d−1

k′,l′=0 ωn(k′−l′)P (ωAa = ωk′
,ωBb = ωl′) is the

nth-order correlation function. Note that the expectation value
of the Bell function in Eq. (5) is always real even though it is
represented by complex variables. The correlation function can
be obtained as an expectation value of the correlation operator,

Ĉ
(n)
ab =

d−1∑
k′,l′=0

ωn(k′−l′)
m−1∑
p=0

|pd + k′〉a〈pd + k′|

⊗
m−1∑
q=0

|qd + l′〉b〈qd + l′|,

=
N−1∑
k,l=0

ωn(k−l)|k〉a〈k| ⊗ |l〉b〈l|, (6)
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where each local measurement basis, denoted by the
notation a, b, can be differentiated by unitary operation in
d-dimensional Hilbert space. Note that when d = 2, Eq. (5)
becomes the CHSH inequality C11 + C12 − C21 + C22 � 2,
where Ĉab = ∑N−1

k,l=0(−1)k+l|k〉a〈k| ⊗ |l〉b〈l|.

C. SLK inequality

We then consider the SLK inequality in the complex-
variable representation. On the basis of the generalized
structure in Eq. (4), we can obtain the SLK function in the
form of Eq. (3) with the coefficients [11]

ε11(k′,l′) = S(k′ − l′ + 1
4

)
, ε12(k′,l′) = S

(
k′ − l′ − 1

4

)
,

ε21(k′,l′) = S
(
k′ − l′ + 3

4

)
, ε22(k′,l′) = S

(
k′ − l′ + 1

4

)
,

where S(x �= 0) = (1/4)(cot πx
d

sin 2πx − cos 2πx − 1) and
S(x = 0) = (d − 1)/2. The local-realistic bound of the SLK
function is given as a function of the number of outcomes d by
1
4 (3 cot π

4d
− cot 3π

4d
) − 1. In order to compare it to the CGLMP

inequality with a fixed local-realistic bound 2, we recast the
original form of the SLK inequality into

BSLK = 1

R(d)

d−1∑
n=1

[(
ω

n
4 + ω

n−d
4

)
C

(n)
11 + (

ω− n
4 + ω− n−d

4
)
C

(n)
12

+ (
ω

3n
4 + ω

3(n−d)
4

)
C

(n)
21 + (

ω
n
4 + ω

n−d
4

)
C

(n)
22

]
� 2,

(7)

where R(d) = 3 cot π
4d

− cot 3π
4d

− 4. Note that the expectation
value of Eq. (7) is always real, and when d = 2, it becomes
equivalent to the CHSH inequality.

Two high-dimensional Bell inequalities in the complex-
variable representation given in Eqs. (5) and (7) can be
effectively used for testing arbitrary N -dimensional quantum
states by arbitrary d-dimensional measurement. If we consider
the case N = ∞, we can perform high-dimensional Bell tests
for continuous-variable quantum states, as we will show in the
following section.

III. VIOLATIONS OF HIGH-DIMENSIONAL
BELL INEQUALITIES BY

A CONTINUOUS-VARIABLE STATE

In this section, we investigate violations of two types of
high-dimensional Bell inequalities, CGLMP and SLK, for
continuous-variable entangled states. We consider here the
two-mode squeezed vacuum states (TMSSs)

|�r〉 =
∞∑

j=0

tanhj r

cosh r
|j,j 〉, (8)

where r > 0 is the squeezing parameter and |j 〉 is the number
state of each mode. This can be realized by nondegenerate
optical parametric amplifiers [19], and highly entangled
photon pairs can be generated for testing Bell inequalities
[20]. Such states are well suited to Bell inequality tests since
entangled photon pairs can be generated and distributed over
long distances [21,22].

A. Bell tests by reconstructing quasiprobability functions

Let us consider high-dimensional Bell tests by reconstruct-
ing quasiprobability functions. An entangled state generated
from a source of correlated photons is distributed to two
spatially separated parties called Alice and Bob. Each party
performs a local measurement by counting photon numbers.
The bases of each local measurement are differentiated by
the displacement operation D̂(α) for Alice and D̂(β) for Bob,
where α and β are complex variables associated with points
in phase space [12]. If we bin the measured photon numbers
alternatively into two-dimensional outcomes (+1 and −1),
the expectation value of local measurement is given as a
Wigner function at the point displaced α (or β) in phase space,
i.e., W (α) = (2/π )〈(−1)n̂(α)〉, where n̂(α) = D̂(α)n̂D̂(−α) is
a displaced number operator. A detail experimental setup for
reconstructing quasiprobability functions by photon counting
is given in [23].

For high-dimensional outcomes, we bin the counted photon
numbers k for Alice and l for Bob into arbitrary d-dimensional
outcomes by assigning complex variables ωk and ωl , respec-
tively. Therefore, the local measurement operator for Alice is
given by

Â(α) =
∞∑

k=0

ωkD̂(α)|k〉〈k|D̂(−α) ≡ ωk̂(α), (9)

and, likewise, for Bob, B̂(β) ≡ ωl̂(β). The nth-order correlation
function is then given by

C
(n)
αβ = 〈Â(α)nB̂†n(β)〉 =

∞∑
k,l=0

ωn(k−l)Pk,l(α,β), (10)

where Pk,l(α,β) is the joint probability of counting k and l

photons at the local measurement setup of two modes displaced
by α and β, respectively. We can rewrite the correlation
function in Eq. (10) as

C(n) =
∞∑

k,l=0

(
sn + 1

sn − 1

)k−l

Pk,l(α,β), (11)

where sn ≡ −i cot(nπ/d). This is proportional to the two-
mode s-parameterized quasiprobability function W (α,β; s) if
we extend the parameter s from a real to a complex variable.
The s-parameterized quasiprobability function is defined as
[12,24]

W (α; s) = 2

π (1 − s)

〈(
s + 1

s − 1

)n̂(α)〉
, (12)

where n̂(α) is a number operator displaced by a complex
variable α in phase space. It becomes the P function, the
Wigner function, and the Q function when setting s = 1,0, − 1
[24], respectively. Then the correlation function is written by
a two-mode quasiprobability function as

C
(n)
αβ = π2

(
1 − s2

n

)
4

W (α,β; sn). (13)

We define quasiprobability functions of, e.g., the two-mode
squeezed vacuum states given in Eq. (8) with complex-variable
order parameter as follows. The characteristic function for
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two-mode squeezed vacuum states is defined using a complex
order parameter sn by

χ (ξ,η; sn)

= 〈�r |D̂(ξ ) ⊗ D̂(η)|�r〉 exp(sn|ξ |2 + s∗
n |η|2/2)

= exp
[− 1

2 {|ξ |2(cosh 2r − sn) + |η|2(cosh 2r − s∗
n)

+ (ξη + ξ ∗η∗) sinh 2r}]. (14)

The corresponding quasiprobability functions can be obtained
by

W (α,β; sn) = 1

π4

∫ ∞

−∞
d2ξd2ηχ (ξ,η; sn)

× exp(αξ ∗ − α∗ξ ) exp(βη∗ − β∗η)

= 4

π2
(
1 − s2

n

) exp

[
− 2

1 − s2
n

{|α|2A∗ + |β|2A

+ (αβ + α∗β∗) sinh 2r}
]
, (15)

where A = cosh 2r − sn. Therefore, from the Eqs. (11), (12),
and (15), we obtain the correlation function for two-mode
squeezed vacuum states as

C
(n)
αβ = exp

[
− 2

|α|2A∗ + |β|2A + (αβ + α∗β∗) sinh 2r

1 − s2
n

]
.

(16)

Now we can rewrite two types of high-dimensional Bell
inequalities in terms of quasiprobability functions; that is, the
correlation functions of CGLMP given in Eq. (5) and SLK in
Eq. (7) can be replaced with quasiprobability functions using
Eq. (13). Note that for two-dimensional outcomes d = 2, the
correlation function is proportional to the two-mode Wigner
function,

Cαβ =
∞∑

k=0

(−1)k−lPk,l(α,β) = π2

4
W (α,β), (17)

and in this case, both CGLMP and SLK become equivalent
with the type proposed in [14] in the form of the CHSH Bell
inequality.

On the basis of this formalism, we will investigate violations
of high-dimensional Bell inequalities, CGLMP and SLK, for
any quantum state that can be represented by the quasiproba-
bility functions.

B. Violations of Bell inequalities

We investigate violations of two types of Bell inequalities,
CGLMP and SLK, for two-mode squeezed vacuum states
by properly choosing local measurements α, α′, β, and β ′.
The maximal expectation values of the CGLMP and SLK
functions for different numbers of outcomes d are plotted in
Figs. 1(a) and 1(b), respectively, against the squeezing rate r .
The expectation values of both types exceed the local-realistic
bound 2 for any r and increase up to maximum as r increases.
However, the degrees of violation of the two types show
different tendencies depending on the number of outcomes d,
as shown in Fig. 1(c).

For CGLMP inequalities, the degree of violation reaches a
maximum when d = 3 and decreases as d increases. Tests of
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FIG. 1. (Color online) Violations of the (a) CGLMP and
(b) SLK inequalities for two-mode squeezed vacuum states with
varying squeezing rate r when d = 2 (solid line), d = 3 (dashed line),
and d = 10 (dotted line). (c) The expectation values of CGLMP and
SLK are compared while increasing the number of outcomes d for a
two-mode squeezed vacuum state (r = 3).

the CGLMP inequality for d = 3, d = 4, and d = 5 exhibit
stronger violations than that of the CHSH inequality, in agree-
ment with the results in Ref. [16]. This is an advantage offered
by the CGLMP inequality tests over the CHSH inequality
test. For d > 5, the degree of violation is lower than that of a
two-dimensional test. Nevertheless, the expectation value does
not decrease quickly, so one can still verify strong violations
of the local realism in high-dimensional correlations. The
reason that the change in maximal expectation values with
increasing d does not show a monotonous tendency is because
possible operations for local measurements are restricted by
displacement operations in phase space instead of the full
SU(d) transformation, as pointed out in [16].

On the other hand, the SLK inequalities show different
tendencies. As demonstrated in Figs. 1(b) and 1(c), the
degree of violation decreases as d increases, in contrast to the
CGLMP inequality, so it exhibits strongest violations when
d = 2. Note that when d = 2, both CGLMP and SLK types
are equivalent with the CHSH inequality and their violations
by two-mode squeezed vacuum states are the same as the
results obtained in [25].

C. Effects of detection inefficiency

In a realistic experimental setup, noise effects occur during
the measurement process, such as photon losses and dark
counts. In general, the photon number distribution measured by
inefficient detectors P̂m(η) can be modeled by the generalized

022103-4



HIGH-DIMENSIONAL BELL TEST FOR A CONTINUOUS- . . . PHYSICAL REVIEW A 83, 022103 (2011)

Bernoulli transformation from the real number distribution
|k〉〈k| [26]:

P̂m(η) =
∞∑

k=m

(
k

m

)
(1 − η)k−mηm|k〉〈k|, (18)

where η is the overall detection efficiency and
∑∞

m=0 P̂m(η) =
1. We shall not consider dark counts here as those are relatively
minor when the detection efficiency is low. It is known that dark
count rates can be suppressed when low-efficiency detectors
are used: Highly efficient detectors have relatively high dark
count rates, while less efficient detectors have very low dark
count rates [27].

The realistic local measurement operator for Alice with
detection efficiency ηA is given by

Â(α,ηA) =
∞∑

m=0

ωmD̂(α)P̂m(η)D̂(−α)

=
∞∑

k=0

(1 − ηA + ηAω)kD̂(α)|k〉〈k|D̂(−α)

= (1 − ηA + ηAω)k̂(α), (19)

and, likewise, for Bob, B̂(β,ηB) = (1 − ηB + ηBω)l̂(β).

The correlation function between Alice and Bob for two-
mode squeezed states is written by

C
(n)
αβ (ηA,ηB) = S(ηA,ηB)

T (ηA,ηB)
exp

[
− 2

T (ηA,ηB)
{|α|2R∗(ηB)

+ |β|2R(ηA) + (αβ + α∗β∗) sinh 2r}
]
, (20)

where

R(η) = cosh 2r − 1 + 1

η
+ i

η
cot

nπ

d
,

S(ηA,ηB) = 1

ηAηB

(
1 + cot2

nπ

d

)
,

T (ηA,ηB) = R(ηA)R∗(ηB) − sinh2 2r,

which becomes equivalent to Eq. (16) when ηA = ηB = 1.
The expectation values of CGLMP and SLK in the presence
of detection inefficiency are then obtained by applying Eq. (20)
to Eqs. (5) and (7), respectively. Since violations of the SLK
inequality become weaker as d increases, even in the case of
perfect efficiency shown in Sec. III B, we here consider only
the CGLMP inequality.

Let us first consider the symmetric case when the detector
efficiencies of Alice and Bob are the same ηA = ηB = η.
Figures 2(a), 2(b), and 2(c) show violations of the CGLMP
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FIG. 2. Expectation values of the CGLMP tests for two-mode squeezed vacuum states in symmetric cases (ηA = ηB = η) for (a) d = 2,
(b) d = 3, and (c) d = 10 and asymmetric cases (ηA = 1) for (d) d = 2, (e) d = 3, and (f) d = 10. The shaded regions indicate the violations
of the CGLMP inequalities in the range of the detection efficiency η and the squeezing rate r .
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inequality when d = 2,3, and 10, respectively, in the range
of efficiency η and squeezing rate r . It is shown that high-
dimensional tests can exhibit stronger violations than that for
d = 2 in some regions of η and r . Furthermore, it is noticeable
that the bound efficiency for observing quantum nonlocality
becomes lower as d increases for a given r > 0. For example,
for a two-mode squeezed vacuum state r = 0.3 and a detection
efficiency η = 0.8, one can observe quantum nonlocality when
testing the CGLMP inequality with d = 10, while one can not
observe it when testing the CHSH inequality (d = 2). We note
that the bound efficiency for any d is down to η = 0.667 as
r decreases to zero, which interestingly is the Eberhard limit,
i.e., the lowest bound efficiency for the CHSH Bell test [28].
This is because for slightly squeezed states the first two
levels of number basis are dominant, so the CGLMP Bell test
becomes nearly equivalent to the two-dimensional test. It is
also notable that for any d the efficiency bound becomes higher
as the squeezing rate r increases, and thus, the violation for the
Einstein-Podolsky-Rosen (EPR) state (r = ∞) is observed
only when η = 1. This may be because the number counting
with a displacement operation is not an optimal local measure-
ment for testing nonlocality with the EPR state, as pointed out
in Ref. [29].

Let us also consider an asymmetric case when ηA = 1 and
thus the effects of inefficiency are characterized only by ηB .
This can be realized by an atom-photon entanglement since
the atom is measured with an efficiency close to 1 [30,31].
Figures 2(d), 2(e), and 2(f) show the violation regions of
the CGLMP inequality when d = 2,3, and 10, respectively,
in the range of ηB and r . Similar to the symmetric cases,
high-dimensional tests of the CGLMP inequality are shown
to be more robust to detection inefficiency than the CHSH test
for a given r > 0. We note that the bound efficiency for any d

is down to η = 0.5 as r decreases to zero, which is equivalent
to the lowest limit for the CHSH Bell test on atom-photon
systems [30].

It is shown that the CGLMP inequality allows for a nonlo-
cality test more robust to detection inefficiency than the CHSH
inequality when using continuous-variable states. Therefore,
a high-dimensional approach may provide an advantageous
way of closing the detection loophole problem for quantum
nonlocality tests, which is in agreement with the work
in Ref. [18].

IV. DISCUSSION AND CONCLUSIONS

The complex-variable representation of correlation
functions can be efficiently used for testing high-dimensional
quantum nonlocality. Two types of high-dimensional Bell
inequalities given in Eqs. (5) and (7) are applicable in any case
of complex-valued measurement. For example, as we have
shown in this paper, it can be extended to continuous variables
by virtue of the phase-space formalism. The correlation
function is then given as a quasiprobability function with
a complex order parameter, which can be reconstructed by
photon number counting.

We investigate the effect of detection inefficiency on the
violation of high-dimensional Bell inequalities when the
system is given as a pure two-mode squeezed state, while

previous works have studied the effect of system noise [3,32].
Similar to the case of system noise, violations of the CGLMP
inequality (d > 2) are shown to be more robust to detection
inefficiency than that of the CHSH inequality (d = 2). In
addition, the bound efficiency for demonstrating quantum
nonlocality becomes lower as the dimension increases for
two-mode squeezed vacuum states with a given r > 0. This
may provide a useful insight for closing the detection loophole
problem in a nonlocality test with continuous-variable states.
The work in Ref. [15], which shows that the Q function
allows more robust Bell tests to detection inefficiency than
the Wigner function, can be understood relevantly since
the Q function can be regarded as an expectation value of
high-dimensional measurements. Note that the Q function is
a smoothed Wigner function where the smoothing effect is
modeled as a split of outcomes of parity measurements (i.e.,
+1 and −1) to higher-dimensional outcomes.

For an experimental realization of the proposed scheme,
there exists an obstacle to overcome: the low efficiency of
realistic photon-counting detectors. As an alternative method,
one may consider a highly efficient homodyne tomography
[33]. However, for a valid quantum nonlocality test, it is
required that the quantities measured by the detectors should
satisfy the local-realistic conditions assumed when deriving
the Bell inequality. Note that the local-realistic bounds in
Eqs. (5) and (7) are given as a maximal expectation value of
a combination of photon number correlations. Alternatively,
an atom-field interaction in a cavity can be considered for
a high-dimensional measurement [34], but it is feasible
only when the measurement dimension d is a power of 2.
Therefore, the realization of the proposed nonlocality test
is expected to occur with the progress of photon detection
technologies [35].

In summary, we have proposed a scheme for testing
high-dimensional Bell inequalities in phase space and inves-
tigated the effect of detection inefficiency. First, two types
of high-dimensional Bell inequalities, CGLMP and SLK,
are recast into a structure composed of complex-variable
correlation functions. The correlation functions were shown
to be proportional to the quasiprobability function with an
order parameter associated with the number of outcomes,
which can be reconstructed by photon number counting. On the
basis of the proposed scheme, we demonstrated violations of
two types of high-dimensional Bell inequalities, CGLMP and
SLK, for two-mode squeezed vacuum states and compared
their violations for different numbers of outcomes. For the
case of two-level outcomes, violations of both types are
equivalent to that of the CHSH inequality. For some cases
with more than two levels of outcomes the CGLMP inequality
exhibits stronger violations than the CHSH inequality, while
violation of the SLK inequality tends to decrease as the
number of outcomes increases. Finally, we have shown that
the CGLMP inequality can offer a more robust nonlocality
test to detection inefficiency than the CHSH inequality. We
expect an experimental realization of high-dimensional Bell
tests on continuous-variable states based on our scheme. An
important next step will be to increase the number of local
measurement settings, which could lower the bound efficiency
further [18,31].
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