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We investigate the violation of Leggett’s inequality for nonlocal realism using entangled coherent states
and various types of local measurements. We prove mathematically the relation between the violation of the
Clauser-Horne-Shimony-Holt form of Bell’s inequality and Leggett’s one when tested by the same resources.
For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than
bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation
by adjusting the local measurement settings. Our work describes the steps that should be performed to produce
a self-consistent generalization of Leggett’s original arguments to continuous-variable states.

DOI: 10.1103/PhysRevA.83.022102 PACS number(s): 03.65.Ud, 42.50.−p, 03.67.Mn

I. INTRODUCTION

The concepts of locality and realism are at the core of
Bell’s celebrated inequality [1] and the consequences of the
apparent failure of such intuitively reasonable assumptions
in the quantum mechanical description of nature have been
at the focus of a very intense theoretical and experimental
activity [2]. Yet, it remains unclear whether the departure
of a quantum mechanical entangled state from classicality as
signaled by the violation of a Bell inequality is the result of the
failure of locality, realism, or both of them. In 2003, Leggett
attempted to shed some light into this point by formulating an
inequality that, by allowing for a degree of nonlocality, tests
the breakdown of realism in an entangled resource state [3].
This work has generated a wealth of experimental and
theoretical studies directed toward the falsification of nonlocal
realism with only weak assumptions on the properties of the
resource state to use for the test and thus increasingly more
experimental-friendly setups [4–6]. Yet the investigation so far
has been limited almost entirely to the case of discrete-variable
states.

However, continuous variable (CV) states are endowed of
interesting fundamental properties that, frequently, go beyond
the mere extension to infinite dimensionality of those charac-
terizing discrete-variable ones [7]. Nonlocality tests have been
designed for resources belonging to this realm of quantum
states [7–10], and the central role played by CV systems in
photon-based quantum technology is now well appreciated. In
particular, the class of entangled coherent states (ECSs) [11]
has emerged as a genuinely useful set of entangled states
having a prominent role, for instance, in quantum teleportation
and quantum computing [12–21]. It is thus desirable to extend
the formal apparatus designed so far for nonlocal realistic
tests to the CV scenario. A few steps in this direction have
been performed [22,23], although a more systematic approach
is greatly needed. This is the main objective of our work,
which aims at stepping into a self-consistent formulation of
nonlocal realistic bounds for CV states embodied by ECSs
taking into account the inherent differences that such states
have with respect to their discrete-variable counterparts. This
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is not exempt from difficulties, due to the sort of constraints
imposed by Leggett’s arguments to the local properties of the
resource states to use and which should be reformulated in the
CV case. As we show in our work, this leads to the necessity
of re-deriving the bound for nonlocal realistic theories so as to
introduce a (weak) dependence on the tested state itself. We
illustrate this finding by considering various local operators
and using the different versions of Leggett’s original inequality
put forward in Refs. [5,6]. Finally, we thoroughly discuss
the relation between violation of Bell-like inequalities and
the corresponding falsification of nonlocal realistic theories
by the same resource state. This nicely complements the
suggestions given in Refs. [22,23] and allows us to highlight an
inherent universality of the behavior of the Leggett functions
associated with ECSs under the formulation of the inequality
given in [5,6].

It is important to spell out here the intrinsic significance
of our work. While Ref. [23] marked an important step
forward in the direction of extending Leggett’s argument to the
CV realm, the approach used there was only case specific.
The proposal put forward in this paper, on the other hand,
provides a much more structured scenario. Starting from first
principles, not only do we unveil a previously overlooked
feature of nonlocal realistic tests run with CV states (namely
that the nonlocal realistic bound used for two-level systems
may turn out to be rather inappropriate when CV states are in
order) but, more crucially, we design a systematic procedure
to generalize Leggett’s arguments and calculate the nonlocal
realistic constraints appropriate to given physical situations.
Furthermore, with such a systematic approach, we are able
to provide optimized Leggett functions which, for the case of
entangled coherent states, require lower parameter thresholds
to violate nonlocal realistic theories, therefore improving
the results of Ref. [23]. Although our contribution here is
the very first step toward the goal declared earlier, it paves the
way to a full formalization of Leggett’s inequality to infinite
dimensional Hilbert spaces, an objective that we aim at
pursuing in our current endeavors in this respect.

The remainder of this paper is organized as follows. In
Sec. II, we briefly review the Leggett inequalities derived so
far and prove the relation between the violation of the Clauser-
Horne-Shimony-Holt (CHSH) form of Bell’s inequality and
Leggett’s one. In Sec. III A, we prove that Leggett’s function
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can be optimized over the measurement settings required by
one of the forms of inequality introduced in Sec. II so as
to get a larger degree of violation. In Sec. III B, we find
that a paradoxical phenomenon arises when testing Leggett’s
inequality test with an ECS and naively using the very same
nonlocal realistic bound valid for two-dimensional system.
We show a procedure that generalizes such bound to systems
other than spin-1/2 ones. In Sec. IV, nonlocal realism is tested
for ECS with pseudospin measurement operators in terms of
recently derived Leggett inequalities. Finally, in Sec. V, we
summarize our findings highlighting the necessity of a more
general test tool for nonlocal realism.

II. REVIEW OF LEGGETT INEQUALITIES

Leggett derived his inequality bearing in mind bidimen-
sional systems such as polarization states of light or spin-1/2
particles. Although he also proposed a restricted-ensemble
model needing just a single parameter, in analogy with
standard Bell’s inequality tests for the previously mentioned
particles, Leggett’s general model exploits the full Poincaré
(for polarization states) or Bloch (for spin-1/2 states) sphere.
A restricted state ensemble exists on a (circular) cross section
of the corresponding sphere. Referring to a local operation
as transforming a state into another on the identical sphere, a
restricted ensemble model does not necessarily require more
than one parameter for such an operation whereas a general one
requires at least two parameters. Any Leggett-type inequality
starts from the following basic relation,

AB � 1 − |A − B|, (1)

involving the arbitrary dichotomic variables A and B taking
values ±1. The overlines indicate statistical averages over
an appropriate subensemble. For instance, in an optical
system this might be made out of photon states with definite
polarization. Leggett assumed that even when the subsystems
are nonlocally correlated, the local average of each subsystem
should fulfill Malus’ law,

A(u,v; a,b) = u · a = A(u; a),
(2)

B(u,v; a,b) = v · b = B(v; b),

where u (v) and a (b) denote the polarization of a photon
and the measurement setting of a polarizer at site A (B),
respectively. This relation implies that even if a nonlocal
interaction is allowed between subsystems A and B, each local
expectation value must depend only on the respective local
parameters. Since u and a (v and b) can be equally represented
as (unit) vectors denoting directions of polarization on the
Poincaré sphere, a measurement vector can be transformed
into another by the same local operation as for a polarization
state. It is important to note that in Leggett’s model, the
previously mentioned condition imposed on local averages
acts as a constraint on the assumed nonlocal correlations [24].

The observation that Leggett inequality is solely based
upon Eq. (1) leads one to prove that the violation of Leggett
inequality implies violation of the CHSH inequality. We
prove this by contraposition, (i.e., we show that if the CHSH

inequality is not violated, Leggett inequality is not violated
either). To prove this, we start from CHSH inequality,

−2 � AB + AB ′ + A′B − A′B ′ � 2, (3)

and if we set A′ = −B ′ = ±1 [A′ = B ′ = ±1], then we get
Eq. (1) [Eq. (26)], which proves the claim.

A brief construction of the original Leggett inequality is
as follows. After averaging Eq. (1) over all (polarization or
spin) states, one can obtain a correlation function Eij (ϕ) that
is bounded as

Eij (ϕ) � 1 − fij (ϕ), (4)

where Eij = 〈AiBj 〉 stands for the correlation function asso-
ciated with measurement settings or directions ai , bj at site A

and B, respectively. While the correlation function is defined in
the same way as in the standard CHSH inequality, the bound is
not outcome independent, as fij = 〈 |Ai − Bj | 〉. This function
can be considered the nonlocal realistic constraint which, even
under the presence of nonlocal correlations between A and B,
limits the range of variability of the correlation function.

In order to construct the original Leggett inequality, we
choose two and three measurement settings for party A and B,
respectively, as illustrated in Fig. 1(a). When written in terms

FIG. 1. (Color online) Measurement settings for party A (left)
and B (right) represented on the Poincaré sphere for (a) the original
Leggett inequality, (b) the “3 + 7 settings” Leggett inequality [5], and
(c) the optimal “3 + 6 settings” Leggett inequality [6]. In panel (a),
H, V, R, and L denote a horizontal, vertical, right- and left-circularly
polarization, respectively.
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of spherical polar coordinates, such measurement settings are
given by the vectors,

a1 =
(

π

2
,0

)
, a2 = (0,0),

b1 =
(

π

2
+ ϕ,0

)
, b2 =

(
ϕ,

π

2

)
, b3 = a2,

where ϕ is the parameter discriminating the two settings. With
these values, using Eq. (4) and taking i = 1,2, j = 1,2,3, one
obtains the inequality,

|E11(ϕ) + E23(0)| + |E22(ϕ) + E23(0)| � 4 − fmin(ϕ), (5)

where fmin(ϕ) = min[f11(ϕ) + f22(ϕ) + 2f23(0)] and the
minimization is performed over the hidden-variable model
[25]. Analytically, one gets

fmin(ϕ) = 4

π

∣∣∣∣ sin
ϕ

2

∣∣∣∣, (6)

independently of the specific hidden-variable model assumed,
so that it can be applied to any bidimensional discrete
system. We have already commented on the fact that the
nonlocal realistic bound is no longer a measurement-setting
independent quantity, as it is very clearly exemplified by
Eq. (6). Moreover, due to the way the bound has been
obtained, the unit vector defining each local subsystem in
the corresponding configuration sphere remains well defined.
Gröblacher et al. provided the first experimental falsification
of nonlocal realism based on the previously mentioned Leggett
inequality [4] using the polarization-entangled state (PES),

|�−〉AB = 1√
2

(|H 〉A|V 〉B − |V 〉A|H 〉B), (7)

as a resource. Here |H 〉 (|V 〉) denotes a single-photon state
with horizontal (vertical) polarization. They also constructed a
theoretical nonlocal realistic model, based on the assumption
of rotational invariance of the correlations arising from the
use of a PES, simulating the quantum mechanical predictions
(including the violation of the CHSH inequality). Paterek et al.
and Branciard et al. [5] modified the original argument and
elaborated new classes of inequalities that do not build on the
previously mentioned rotational invariance and require only a
finite number of measurement settings, thus resulting in much
more experimental friendly criteria [5]. Of those inequalities,
the simplest one reads

L = 1
2 |E11(ϕ) + E22(ϕ) + E15(0) + E26(0)|
+ 1

2 |E23(ϕ) + E34(ϕ) + E26(0) + E37(0)|
� 4 − fmin(ϕ),

where fmin(ϕ) = | sin(ϕ/2)| and the measurement vectors
shown in Fig. 1(b) are given by

a1 =
(

π

2
,0

)
, a2 =

(
π

2
,
π

2

)
, a3 = (0,0),

b1 =
(

π

2
,ϕ

)
, b2 =

(
π

2
,
π

2
+ ϕ

)
, b3 =

(
ϕ,

π

2

)
, (8)

b4 =
(

π

2
+ ϕ,

π

2

)
, b5 = a1, b6 = a2, b7 = a3.

We will refer to the previous inequality as “3 + 7 settings”
Leggett inequality. It is worth noticing that, by adopting finite
measurement settings instead of infinite ones, the realistic
constraint decreases and, accordingly, the bound increases by
a small amount.

In Ref. [6], Branciard et al. proposed and experimentally
demonstrated the optimal inequality,

L = 2

3

3∑
i=1

∣∣∣∣Ei+

(
ϕ

2

)
+ Ei−

(
ϕ

2

)∣∣∣∣ � 4 − fmin(ϕ), (9)

where fmin(ϕ) = (4/3)| sin(ϕ/2)| and the correlation function
Ei± is evaluated for the measurement vectors ai and bi± shown
in Fig. 1(c). Vectors ai’s (i = 1, 2, 3) are the same as in Eq. (8)
while the bi±’s are given by

b1± =
(

π

2
, ± ϕ

2

)
, b2± =

(
π

2
∓ ϕ

2
,
π

2

)
,

b3± =
(

ϕ

2
,
π

2
∓ π

2

)
. (10)

As the inequality requires three and six settings at A and
B sites, respectively, we refer to it as the “3 + 6 settings”
Leggett inequality. The claimed optimality arises from the fact
that Eq. (9) requires fewer settings and has a tighter nonlocal
realistic bound than Eqs. (5) and (8).

III. GENERALIZING LEGGETT-TYPE INEQUALITIES
FOR ARBITRARY SYSTEMS

A. Optimizing Leggett-type inequalities by Eulerian rotation

As can be noticed by inspecting Fig. 1, the inequalities
discussed so far all contain measurement settings whose
vectors are parallel to the coordinate axes of the Poincaré
sphere. Such choices are due to mere algebraic convenience
in the analytical derivation of the various forms of Leggett
inequality. Moreover, for the case of PES discussed, the
correlation functions upon which the inequalities are built
depend only on the angle between two measurement vectors
rather than the direction of each of them individually.

Clearly, this might well not be the case for another
choice of states. In what follows we show that, for specific
resource states, by adopting a rigid-body rotation approach
to the research for the measurement settings to be used in a
Leggett-type inequality (see Fig. 2), the Leggett functions L’s
in Eqs. (5) and (8) can be numerically optimized to get a larger

FIG. 2. (Color online) The original measurement vectors (left) on
the Poincaré (or Bloch) sphere and their rigid-body rotated version
(right). The relative angles between the vectors are maintained during
the rotation. This approach is used in our work to optimize the degree
of violation of nonlocal realistic models.
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degree of violation. In contrast, the function in Eq. (9) hardly
increases under such optimization as it is already optimal.

B. Leggett inequality for entangled coherent states

So far, the approach used in both the experimental and
theoretical contexts has been focused on two-dimensional
systems. However, if the state of each subsystem is well
defined, Leggett’s arguments could equally well be applied to
systems of larger dimensionality, such as qudits or continuous
variables (CVs). Among the states belonging to the latter class,
ECSs can be regarded as very appealing due to their similarity
to discrete states (such as the one in Eq. (7)) and their strong
and well-studied nonlocal properties [26–29]. In what follows
we use the ECSs

|ECS±〉AB = N±[|α〉A| − α〉B ± | − α〉A|α〉B], (11)

whereN± are normalization factors. For simplicity, we assume
hereafter that α is real and omit subscripts A,B denoting the
two subsystems. It should be noted that we treat the ECSs in a
2 ⊗ 2 Hilbert space where the basis vectors are |α〉 and | − α〉,
as in Ref. [13], even though they can be considered CV states.

Very recently, Leggett inequality tests on CV systems have
been studied [22,23] adopting homodyne measurements and
using the sequence of local unitary operations,

R̂(θ,φ) = D̂

(
− iφ

4α

)
ÛNLD̂

(
iθ

4α

)
ÛNLD̂

(
iφ

4α

)
, (12)

where â(â†) is the bosonic annihilation (creation) opera-
tor, D̂(α) = exp(αâ† − α∗â) is the displacement operator of
amplitude α and ÛNL = exp[−iπ (â†â)2/2] is the time-
evolution operator for a field propagating in a self-Kerr
medium for a dimensionless time π/2. The local operator
R̂(θ,φ) transforms a coherent state | ± α〉 with |α| � 1 as

|α〉 → sin
θ

2
|α〉 + e−iφ cos

θ

2
|− α〉,

(13)
| − α〉 → eiφ cos

θ

2
|α〉 − sin

θ

2
|− α〉.

That is, R̂(θ,φ) mimics the effects of a rotation in the bidimen-
sional space spanned by {| ± α〉} and R̂(θ,φ)|α〉 can be any
state in the corresponding Bloch-like sphere. Reference [23]
used an ECS as an entangled resource to show that nearly the
same behavior as in the discrete-system case is achieved [23].

However, CV systems may have, in general, quite different
local behaviors from discrete-variable ones. Therefore, the
same nonlocal realistic bound in Eqs. (5), (8), and (9), could
not be suitable for the case of CV states, too. As an example,
let us consider the general approach developed in Ref. [23]:
We retain the same local operations given in Eq. (12), but we
replace the homodyne detection with an on or off measurement
formally described by the operator,

Ô =
∞∑

n=1

|n〉〈n| − |0〉〈0| = 1 − 2|0〉〈0|, (14)

where 1 is the identity operator and |n〉 is a Fock state with
n excitations. Such measurement has outcome +1 (−1)
if a state has any excitations (is in the vacuum state).
The expectation value 〈α|Ô|α〉 converges to 1 as α grows

since the vacuum contribution of a coherent state diminishes
accordingly. This is the reason why the ECSs in Eq. (11) show
no violation of the Bell-CHSH inequality if α � 1 [26,29].

The correlation function for an ECS probed along the
directions identified by the measurement vectors aA =
(θA,φA), bB = (θB,φB) is given by

E±(ϕ)=AB〈ECS±|�̂A(θA,φA)⊗�̂B(θB,φB)|ECS±〉AB, (15)

where we have introduced the rotated on or off operators
�̂i(θi,φi) = R̂

†
i (θi,φi)Ôi R̂i(θi,φi) (i = A,B). As before, ϕ

is the angle between aA and bB . It turns out that Leggett
inequality is violated for almost any value of α, including
the case of α → ∞, where the degree of violation grows to
the maximum value allowed by the specific inequality being
tested. This is due to the fact that 〈0| ± α〉 → 0 as α � 1,
which implies that

〈α|�̂i(θi,φi)|α〉 = 1 − 2|〈0|R̂(θi,φi)|α〉|2 → 1,

〈α|�̂i(θi,φi)| − α〉 = e−2α2 − 2〈α|R̂(θi,φi)|0〉 (16)

×〈0|R̂†(θi,φi)|− α〉 → 0,

regardless of the values of θi, φi . In turn, this means that
the sums in the right-hand sides of Eqs. (5), (8), and (9) all
converge to 4, thus saturating the degree of violation of the
tested inequalities.

However, as explained earlier, the CHSH inequality cannot
be violated using on or off measurements and large-amplitude
coherent states. Therefore, as proven in the previous section,
Leggett inequality cannot be violated either in the same range
of α, in striking contrast with what has been observed earlier.
This paradoxical situation arises exactly from the reasons high-
lighted before (i.e., a state living in a Hilbert space that is not
bidimensional may deviate from the predictions of Malus’ law
and, as such, could originate a new nonlocal realistic constraint
fmin(ϕ). With this in mind, we have to look for a quantum-
mechanical substitute of the classical Eq. (2). As Malus’ law
deals with the statistical average of the expectation value of an
(arbitrary) measurement vector with an (arbitrary) state on the
Bloch sphere, a natural yet rigorous way to reformulate it in
this context is to consider the local average of the expectation
value of a rotated on or off measurement with a rotated coherent
state, that is

A(u; a) = 〈α|R̂†(θu,φu)�̂(θa,φa)R̂(θu,φu)|α〉, (17)

with u = (θu,φu) and a = (θa,φa). With this at hand, we
could in principle newly evaluate fmin(ϕ) for the on or
off-measurement approach. However, as it is difficult to derive
a closed-form analytical expression, we have numerically
evaluated the nonlocal realistic bound for each value of ϕ.
Unfortunately, no violations of Leggett inequalities can be
observed, despite the use of the optimization technique
described in the previous section. For on or off measurements,
the constraints turn out to be too weak to falsify nonlocal
realistic models tested with ECSs: The Leggett function and
the bound have values nearly approaching 4 in almost all
ranges of α and ϕ and the former has slightly smaller values
than the latter.
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FIG. 3. (Color online) Optimized 3+7 setting Leggett function
L for |ECS−〉 with parity measurement against ϕ at α = 5 (green
dashed) and 50 (red solid). The nonlocal realistic bounds at α = 5
(blue dotted) and 50 (violet dot-dashed) are also plotted. The plotting
range is the same as Fig. 4 for comparison. Note that the optimized
Leggett function turns out not to overcome the bound in any range of
α and ϕ including the above range.

To provide an example of measurement which cannot
falsify the Leggett inequality, we use the following parity
operator instead,

Ô =
∞∑

n=0

[|2n + 1〉〈2n + 1| − |2n〉〈2n|], (18)

which gives +1 (−1) when a state has an odd (even) number
of excitations. The CHSH inequality can be tested via phase-
space methods and using displaced parity operators and
the Wigner function [10,26,29]. Similarly, one can perform
Leggett inequality tests in the same way as in the previous
sections by replacing the on or off operator in Eq. (14) with
the previously mentioned parity operator. However, this would
not be sufficient to observe any violation. As partly can be seen
in Fig. 3, the Leggett function cannot overcome the bound in
any range of α and ϕ even when adopting the optimization
scheme in Sec. III A.

IV. LEGGETT INEQUALITY TEST FOR ECS WITH
PSEUDOSPIN MEASUREMENTS

The ECSs (11) are known to show Bell violations for almost
any value of α, when pseudospin measurements are used [26].
The pseudospin operators are defined as [30]

ŝz = (−1)ââ†
, ŝ− = ŝ

†
+ =

∞∑
n=0

|2n〉〈2n + 1|, (19)

and satisfy the SU(2) algebra of standard spin-1/2 particles.
Here, ŝz is the parity operator in Eq. (18). As discussed
in Ref. [30], we need the combined local operation and
measurement observable given by

a · ŝ = sin θ (eiφ ŝ− + e−iφ ŝ+) + cos θ ŝz, (20)

where a = (sin θ cos φ, sin θ sin φ, cos θ ) is a measurement
vector and ŝ = (ŝx ,ŝy,ŝz) is the pseudospin operator vector
with ŝ±=ŝx ± iŝy . Due to the bidimensional character of such

local operations, both a Bell-CHSH test and a Leggett one are
possible.

The correlation function for (say) |ECS−〉 with measure-
ment vectors a = (θA,φA) and b = (θB,φB) is

E−(a,b) = 〈ECS−|(a · s)(b · s)|ECS−〉
= − cos θA cos θB−K(α) sin θA sin θB cos(φA−φB),

(21)

with

K(α) = 2α2

sinh 2α2

[ ∞∑
n=0

α4n

(2n)!
√

2n + 1

]2

. (22)

Quantitatively, we have that 0.907 � K(α) � 1 and K(α) →
1 as α → 0 or ∞. In this limit we have E−(a,b) = −a · b,
which is exactly the correlation function of a PES [see
Eq. (7)]. For the case of |ECS+〉, if the direction of one
of the vectors identifying a measurement is inverted, the
correlation function becomes identical to Eq. (21) with K(α)
replaced by tanh(2α2)K(α). The local average for pseudospin
measurements can be calculated, in analogy with Eq. (17), as

A(u; a) = 〈α|(u · s)†(a · s)(u · s)|α〉. (23)

Here, the additional pseudospin operator u · s with another unit
vector u plays the role of the rotation operator as in Eq. (17).
Note that u · s is unitary and for an arbitrary unit vector a′, we
can get u = (a + a′)/

√
2(1 + a · a′) satisfying

(u · s)†(a · s)(u · s) = a′ · s. (24)

Clearly, the role of u · s is to rotate the axis of the pseudospin
measurement from a to a′. The local operator u · s transforms a
coherent state | ± α〉 under the same assumption as in Eq. (13),

|α〉 → sin θ cos φ|α〉 − (cos θ + i sin θ sin φ)|− α〉,
| − α〉 → −(cos θ − i sin θ sin φ)|α〉 − sin θ cos φ|− α〉.

(25)

With Eqs. (21) and (23) we test the Leggett inequality
corresponding to the “3 + 6” and “3 + 7” settings.

A. 3 + 7 setting Leggett inequality test

In order to test Leggett inequality with an ECS, we first
obtain numerically the nonlocal realistic constraint fmin(ϕ) in
Eq. (8). We then compare the (nonoptimized) Leggett function
with such bound, as shown in Fig. 4 for |ECS−〉 and α = 5,50.
As expected, the bound depends on the measurement settings.
Moreover, there is a dependence on α as well, although this
becomes very weak as soon as α >∼ 5. Evidently, there is a
range of values of ϕ where the inequality is violated. The
degree of violation is maximized at ϕ � 0.25, regardless of α

and for both |ECS−〉 and |ECS+〉. Such value agrees exactly
with that maximizing the degree of violation when the PES in
Eq. (7) is used. This should be expected as, for α → 0 or ∞,
E−(a,b) → −a · b.

Retaining ϕ = 0.25 in our calculations, we optimize the
Leggett function by rigid-body rotations of the measurement
vectors, as illustrated before. As can be seen in Figs. 5(a) and
5(b), the optimization really helps Leggett function to grow
larger within the range of α considered in our study, although
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FIG. 4. (Color online) Leggett function L for |ECS−〉 against ϕ at
α = 5 (green dashed) and 50 (red solid). The nonlocal realistic bound
(blue dotted) is also plotted. Note that the bounds corresponding
to α = 5 and 50 are practically coincident. This can also be seen
in Figs. 5(c) and 5(d). The violations are maximized at ϕ � 0.25
regardless of the actual value of α.

the enhancement progressively decreases as α → 0 or ∞. In
the spirit of the investigations performed in Refs. [22,23], in
Figs. 5(c) and 5(d) we also compare the Leggett and optimized
CHSH functions for |ECS±〉 so as to elucidate the relation
between the two inequalities. As proven earlier in this paper,
the parameter region where Leggett inequality is violated stays
within the region where the CHSH inequality is violated too.
As also mentioned in Refs. [22,23], there is an interesting
region of values of α where, while the CHSH inequality is
violated, Leggett’s is not. It is worth stressing the effectiveness
of the optimization procedure adopted in our analysis. For
instance, the minimum amplitude α of |ECS+〉 for the violation
of Leggett inequality was 7.5 in Ref. [23], while it is lowered
down to 2.9 here, as a result of the optimization over rigid-body
rotations. In the next subsection, it is shown that for the “3 + 6
settings” inequality, such threshold value is even smaller and
equal to 1.8.

B. 3 + 6 setting Leggett inequality test

We complete our study by addressing now the form of
Leggett inequality given in Eq. (9), which needs only six
measurement settings at the B site and needs no optimization.
We follow the same procedure described above for the
“3 + 7 settings” case, except that we skip the unnecessary

FIG. 6. (Color online) (a) Leggett function L at α = 5 (green
dashed) and 50 (red solid) and the nonlocal realistic bound (blue
dotted) as functions of ϕ. The parameters used for this plot are the
same as in Fig. 5(a), although the degree of violation of Leggett
inequality is maximized at ϕ � 0.65. (b) Optimized CHSH function
B (green dot-dashed), maximized Leggett function L (red solid), and
the nonlocal realistic bound (blue dotted) for |ECS−〉.

optimization. As can be appreciated by examining Fig. 6(a),
the value of ϕ maximizing the degree of violation of the
Leggett inequality is ϕ � 0.65, which agrees with the one
found for a PES [Eq. (7)] [6]. Here, too, we retain this value and
study both the CHSH and Leggett functions for |ECS−〉 [we
omit the case of |ECS+〉 for the sake of brevity]. Figure 6(b)
shows the optimal nature of the “3 + 6 settings” inequality:
The region where Leggett inequality is satisfied is halved with

FIG. 5. (Color online) (a) and (b) Leggett function (green dotted) for (a) |ECS+〉 and (b) |ECS−〉, its optimized one (red solid) as functions
of α. (c) and (d) Optimized CHSH function B (green dot-dashed), optimized Leggett function L (red solid) for (c) |ECS+〉, and (d) |ECS−〉
plotted, together with the nonlocal realistic bound (blue dotted), against α. As the local realistic bound is 2, the CHSH inequality is violated
for any value of α within this range except at α = 0 for |ECS+〉. Leggett inequality is violated for α >∼ 2.9.
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the degree of violation being doubled as compared with the
“3 + 7 settings” case.

As for the qualitative similarity between the curves of
CHSH and Leggett functions, which is observed in common
in Figs. 5(c) and 5(d) and Fig. 6(b), some considerations can
be drawn. First, the small dip is found around α � 1.5 and
common to all the graphs is solely due to the similar behavior
that K(α) has in the two cases. Second, one finds a similar
sudden drop of the curves associated with |ECS+〉 as α → 0
[we only show it for the “3 + 7 settings” case in Fig. 5(c)]. This
is due to the fact that |ECS+〉 → |0,0〉 as α → 0. The similarity
between the Leggett corresponding to the “3 + 7 settings” and
“3 + 6 settings” is somehow to be expected, given that the two
functions have been constructed using the same assumptions
on nonlocal realism. On the contrary, we believe the analogies
between the behavior of the CHSH and Leggett functions are
striking in consideration of the different arguments at the basis
of the two inequalities.

V. CONCLUSION

We have performed the first step toward the construction
of a formal apparatus for the rigorous extension of Leggett’s
test for nonlocal realism to the CV scenario, therefore going
significantly beyond the efforts performed in Ref. [23]. Tech-
nically, our tools have been borrowed from the considerable
body of studies performed so far on the violation of local
realism by this class of states and include on or off, parity,
and pseudospin measurements. The requirements for local

state definiteness at the basis of Leggett’s arguments impose
some fundamental constraints resulting in the necessity for
the research for a new local-realistic bound, when CV states are
used. While generalizing Leggett inequality to a form suitable
for ECS resources, we have analytically clarified the relation
between the violation of the CHSH and Leggett inequality
and such a relation has been exemplified by studying the
behavior of the CHSH and Leggett functions against the sizes
of ECSs. We believe that our study contributes significantly
to the understanding of the facets of nonlocal realism, in
particular, with respect to the generalization of Leggett’s
original formulation to entangled CV states. Our results
highlight the necessity for a more general way to construct
nonlocal realistic tests applicable to any quantum-mechanical
entangled states, an intriguing task that would be interesting
to pursue both theoretically and experimentally.
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[21] P. Marek and J. Fiurášek, Phys. Rev. A 82, 014304 (2010).
[22] H. Jeong, M. Paternostro, and T. C. Ralph, Phys. Rev. Lett. 102,

060403 (2009).
[23] M. Paternostro and H. Jeong, Phys. Rev. A 81, 032115 (2010).
[24] A second relation also introduced by Leggett, namely,

−1 + |A + B| � AB, (26)

is redundant. It is easily obtained by taking B → −B in Eq. (1)
and gives rise to the same consequences as Eq. (1).

022102-7

http://dx.doi.org/10.1038/nature01881
http://dx.doi.org/10.1103/PhysRevLett.100.150404
http://dx.doi.org/10.1103/PhysRevLett.100.150404
http://dx.doi.org/10.1038/nature07121
http://dx.doi.org/10.1126/science.1182103
http://dx.doi.org/10.1038/nature08363
http://dx.doi.org/10.1038/nature08363
http://dx.doi.org/10.1103/PhysRevLett.103.113601
http://dx.doi.org/10.1023/A:1026096313729
http://dx.doi.org/10.1038/nature05677
http://dx.doi.org/10.1038/nature05677
http://dx.doi.org/10.1103/PhysRevLett.99.210406
http://dx.doi.org/10.1103/PhysRevLett.99.210406
http://dx.doi.org/10.1103/PhysRevLett.99.210407
http://dx.doi.org/10.1103/PhysRevLett.99.210407
http://dx.doi.org/10.1038/nphys1020
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/PhysRevLett.61.50
http://dx.doi.org/10.1103/PhysRevA.58.4345
http://dx.doi.org/10.1103/PhysRevLett.82.2009
http://dx.doi.org/10.1103/PhysRevA.45.6811
http://dx.doi.org/10.1103/PhysRevA.64.022313
http://dx.doi.org/10.1103/PhysRevA.64.022313
http://dx.doi.org/10.1103/PhysRevA.64.052308
http://dx.doi.org/10.1103/PhysRevA.64.052308
http://dx.doi.org/10.1103/PhysRevA.64.022302
http://dx.doi.org/10.1103/PhysRevA.65.042305
http://dx.doi.org/10.1103/PhysRevA.68.042319
http://dx.doi.org/10.1103/PhysRevA.68.022321
http://dx.doi.org/10.1103/PhysRevLett.100.030503
http://dx.doi.org/10.1103/PhysRevLett.100.030503
http://dx.doi.org/10.1016/j.physleta.2009.02.075
http://dx.doi.org/10.1103/PhysRevA.82.014304
http://dx.doi.org/10.1103/PhysRevLett.102.060403
http://dx.doi.org/10.1103/PhysRevLett.102.060403
http://dx.doi.org/10.1103/PhysRevA.81.032115


CHANG-WOO LEE, MAURO PATERNOSTRO, AND HYUNSEOK JEONG PHYSICAL REVIEW A 83, 022102 (2011)

[25] The derivation of Leggett inequality given here skips a number of
technical and nontrivial steps whose presentation is immaterial
for the tasks and purposes of our work. The reader interested in
such details could consult the original paper by Leggett [3] as
well as Refs. [4–6].

[26] H. Jeong, W. Son, M. S. Kim, D. Ahn, and C. Brukner, Phys.
Rev. A 67, 012106 (2003).

[27] M. Stobinska, H. Jeong, and T. C. Ralph, Phys. Rev. A 75,
052105 (2007).

[28] H. Jeong, Phys. Rev. A 78, 042101 (2008).
[29] C.-W. Lee and H. Jeong, Phys. Rev. A 80, 052105

(2009).
[30] Z.-B. Chen, J.-W. Pan, G. Hou, and Y.-D. Zhang, Phys. Rev.

Lett. 88, 040406 (2002).

022102-8

http://dx.doi.org/10.1103/PhysRevA.67.012106
http://dx.doi.org/10.1103/PhysRevA.67.012106
http://dx.doi.org/10.1103/PhysRevA.75.052105
http://dx.doi.org/10.1103/PhysRevA.75.052105
http://dx.doi.org/10.1103/PhysRevA.78.042101
http://dx.doi.org/10.1103/PhysRevA.80.052105
http://dx.doi.org/10.1103/PhysRevA.80.052105
http://dx.doi.org/10.1103/PhysRevLett.88.040406
http://dx.doi.org/10.1103/PhysRevLett.88.040406

