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Entangled coherent states versus entangled photon pairs for practical
quantum-information processing
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We compare effects of decoherence and detection inefficiency on entangled coherent states (ECSs) and
entangled photon pairs (EPPs), both of which are known to be particularly useful for quantum-information
processing (QIP). When decoherence effects caused by photon losses are heavy, the ECSs outperform the EPPs
as quantum channels for teleportation both in fidelities and in success probabilities. On the other hand, when
inefficient detectors are used, the teleportation scheme using the ECSs suffers undetected errors that result in the
degradation of fidelity, while this is not the case for the teleportation scheme using the EPPs. Our study reveals
the merits and demerits of the two types of entangled states in realizing practical QIP under realistic conditions.
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I. INTRODUCTION

All-optical systems have been studied as a prominent can-
didate for physical implementations of quantum-information
processing (QIP) [1,2]. Quantum teleportation, which uses
entangled quantum states as quantum channels, plays a crucial
role in optical quantum computation and communication
[3,4]. One of the most difficult parts in realizing quantum
teleportation using optical systems is an efficient realization
of the Bell-state measurement, in which four Bell states
should be discriminated. It was shown that the four Bell states
cannot be discriminated when only linear optical elements are
used [5,6], which makes high success probability for quantum
teleportation hard to achieve. For example, in the teleportation
scheme based on an entangled photon pair (EPP) [7], the
success probability of the Bell measurement is bounded by
50% when using only linear optical elements [8]. Even though
universal gate operations can be realized based on linear optics
and photon detection [3], this type of problem is one of the
major hindrances to the implementation of deterministic gate
operations, as well as scalable quantum computation.

An alternative qubit-based teleportation scheme was sug-
gested [9,10] using an entangled coherent state (ECS) as the
quantum channel. In fact, the ECSs have been found to be
useful not only for fundamental tests of quantum theory [11]
but also for various applications in QIP [9,10,12–19]. In this
approach, a qubit is composed of two coherent states, | ± α〉,
where ±α are the coherent amplitudes [20]. It was explicitly
pointed out in Refs. [10,14] that all four Bell states in the form
of ECSs can be well discriminated using only a beam splitter
and two photon-number-resolving detectors. This has become
a remarkable advantage in designing quantum computing
schemes using coherent-state qubits [13,15] including deter-
ministic gate operations with ECSs as off-line resources [15].
Recently it was shown that fault-tolerant quantum computing
may be realized with coherent-state qubits with amplitudes
α > 1.2 [17].

Implementations of high-fidelity EPPs and ECSs in free-
traveling fields are challenging and crucial tasks for optical
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QIP. Recently, the realization of an electrically driven source
of EPPs, consisting of a quantum dot embedded in a semi-
conductor light-emitting-diode structure, has been reported
[21]. Even though the generation of high-fidelity ECSs is
a demanding task, remarkable experimental progress has
recently been made in generating single-mode superpositions
of coherent states [22–24], with which ECSs would easily
be produced using an additional beam splitter. Based on
such progress, several suggestions for the same purpose but
higher fidelities and larger amplitudes [25] have now become
closer to the experimental realization. Efforts to generate
arbitrary coherent-state qubits are also being made [26].
Another difficult problem in the approach based on ECSs
is that photon-number-resolving detectors are required, while
ongoing efforts are being made for the development of such
detectors [27,28].

It is therefore important to compare the two optical
QIP schemes, one with single-photon qubits and EPPs and
the other with coherent-state qubits and ECSs, for efficient
implementations of QIP in the long term. First, decoherence of
quantum channels caused by photon losses may be an obstacle
against optical QIP. This would be non-negligible particularly
for long-distance quantum communication. We therefore
study its effects on the two aforementioned teleportation
schemes. In general, when decoherence effect caused by
photon losses is heavy (or the decoherence time of the
quantum channel is long), the ECSs outperform the EPPs
as quantum channels both in teleportation fidelities and in
success probabilities. This tendency becomes prominent when
the amplitude α is small: The ECSs outperform the EPPs
regardless of the decoherence time both in fidelities and in
success probabilities for α <∼ 0.8.

We also pay particular attention to the issue of detection
inefficiency, which is a crucial detrimental factor in realizing
practical QIP within all-optical systems. We point out that
when inefficient detectors are used, the teleportation scheme
using ECSs suffers undetected errors that result in the
degradation of fidelity. This is not the case for the teleportation
scheme using EPPs as photon losses right before the detector
errors are detected by the absence of the detection signals
itself. We then present the results when both of the two
factors, decoherence of the channel and detection inefficiency,

1050-2947/2010/82(6)/062325(8) 062325-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.062325


KIMIN PARK AND HYUNSEOK JEONG PHYSICAL REVIEW A 82, 062325 (2010)

are applied. Our results based on thorough quantitative
analysis provide useful guidelines for the choice of a scheme
among well-known ones for practical QIP using optical
systems.

II. DECOHERENCE OF ECSS AND EPPS

In this section, we introduce the dynamics of ECSs and
EPPs in a zero-temperature dissipative environment. In this
situation, photon losses occur that cause the decrease of the
average photon number and dephasing of the channels at the
same time. We discuss how the degrees of entanglement for
the ECSs and EPPs decrease by such decoherence effects.

A. Solutions of master equation

We are interested in ECSs in the form of [29]

|ψ±
ECS〉 = N±

α (|α〉1| − α〉2 ± | − α〉1|α〉2), (1)

where N±
α = 1/

√
2 ± 2e−4|α|2 is the normalization factor. The

complex amplitude α is assumed to be real throughout the
paper for simplicity without losing generality. We shall call
|ψ+

ECS〉 (|ψ−
ECS〉) even (odd) ECS as it contains only even (odd)

numbers of photons. We also consider an EPP,

|ψEPP〉 = 1√
2

(|H 〉|V 〉 + |V 〉|H 〉), (2)

where |H 〉 and |V 〉 refer to horizontal and vertical polarization
states, respectively. The relative sign between the vector
components of the EPP in Eq. (2) was chosen to be +1 for
simplicity: This sign does not make any meaningful difference
in our study, and this is obviously different from the cases of
the ECSs in (1) for which the signs in the middle play important
roles. We also note that |H 〉 is equivalent to |1〉|0〉 and |V 〉 to
|0〉|1〉 in terms of the dual-rail logic QIP.

The time evolution of density operator ρ under the
Born-Markov approximation is given by the master equation
[30],

∂ρ

∂τ
= Ĵ ρ + L̂ρ, (3)

where τ is the interaction time, Ĵ ρ = γ
∑

i aiρa
†
i , L̂ρ =

−∑
i

γ

2 (a†
i aiρ + ρa

†
i ai), γ is the decay constant, and ai is

the annihilation operator for mode i. The formal solution of
Eq. (3) is written as ρ(τ ) = exp[(Ĵ + L̂)τ ]ρ(0), where ρ(0)
is the initial density operator. Assuming a zero-temperature
bath, we obtain the density operator of the odd and even ECSs
decohered in the vacuum environment as [9,10]

ρ±
ECS(τ ) = (N±

α )2{|tα〉1〈tα| ⊗ | − tα〉2〈−tα|
+ | − tα〉1〈−tα| ⊗ |tα〉2〈tα|
± e−4α2r2

(|tα〉1〈−tα| ⊗ | − tα〉2〈tα| + H.c.)},
(4)

where t = e−γ τ/2 and superscript + (−) corresponds to the
even (odd) ECS. We define the normalized time as r = (1 −
t2)1/2 for later use. In what follows, we use only the odd ECSs,
which are maximally entangled in the 2 ⊗ 2 Hilbert space
at time τ = 0, as the quantum channels to teleport coherent-
state qubits. As we explain later, the odd ECS shows larger

success probabilities of teleportation than the even ECS. The
density matrix ρ−

ECS expressed in the orthogonal basis set |±〉 =
N±

(|tα〉 ± | − tα〉) is given as

ρ−
ECS(τ ) = 1

4(−1 + e4α2 )

⎛
⎜⎜⎝

A 0 0 D

0 B −B 0
0 −B B 0
D 0 0 C

⎞
⎟⎟⎠ , (5)

where

A = e−4(−1+r2)α2
(−1 + e4r2α2

)(1 + e2(−1+r2)α2
)2,

B = −1 + e4α2 − e4r2α2 + e−4(−1+r2)α2
,

(6)
C = e−4(−1+r2)α2

(−1 + e4r2α2
)(−1 + e2(−1+r2)α2

)2,

D = −1 − e4α2 + e4r2α2 + e−4(−1+r2)α2
.

Using the same master equation, one can also find the
density operator of the EPP for general τ , initially given as
ρEPP(0) ≡ |ψEPP〉〈ψEPP| at τ = 0,

ρEPP(τ ) = e−2γ τ ρEPP(0) − 2(e−2γ τ − e−γ τ )ρ1

+ (e−2γ τ − 2e−γ τ + 1) ρv, (7)

where ρ1 = 1
4

∑4
i=1 |1〉i〈1| is a mixed single-photon-state

density matrix, |1〉i ≡ |0〉 . . . |1〉i . . . |0〉 is a shorthand notation
for a single photon occupying mode i and the vacuum in all
other modes, and ρv represents the vacuum state for every
mode. The density matrix can be represented in a basis set of
|H 〉, |V 〉, and |0〉 similarly as before. As one may expect, in a
rough sense, the initial entangled two-photon state decays to a
mixed single-photon state and then eventually to the vacuum
state.

B. Degrees of entanglement

As quantum teleportation utilizes entanglement as a re-
source, we first consider the dynamics of entanglement for the
ECSs and EPPs. Separability of a bipartite system is equivalent
to the positivity of the partial transpose of the density matrix
when the dimension of the entire system does not exceed
six [31,32]. We consider the ECSs in a 2 ⊗ 2 Hilbert space
(using the dynamic qubit basis), as explained earlier even
under the effect of photon losses. On the other hand, the
EPPs evolve into 3 ⊗ 3 systems due to the addition of the
vacuum element under photon loss effects. However, in our
case of Eq. (7), negativity of the total density operator equals
the sum of negativities of all the decomposed components. The
convexity of the negativity guarantees that this decomposition
shows the smallest negativity [33]. It is known that the
separability criterion is satisfied in such cases of the “minimum
decomposition” [34].

Based on this, the measure of entanglement defined as
E = −2

∑
i λ

−
i can be used [35], where λ−

i are negative
eigenvalues of the partial transpose of the density operator.
Using Eqs. (5) and (6) and the aforementioned definition of
the entanglement measure, the degree of entanglement for an
odd ECS is obtained as

EECS(α,r) = −A + C − √
A2 + 4B2 − 2AC + C2

4(−1 + e4α2 )
, (8)
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FIG. 1. (Color online) Degrees of entanglement E against the
normalized time r . The EPP shows larger entanglement than ECSs at
any time regardless of α.

and the degree of entanglement for the EPP is

EEPP(r) = (1 − r2)2. (9)

We have plotted the degrees of entanglement for the EPPs and
ECSs for several values of α in Fig. 1. As has been already
discussed [35,36], the ECSs with large amplitudes decohere
faster than those with small amplitudes. In the limit of α → 0,
it is straightforward to show that

EECS(α,r) = −r2 +
√

1 − 2r2 + 2r4 < EEPP(r) (10)

for 0 < r < 1. Obviously, the EPP is always more entangled
than the ECS for any values of α.

III. TELEPORTATION WITH ECS AND EPP

It is obvious that with quantum channels decohered for
nonzero decay time, teleportation fidelities will degrade. This
effect should not be neglected particularly for long-distance
quantum teleportation. Detection inefficiency may be an
even more crucial factor when considering practical quantum
teleportation using optical systems. It is often considered as
photon losses in front of ideal detectors. We also note that
dark count rates may be non-negligible for the cases of highly
efficient detectors such as photon-number-resolving detectors
necessary for the teleportation using the ECS. In this section,
we thoroughly analyze the first two degrading factors due to
photon losses as depicted in Fig. 2.

A. Effects of channel decoherence

The fidelity F between input and output states for quantum
teleportation is defined as F = 〈φin|ρout|φin〉, where |φin〉 is
the input state and ρout is the density operator of the output
state. For the case of an ECS, one can use |tα〉 and | − tα〉 as
a dynamic qubit basis in order to reflect amplitude losses as
suggested in Ref. [10]. Then an unknown qubit reads

|φin〉 = a|tα〉 + b| − tα〉, (11)

where a and b are arbitrary complex numbers under the
normalization condition. The basis states |tα〉 and | − tα〉
are not orthogonal, but they approach such in the limit

a|tα +b|-tα

Detection
Inefficiency

       Bell 
Measurement

Measurement
   Outcomes

  Channel
Decoherence

U

BS

Photon loss

Photon loss

Sender Receiver

Entangled
coherent state

Output
  State

FIG. 2. (Color online) Teleportation protocol using the ECS with
two kinds of “photon losses.” Photon losses during the propagation
of the quantum channel cause the “channel decoherence,” while
photon losses before ideal detectors are introduced to model detection
inefficiency. BS represents a 50:50 beam splitter and U the unitary
operation required to restore the input state.

for tα � 1. One can construct an orthogonal basis, |±〉 =
n±(|tα〉 ± | − tα〉) with normalization factors n±, using their
linear superpositions [37]. In this way, one can consider
the qubit (channel) in a two-dimensional (2 ⊗ 2-dimensional)
Hilbert space even under the decoherence effects. The input
state can also be expressed as

|φin〉 = cos(u/2)e
iv
2 |+〉 + sin(u/2)e− iv

2 |−〉. (12)

The coefficient u and v are related to a and b as

a = n+ cos(u/2)e
iv
2 + n− sin(u/2)e− iv

2 ,
(13)

b = n+ cos(u/2)e
iv
2 − n− sin(u/2)e− iv

2 .

The initial total state is then represented as

ρ tot = |φin〉A〈φin| ⊗ {ρECS(τ )}BC, (14)

where A and B are modes for the sender while C for the
receiver. In order to discriminate between the Bell states, a
50:50 beam splitter for modes A and B is used. We here define
the beam-splitter operator as

Ui,j (θ ) = e− θ
2 (a†

i aj −aia
†
j ), (15)

where i and j are two field modes entering the beam splitter,
and θ is related to the transmittivity ζ = cos2(θ/2). The action
of the 50:50 beam splitter, UA,B(π/2), may be characterized as
UA,B(π/2)|α〉A|β〉B = |(α + β)/

√
2〉A|(−α + β)/

√
2〉B . The

Bell states with coherent states in our context are

|
±〉 = N±(|tα〉1|tα〉2 ± | − tα〉1| − tα〉2), (16)

|�±〉 = N±(|tα〉1| − tα〉2 ± | − tα〉1|tα〉2), (17)

where N± are normalization factors. After the action of
the beam splitter, two photon-number-resolving detectors are
required for modes A and B to complete the Bell-state
measurement [10]. The projection operators Oj for the
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outcomes j representing the parity measurement can be written
as

O1 =
∞∑

n=1

|2n〉A〈2n| ⊗ |0〉B〈0|, (18)

O2 =
∞∑

n=1

|2n − 1〉A〈2n − 1| ⊗ |0〉B〈0|, (19)

O3 =
∞∑

n=1

|0〉A〈0| ⊗ |2n〉B〈2n|, (20)

O4 =
∞∑

n=1

|0〉A〈0| ⊗ |2n − 1〉B〈2n − 1|, (21)

where we refer to 
+, 
−, �+, and �− as subscripts (or
superscripts) 1, 2, 3, and 4 for simplicity. In addition to the
operators in Eqs. (18)–(21), the error projection operator, Oe =
|0〉A〈0| ⊗ |0〉B〈0|, should also be considered because there is
possibility for both the detectors not to register anything even
though such probability is very small when α is reasonably
large.

The un-normalized state after measurement outcome j is
obtained as

ρj = TrAB[UA,B(π/2)ρtotU
†
A,B(π/2)Oj ]. (22)

Depending on the outcomes of the Bell-state measurement,
different unitary rotations on the coherent-state qubit for mode
C are required. Applying an appropriate unitary operation Uj ,
the unnormalized output state is obtained as ρ

j
out = Ujρ

jU
†
j .

While no transformation or only a simple phase shifter is
required for the cases of �− and 
−, the displacement operator
is required for the other two cases, which degrade the fidelity
when α is small. We simply exclude such “fidelity-degrading”
cases in this paper as the success probability with an ECS is
always higher than that with an EPP even without those cases.

We find for the case of �−

p4f4 = 〈φin|ρ4
out|φin〉

= (N−
α )2e−2t2α2

sinh (2t2α2)

× [|b|2(a∗e−2t2α2 + b∗)(ae−2t2α2 + b)

+ |a|2(a∗ + b∗e−2t2α2
)(a + be−2t2α2

)

+ e−4α2(1−t2)a∗b(a∗e−2t2α2 + b∗)(a + be−2t2α2
)

+ e−4α2(1−t2)ab∗(a∗ + b∗e−2t2α2
)(ae−2t2α2 + b)]

= p2f2, (23)

where pj = Tr (ρj
out) is the probability of measuring a partic-

ular outcome j and fj is the teleportation fidelity with that
outcome. The success probability p4 for 
− is obtained as

p4 = Tr (ρ4
out)

= (N−
α )2e−2t2α2

sinh (2t2α2)[|a|2 + |b|2
+ e−4α2(1−t2)e−2t2α2

(a∗b + ab∗)]

= p2. (24)

The same calculations can be performed for the case of �−,
which results in the same fidelity and the success probability.
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FIG. 3. (Color online) The average teleportation fidelities, Fav, of
the ECSs and the EPPs as quantum channels against the normalized
time r . The dotted horizontal line indicates the maximum classical
limit, 2/3, which can be achieved by classical means.

The average teleportation fidelity over all unknown input states
and the success probability are

Fav = 1

4π

∫ π

0
sin udu

∫ 2π

0
dv

∑
j pjfj∑

j pj

, (25)

P = 1

4π

∫ π

0
sin udu

∫ 2π

0
dv

∑
j

pj , (26)

where the summations run over only 2 and 4 since we discard
all the other cases. One can show by performing the integration
in (26) that the average success probability for the ECS is
PECS = 1/2, regardless of α. As we perform the integration
in (25), we obtain the expression

FECS(α,r) = 2n
l − m

c

+ 2n
d2(l − m) + 2c2m

c3

arctanhd/c − d/c

(d/c)3
,

(27)

where now l = 3e8α2− 5e4α2(r2 + 1) + 5e4α2(2 + r2) − 3e4α2(1 + 2r2),
m = (e4α2 + e4r2α2

)(e4α2 − e4α2(1 + r2)), n= e−4α2(1 + r2)/16, c =
e4α2 − 1, and d = −e2(1+r2)α2 + e−2(−1+r2)α2

. We have plotted
the results in Fig. 3.

The calculations are straightforward for the case of the
EPP because of the orthogonal nature of the qubit and the
channel. In this case, only two (|� ′+〉 and |� ′−〉) among
the four Bell states, |
′±〉 = (|H 〉1|H 〉2 ± |V 〉1|V 〉2)/

√
2 and

|� ′±〉 = (|H 〉1|V 〉2 ± |V 〉1|H 〉2)/
√

2, can be identified using
linear optics elements and photodetectors. This means that
the success probability cannot exceed 1/2 [6]. The average
fidelity and the success probability can easily be obtained
in the same manner explained earlier as FEPP(r) = 1 − r2

and PEPP = (1 − r2)/2, respectively. Here it is immediately
clear that PECS = 1/2 > PEPP: The success probability us-
ing the ECS is higher than that using the EPP regardless
of α.

In Fig. 3, the average fidelities for the ECS and the EPP,
FECS and FEPP, respectively, are plotted and compared. The
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FIG. 4. (Color online) The average fidelity using the EPP falls
below the classical limit at rEPP (solid line). The average fidelity
using the ECS, FECS, becomes larger than that using the EPP, FEPP,
at time rc and falls below the classical limit at rECS. The gray-shaded
area corresponds to FECS > FEPP.

classical limit denoted by the horizontal dotted line in the figure
is 2/3, under which quantum channels become useless for
teleportation of qubits. We find that the teleportation fidelities
using the ECSs stay above the classical limit longer than
those with the EPP regardless of the values of α. As shown
in Fig. 3, the EPP becomes useless for teleportation at time
rEPP = 1/

√
3 ≈ 0.577 while the ECSs become useless at rECS,

where rECS is determined between 0.7 and 0.8, depending on α.
We have investigated the cases for large values of α up to 4, and
our numerical results lead us to conjecture that rECS converges
to ∼0.7 when α becomes large. As shown in Fig. 4, FECS

remains lower than FEPP until the decoherence time r becomes
rc. When the decoherence time reaches rc, FECS exceeds FEPP.
Of course, FECS eventually falls below the classical limit at
time rECS as we mentioned earlier. Remarkably, rc ≈ 0 for
α <∼ 0.8, which means that the ECSs outperform the EPP for
these values of α.

Even though the EPP is always more entangled than the
ECS (Fig. 1), it does not always mean higher teleportation
fidelity (Fig. 3). The reason for this can be understood as
originated from the different dynamics of the two channels
under photon loss effects. With the ECS channels, we have
been able to minimize the degradation of the teleportation
fidelity using the dynamic qubit basis [10]. This is not possible
with the EPP. Photon losses cause the EPP to have the
“vacuum” elements both at the sender’s mode and at receiver’s.
In other words, the decohered EPP gets out of the initial 2 ⊗ 2
Hilbert space composed of |H 〉 and |V 〉 and this “escape” for
the EPP is a major difference from the case of the ECS. The
vacuum portion at receiver’s mode, C, results in a significant
decrease of the teleportation fidelity. (On the contrary, in
the following subsection, it becomes clear that the vacuum
elements at sender’s modes, A and B, are noticed by a failure of
the Bell-state measurement and such an error can be discarded
so that the fidelity is not affected.)

We here comment on the difference between the previous
result in Ref. [10] and ours in this paper. In Ref. [10], the time r

at which the teleportation fidelity of the ECS falls below the
classical limit was independent of α. In that paper, the singlet

fraction of the channel state was used to calculate the optimal
teleportation fidelity using the method suggested in Ref. [38].
However, this method is not optimized for the ECS under our
decoherence model based on photon losses: When ρ−

ECS is
partially traced over one of the modes, the reduced density
matrix is not proportional to the identity matrix, which is
the condition required to apply the singlet fraction method
presented in Ref. [38].

So far, we have not considered the even ECS. For the same
reason as the case of the odd ECS, only ψ+ and φ+ can be con-
sidered the successful Bell measurement results. For the results
with the even ECS, the teleportation fidelity becomes identical
to the case of the odd ECS. However, the success probability
is lower than that of the odd ECS, according to our calculation
for the same value of α. The reason for this is as follows. We
utilize the results of odd photon detection for the case of the odd
ECS, while the results of the nonzero even photon detection,
corresponding to ψ+ and φ+, are used for the case of the even
ECS. The odd photon detection probability is the same as the
even photon detection probability when taking the average over
all input states. However, the even photon detection probability
contains the “all-zero” cases, which are eventually discarded,
and this inconclusive failure probability gets larger as the
amplitude becomes smaller. Therefore, the even ECS channel
results in lower success probability unless α → ∞.

B. Effects of detection inefficiency

We now consider the inefficiency of detectors that is one of
the major obstacles to the realization of quantum teleportation
using optical systems. An inefficient detector can be modeled
by inserting a beam splitter of transmittivity η in front of the
perfect detector, where the beam splitter operation mixing the
light with fictitious vacuum mode can be denoted as U

η

i,j ≡
Ui,j (θη), where θη = 2 cos−1 √

η, where i and j are indices
for modes. In order to perform the Bell-state measurement, we
first need to apply the 50:50 beam splitter to the total density
operator ρ tot in Eq. (14). The beam-splitter operations, Uη, for
inefficient detectors are then applied to incorporate detection
inefficiency. The resultant density operator after tracing out
the irrelevant vacuum modes (v1 and v2) is

(ρη)ABC = Trv1,v2

[
U

η

A,v1
U

η

B,v2
UA,B(π/2){(ρ tot)ABC

⊗ (|0〉〈0|)v1 ⊗ (|0〉〈0|)v2}U †
A,B(π/2)Uη†

B,v2
U

η†
A,v1

]
.

(28)

The un-normalized density matrix for measurement outcome
j is given as ρ

j
out = Uj [TrAB(ρηOj )]U †

j . Using Eqs. (18) and
(19), we find

p2f2 = p4f4 = 〈ψin|ρ4
out|ψin〉

= D(N−
α )2[|L|2 + |M|2 + 2e−4α2r2

C2 Re(M∗L)],

(29)

p2 = p4 = Tr
(
ρ4

out

)
= D(N−

α )2[|a|2 + |b|2 + 2e−2α2(1+r2)C2Re(a∗b)],

(30)

where D=e−2η(1−r2)α2
sinh[2η(1−r2)α2], C = e−2(1− r2)α2(1−η),

M = a∗(a+ be− 2(1− r2)α2
), and L= b∗(ae−2(1 −r2)α2+b), and
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FIG. 5. (Color online) (a) Teleportation fidelities using the ECS
and the EPP as quantum channels in terms of the efficiency η of
detectors. The ECS with large α shows smaller fidelity than that with
small α while the fidelity using the EPP is not affected η. (b) The
success probabilites of teleportation using the ECS and EPP. The
success probability of the EPP decreases faster than that of the ECS
by η. Decoherence of the channels is not considered to clearly see the
effect of the detection inefficiency.

the average fidelity is obtained using Eq. (25) as

FECS(η,α,r) = 2n
l − m

c

+ 2n
d2(l − m) + 2c2m

c3

arctanhd/c − d/c

(d/c)3
,

(31)

where now l = 3S2(1+η) − 5S2(r2+η) + 5S2(2+r2η) −
3S2[1+r2(1+η)], m = (S2 + S2r2

)(S2η − S2(1+r2η)), n =
S−2(1+r2η)/16, c = S2 − S−2(−1+r2)(−1+η), d = −S(1+r2) +
S−(−1+r2)(−1+2η), and S = e−2α2

.
We first plot the teleportation fidelities for r = 0 (i.e., with-

out decoherence) in Fig. 5. It is clear that the ECSs with larger
amplitudes are more sensitive to inefficiency of the detectors
(i.e., decrease of η). The reason for this is similar to the case of
the channel decoherence. The action of the beam splitter used
for the Bell-state measurement may be described as

(a|α〉 + b| − α〉)|α〉 → a|
√

2α〉|0〉 + b|0〉|
√

2α〉,
(32)

(a|α〉 + b| − α〉)| − α〉 → a|0〉| −
√

2α〉 + b| −
√

2α〉|0〉.
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FIG. 6. (Color online) Teleportation fidelities against detection
efficiency η at decoherence time (a) r = 0.35, (b) r = 0.55, and
(c) r = 0.6 for several values of α. As r becomes larger, the fidelity
with the EPP drops more rapidly than the fidelities with the ECS.

It is then obvious that there are, for example, “cross” terms
such as | ± √

2α〉〈∓√
2α|, as well as the “diagonal” terms

such as | ± √
2α〉〈±√

2α|, before the detection. Then the
cross terms described earlier in the density matrix are reduced
as ∝e−4(1−η)α2 | ± √

η
√

2α〉〈∓√
η
√

2α|, while the diagonal
terms change simply to ∝|√η

√
2α〉〈√η

√
2α| due to photon

losses modeled by beam splitters right in front of the “perfect”
detectors. It is then straightforward to see that this reduction
of the cross terms eventually causes the teleported qubit to be
mixed. Therefore, the inefficiency of the detectors (modeled
by the additional beam splitters) causes the teleported qubit
to be “more mixed” when the amplitude is larger.
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On the contrary, the detection efficiency does not affect the
teleportation fidelity using the EPP. In this case, the number of
photons that should be registered by the Bell measurement is
precisely defined as two. The Bell measurement succeeds only
when two photons are registered by two of the four detectors
used for the measurement [6]. If photon loss occurs due to the
inefficiency of the detectors so that only one photon (or no
photon at all) is detected, it will be immediately recognized by
Alice as a failure. Alice can then simply filter out this kind of
“detected” error to prevent the decrease of the fidelity.

The success probability of teleportation using the ECS is
obtained by Eq. (26), p2, and p4 in Eq. (30) as

PECS(η,α,r) = 1
4S−2(−1+r2)(−1+η)(−1 + S2(−1+r2)η)

× (−1 + S2[1+(−1+r2)(−1+η)])(−1 + S2)−1

× (−1 + S2(−1+r2))−1. (33)

The ECSs with small α show lower success probabilities
than large α, as seen in Fig. 5(b). When α is small, even a
small amount of photon losses may significantly increase the
possibility of Oe (i.e., silence of both the detectors), while this
is not the case for large α. Therefore, the success probability
using the ECSs with small α is more sensitive to detection
inefficiency, which is opposite to the case of the fidelity.

Of course, the “filtering out” of the detected errors for the
case of the EPP results in the more rapid decrease of the success
probability. The success probability using the EPP including
the inefficient detector is similarly obtained as for the case of
the ECS as

PEPP(η,r) = 1 − r2

2
η2 (34)

and is plotted in Fig. 5(b). The additional factor η2 when
compared to the probability for the perfect detection case
means that each of the two photons in the Bell-measurement
module is successfully detected with probability η. Here we
can easily check that the success probability of the ECS is
larger than the EPP regardless of α, r , and η. Equation (33)
is reduced to [2η + r2(−1 + η)η − η2]/2 when α → 0 and
cannot be smaller than PEPP(η,r) for any η and r .

C. Photon losses both in channels and at detectors

So far, we have separately considered two different kinds
of photon losses, the losses in the channel (referred to as
channel decoherence) and the losses at the detectors (detection
inefficiency) used for the Bell-state measurements. In realistic
situations, both kinds of losses exist, and it is meaningful to
know how the fidelities change under the combination of these
effects.

If the ECS shows larger fidelity than the EPP with the
perfect detector, it is expected that this is true with imperfect
detectors for some moderate values of η. As shown in several
examples in Fig. 6, the ECSs begin to show larger fidelities
even with inefficient detectors as the decoherence time gets
larger. As noted in the previous section, only the channel
decoherence degrades the teleportation fidelity with the EPP,
while the teleportation fidelity with the ECS is affected by
both the channel decoherence and the detection inefficiency.

When the decoherence effect is as dominant as r > 0.577,
the teleportation fidelity with EPP becomes lower than the
classical limit, 2/3, and the teleportation fidelities with the
ECSs are always higher regardless of any other conditions.

IV. CONCLUSIONS

In this paper, our attempt was to compare ECSs and EPPs
as resources for QIP under realistic conditions. We have
considered decoherence caused by photon losses in ECSs and
EPPs as quantum channels for teleportation. We have pointed
out that entanglement of the EPPs is always larger than that
of the ECSs in a dissipative environment. On the other hand,
the ECSs outperform the EPPs for the standard teleportation
protocol in fidelities for α <∼ 0.8. Furthermore, the success
probabilities for teleportation using the ECSs are always higher
than those using the EPPs. However, as α gets larger, the range
for which the EPPs show higher fidelities appears.

In general, teleportation fidelity using the ECSs remains
over the classical limit longer than that of the EPPs. In other
words, even when the EPPs become useless for teleportation
due to significant decoherence effects, the ECSs can still be
useful for the same purpose. Based on our numerical results
we would conjecture that the ECSs are useful for teleportation
until the normalized time becomes r ≈ 0.7 regardless of α

while the EPPs become useless when r ≈ 0.577. However,
when α is too large as, for example, α > 1.6, this fidelity
merit of the ECSs is too tiny so as to make the teleportation
process useless. We have thus pointed out that the degrees
of decoherence in the quantum channels are a crucial factor
to decide whether the ECSs or the EPPs should be used for
efficient QIP. On the other hand, it should be noted that
the requirement for fault-tolerant quantum computing using
coherent-state qubits is very demanding [17].

We also pay special attention to detection inefficiency that is
a crucial detrimental factor in realizing practical QIP using all-
optical systems. We point out that when inefficient detectors
are used for Bell-state measurements, the teleportation scheme
using the ECSs suffers undetected errors that result in the
degradation of fidelity. This is not the case for the teleportation
scheme using the EPPs as photon losses right before the de-
tector are noticed by the absence of the detection signals itself.
Finally, we have presented analytical results and examples
when both the channel decoherence and the detection ineffi-
ciency are considered. Our results based on a thorough quanti-
tative analysis reveal the merits and demerits of the two types
of entangled states in realizing practical QIP under realistic
conditions and provide useful guidelines for the choice among
the well-known QIP schemes based on optical systems.
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[19] P. Marek and J. Fiurášek, Phys. Rev. A 82, 014304 (2010).
[20] W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH,

Berlin, 2001).
[21] C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A.

Ritchie, and A. J. Shields, Nature (London) 465, 594 (2010).

[22] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier,
Nature (London) 448, 784 (2007).

[23] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka,
A. Furusawa, and M. Sasaki, Phys. Rev. Lett. 101, 233605
(2008).

[24] T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita,
A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill,
Phys. Rev. A 82, 031802 (2010).

[25] A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, Phys. Rev. A
70, 020101(R) (2004); P. Marek, H. Jeong, and M. S. Kim, ibid.
78, 063811 (2008).

[26] J. S. Neergaard-Nielsen, M. Takeuchi, K. Wakui, H. Takahashi,
K. Hayasaka, M. Takeoka, and M. Sasaki, Phys. Rev. Lett. 105,
053602 (2010).

[27] E. A. Dauler, A. J. Kerman, and B. S. Robinson, J. Mod. Opt.
56, 364 (2009).

[28] R. Hadfield, Nat. Photon. 3, 696 (2009).
[29] B. C. Sanders, Phys. Rev. A 45, 6811 (1992).
[30] S. J. D. Phoenix, Phys. Rev. A 41, 5132 (1990).
[31] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[32] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

223, 1 (1996).
[33] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
[34] S. Lee, D. P. Chi, S. D. Oh, and J. Kim, Phys. Rev. A 68, 062304

(2003).
[35] J. Lee, M. S. Kim, Y.-J. Park, and S. Lee, J. Mod. Opt. 47, 2151

(2000).
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