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We assess quantum nonlocality of multiparty entangled thermal states by studying, quantitatively, both
tripartite and quadripartite states belonging to the Greenberger-Horne-Zeilinger, W, and linear cluster-state
classes and showing violation of relevant Bell-like inequalities. We discuss the conditions for maximizing
the degree of violation against the local thermal character of the states and the inefficiency of the detection
apparatuses. We demonstrate that such classes of multipartite entangled states can be made to last quite
significantly, notwithstanding adverse operating conditions. This opens up the possibility for coherent exploitation
of multipartite quantum channels made out of entangled thermal states. Our study is accompanied by a detailed
description of possible generation schemes for the states analyzed.
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I. INTRODUCTION

Where lies the boundary between the classical and the
quantum world? The daunting nature of this question is not
preventing the pursuit of very interesting studies that dig
deeply into the origin of nonclassicality of a physical system.
On the contrary, the difficulties inherent in such a fundamental
investigation are sharp stimuli to the research into tests and
physical systems able to challenge the common belief that
quantumness occurs only under quite special, and yet hard to
achieve, conditions. Very recently, quite significant endeavors
have been produced in the study of quantumness at the
“large scale” by proposing ways to infer nonclassicality in
multiphoton states and massive mechanical oscillators [1–7].

In this article we contribute to such a quest by addressing the
noteworthy case of multipartite quantum correlations shared
by systems that, when individually taken, are fully classical and
revealed by instruments far from offering any single-quantum
resolution. We address the case of multipartite entanglement
shared by bosonic systems that are locally prepared in chaotic
thermal states, which are commonly intended as well-defined
classical entities, and dub them entangled thermal states
(ETSs) [8]. We demonstrate that such quantum correlations
can be easily made strong enough to be revealed, through the
violation of suitable Bell-like inequalities, against any initial
local temperature and regardless of the coarse-graininess of
the detectors used in order to implement the nonlocality test.
We first study ETS versions of tripartite Greenberger-Horne-
Zeilinger (GHZ) [9] and W states [10], which are prominent
and nonequivalent classes of three-particle entangled states.
We discuss two schemes for generating GHZ-like ETSs
and draw a comparison between the slightly different states
therefore obtained. We show that an inequality for genuine
multipartite nonlocality can be violated up to the maximum
value allowed for a given representative of the class of GHZ-
like ETSs, when effective local rotations and highly inefficient
and noisy homodyne measurements are employed. Similar
action can be taken for the ETS version of W states [10], where
the violation is not to the maximum degree. We then extend our
analysis to larger entangled states, proving independence of a
few of our results from the number of bosonic systems involved

in the multipartite states we scrutinize. Such larger ETS states
include the quadripartite version of the GHZ-like ETS and a
four-mode linear clusterlike ETS. Our results go along and are
consistent with a recently started line of investigation aimed
at showing that quantumness can be enforced and revealed in
situations that are at the verge of the classical world [5,8,11].

The remainder of this article is organized as follows. In
Sec. II we assess genuine tripartite nonlocality in GHZ- and
W-like ETSs. The main tool of our investigation is an inequal-
ity derived by Svetlichny [12]. We sketch two schemes for the
generation of GHZ-like ETS states and provide an operative
protocol for testing tripartite nonlocality by means of effective
rotations and arbitrarily efficient homodyne measurements.
In Sec. III we tackle the nonlocal properties of four-party
states such as quadripartite GHZ-like ETSs and the interesting
class of linear clusterlike ETSs. Nonlocality can be revealed
regardless of the local temperature and can be made robust to
the inefficiency and fuzziness of the detection devices. Finally,
Sec. IV summarizes our findings.

II. TRIPARTITE CASE OF GHZ- AND W-LIKE ETSs

A. Svetlichny versus Mermin inequality for spin-1/2 particles

The quantification of the degree of genuine multipartite
entanglement in the aforementioned class of tripartite and
quadripartite ETSs is quite a daunting task. For pure states
of three entangled qubits, it is possible to quantify the degree
of multipartite entanglement [13]. However, this is not the
case for the class of ETSs here at hand. In fact, as seen in
Sec. II B, we are dealing with highly mixed states of systems
spanning infinite-dimensional Hilbert spaces. Moreover, by
construction, such states do not belong to the class of so-called
Gaussian states, that is, states whose Wigner function is a
Gaussian in phase space [14]. While correlations in Gaussian
states are well and easily characterized, we face the lack
of necessary and sufficient criteria for the quantification of
entanglement in non-Gaussian states. In fact, the available
entanglement measures in continuous variables are based
(to the best of our knowledge) on the use of the negativity
of the partial transposition criterion formulated in terms of
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covariance matrices, which carry exact information on the state
of a system only in the Gaussian scenario. Therefore, even the
case of quantifying bipartite entanglement represents quite a
challenging problem. A partial assessment of the entanglement
content of a given two-mode state belonging to such a class
passes through so-called entangling power methods: One could
establish a lower bound to the entanglement within a two-mode
non-Gaussian mixed state by determining the entanglement
that can be transferred to two qubits by means of bilocal
unitaries involving a mode and a qubit. Such a strategy has
been used in Ref. [15], where the entanglement in a mixed
two-mode non-Gaussian state has been examined under the
assumption that each mode-qubit subsystem interacts via a
local Jaynes-Cummings model. Although the technique is
fundamentally interesting in light of the intricate relationship
between systems of different dimensions, it is not of easy
generalization to the multipartite scenario and we can at best
provide only a lower bound to nonclassical correlations, an
exact quantification still being quite elusive. The lack of
efficient ways to quantify entanglement makes an assessment
of nonclassicality of ETSs in terms of multipartite nonlocality
very appealing and, basically, the only rigorous way to
ascertain whether a given non-Gaussian state of many modes
is righteously entangled. This is the perspective which we take
in our study.

Although one may be tempted to identify one with the
other, quantum nonlocality and quantum entanglement in
multipartite settings are concepts which should be approached
carefully. In fact, it is straightforward to realize that the
violation of an n-particle Bell’s inequality by an n-particle
entangled state is not sufficient to guarantee that genuine
multipartite entanglement is shared by the system’s elements.
The nonlocal nature witnessed by the violation of a Bell’s
inequality might well be entailed simply by an entangled state
involving only m < n particles. In 1987, Svetlichny addressed
this point by deriving an inequality, for the tripartite case,
that is able to discriminate between two- and three-particle
entanglement [12]. This inequality is satisfied by restricted
local realistic models allowing for a degree of two-particle
nonlocality.

We now give a brief account of the inequality formulated
by Svetlichny. Let us consider Mermin’s version of Bell’s
inequality for three spin-1/2 particles [16]. In one of its
possible formulations, the Mermin function M is built from
the correlation function C(abc) as

M = C(abc1) + C(ab1c) + C(a1bc) − C(a1b1c1), (1)

where the pairs (k,k1) with k = a,b,c are the two dichotomic
outcomes of an observable measured at the detection stage for
one of the particles. Here, C(abc) is the statistical correlation
function for measurements having outcomes a, b, and c,
respectively. For local realistic theories (LRTs), it is |M| � 2.
By exchanging k with k1 in Eq. (1), one gets a new Mermin
function M1 that, under LRT assumptions, obviously satisfies
(in modulus) the same bound as M. Therefore, by taking the
Svetlichny function S(a,b,c) = |M + M1|, we get

S(a,b,c) = |C(abc1) + C(ab1c) + C(a1bc) + C(abc)

− C(a1b1c) − C(a1bc1) − C(ab1c1)

− C(a1b1c1)| � 4, (2)

where k = (k,k1). Quantum mechanics, on the other hand,
predicts the existence of genuinely tripartite quantum cor-
related states violating such a bound. In particular, when
the correlations C(abc) are evaluated over a tripartite GHZ
state [9], the value 4

√
2 is obtained for the Svetlichny

function, which is the maximum value achievable for any
tripartite state. The Svetlichny inequality (SI) is maximally
violated by projecting each particle j in a GHZ state onto
the eigenstates |±〉j of the observable cos ϑσ̂x + sin ϑσ̂y

(ϑ = θ,φ,µ), where σ̂x,y,z are the three Pauli matrices. A
straightforward calculation gives the correlation function

C(θ,φ,µ) = cos(θ + φ + µ). (3)

For θ = θ1 + π/2 = 3π/4, φ = −µ1 = π/2, and µ = φ1 =
0, we have |M| = |M1| = 2

√
2 and |S| = 4

√
2, which shows

violation of both Svetlichny and Mermin inequalities. As
discussed by Cereceda [17], the SI is a righteous Bell
inequality for the tripartite case and emerges as a valuable
tool for the unambiguous ascertainment of the existence of
genuine tripartite entanglement and tripartite nonlocality for
any three-particle state. For this task, the use of a standard
Mermin’s inequality [16] is not sufficient: On the contrary,
quantum correlations that violate the SI are strong enough to
maximally violate Mermin’s inequality as well. The inequality
by Svetlichny has been independently extended to the n-
partite scenario in Refs. [18,19]. Very recently, Lavoie et al.
have experimentally demonstrated the violation of the SI
by a tripartite GHZ state [9] encoded in the polarization
degrees of freedom of three photons in a linear optics
setup [20].

B. Generation of GHZ- and W-like ETSs and violation of
Svetlichny inequality

We now address tripartite nonlocality of ETSs. In our
proposal, three local parties are each provided with one
mode j = 1,2,3 of a tripartite ETS that has been prepared
off line using single-mode displaced thermal states [8,
11]. These are defined as ρ th

j (V,d) = ∫
d2αP th

α (V,d)|α〉j 〈α|,
where P th

α (V,d) = 2[π (V − 1)]−1e− 2|α−d|2
V −1 is a Gaussian func-

tion with center d (with respect to the origin of the phase
space) and variance proportional to V = 2n + 1, where n is
the mean thermal occupation number of the mode. Here, |α〉j
is a coherent state of mode j , which has associated bosonic
operators âj and â

†
j . Displaced thermal states are the building

blocks for the construction of a tripartite GHZ-like ETS, as
described in Figs. 1(a) and 1(b). The scheme in panel (a) is
probabilistic and based on conditional displacements of each
of the three modes upon interaction with a two-level ancilla
A having logical states |0〉A and |1〉A. This is realized by
enforcing the mode-ancilla coupling ĤAj = h̄�|1〉A〈1|â†

j âj

and upon preparation of A in |+〉A = (|0〉A + |1〉A)/
√

2.
Nonlinear media with free-traveling optical fields [22,23] or
dispersive interactions within optical or microwave cavities
[24] may be used to implement the required interactions [8,15].
The state of A is eventually projected onto the state basis
{|+〉A,|−〉A} (with A〈−|+〉A = 0), as shown in Fig. 1(a). The
scheme in Fig. 1(b), on the other hand, relies on interference
at appropriately arranged beam splitters in a way completely
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FIG. 1. (Color online) (a) Conditional scheme for generating GHZ-like ETS. Three displaced thermal states (labeled j = 1,2,3) interact
with a two-level ancilla prepared in state |+〉A = (|0〉A + |1〉A)/

√
2. The interaction is ruled by the coupling Hamiltonian ĤAj = h̄�|1〉A〈1|â†

j âj

for a time equal to π/�. The ancilla is finally projected onto |±〉A with A〈+|−〉A = 0. (b) Beam-splitter-based scheme for the generation of
a tripartite GHZ-like ETS. A displaced thermal state as introduced in the body of the article undergoes a transformation that puts it into the
form ρ th′

(V,d) = N+
∫

d2αP th
α (V,d)|s+

α 〉〈s+
α |, with |s+

α 〉 defined as in Eq. (4) and N+ a normalization constant. This is then superimposed
to two vacuum modes at beam splitters of transmittivity t1 = √

2/3 and t2 = 1/
√

2 [21]. (c) Scheme for Svetlichny test performed over
a GHZ- or W-like ETS. Each mode of a state prepared off line is first appropriately rotated and then projected onto in-phase quadrature
eigenstates by means of arbitrarily efficient homodyne detectors. The outcomes of the measurements are appropriately dichotomized (see the
inset).

analogous to the proposal put forward in Ref. [21]. Having off-
line prepared state ρ th′

(V,d) = N+
∫

d2αP th
α (V,d)|s+

α 〉〈s+
α | of

mode 1 with

|s±
α 〉 ∝ (|α〉 ± |−α〉), (4)

a three-mode GHZ-like ETS is achieved by superimposing it
to two additional modes in their vacuum state. State ρ th′

(V,d)
can be prepared similarly to what is shown in panel (a), that
is, by letting a displaced thermal state of mode 1 interact,
according to ĤA1 and for a time π/�, with a two-level ancilla
prepared in |+〉A. The latter is eventually projected onto the
basis {|+〉A,|−〉A} to leave mode 1 in ρ th′

(V,d) [8]. The scheme
in Fig. 1(b) creates the state

ρ
(3)
GHZ,1 = N1

∫
d2αP th

α (V,d)|GHZ (α̃,α̃,α̃)〉123〈GHZ (α̃,α̃,α̃)|
(5)

with α̃ = α/
√

3, while the conditional approach in Fig. 1(a)
gives

ρ
(3)
GHZ,2 = N2

∫
d2αd2βd2ζP th

α (V,d)P th
β (V,d)P th

ζ (V,d)

× |GHZ (α,β,ζ )〉123〈GHZ (α,β,ζ )|, (6)

with N1,2 being normalization factors and α,β,ζ ∈ C. In
these equations we have used the (unnormalized) GHZ-like
entangled coherent state

|GHZ (α,β,ζ )〉123 = (
1̂ + ⊗3

j=1e
iπâ

†
j âj

)|α,β,ζ 〉123, (7)

where 1 is the identity operator. Although conceptually
analogous, the cases encompassed by Eqs. (5) and (6) are
technically different and the class of states represented by
ρ

(3)
GHZ,2 turns out to be analytically easier to treat. Therefore,

in order to provide a clear interpretation of our results, in
what follows we study the case of Eq. (6) in detail, leaving
the assessment of Eq. (5) to the numerical results shown in
Fig. 3. It is worth noting that both the tripartite GHZ- and the
W-like entangled coherent states have been shown to violate
Mermin’s inequality [21].

Our task here is to give a clear-cut account of the main
results of our investigation, providing at the same time an
intuition of the physical features behind the observation
of nonclassical multipartite correlations in the classes of
multiparty ETS-based states addressed here. We aim to show
violation of the SI under unfavorable conditions such as
high-temperature local bosons and “fuzzy” measurements.
We address the case of a set of local rotations performed
over each of the modes entering a GHZ-like ETS. Explicitly,
we consider the set of angles (θ,γ ) and the associated
transformation,

R̂1(θ,γ ) =
(

sin(θ/2) eiγ cos(θ/2)
e−iγ cos(θ/2) − sin(θ/2)

)
, (8)

to be applied to the vector of coherent states |α〉1 |−α〉1
T for

mode 1. Modes 2 and 3 experience similar transformations,
each determined by the pairs of angles (φ,δ) and (µ,ν),
respectively. An implementation of such a set of rotations
using nonlinear interactions and phase-space displacements
is discussed in Refs. [11,25]. Following the arguments by
Svetlichny [12] illustrated earlier, we restrict the set of local
rotations over the modes at hand to θ = φ = µ = π/2 and, un-
less stated otherwise, indicate the rotation operators as R̂j (σ )
(σ = γ,δ,ν). The projections needed in order to evaluate joint
probabilities and correlation functions as described in Eq. (2)
are instead implemented by dichotomizing the outcomes of
homodyne measurements performed over the three modes in
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ρ
(3)
GHZ,2. We associate a logical +1 (−1) to a positive (negative)

homodyne signal, as illustrated in Fig. 1(c). For the tripartite
case, we calculate the correlation function as

C(γ,δ,ν) = P+++ − P−−− + �(P+−− − P++−), (9)

where � represents a permutation of the subscripts appearing
in the conditional probabilities Pklp (with k,l,p = ±). The
latter are easily calculated as

Pklp =
∫
Rk

dx

∫
Rl

dy

∫
Rp

dz〈x,y,z|ρ(3)′
GHZ,2|x,y,z〉, (10)

where we have introduced the rotated GHZ-like ETS
ρ

(3)′
GHZ,2 = R̂1(γ )R̂2(δ)R̂3(ν)ρ(3)

GHZ,2R̂
†
1(γ )R̂†

2(δ)R̂†
3(ν) and the

positive (negative) domain of integration R+ = [0,∞) (R− =
(−∞,0]). It is thus found that

CGHZ,2(γ,δ,ν) =NGHZ,2(γ,δ,ν) cos(γ + δ + ν)Erf3

[√
2d√
V

]
,

(11)

with Erf [x] the error function of argument x. The appearance
of the error function in the preceding result is noteworthy. It
arises from the finite-range integration over the products of
the Gaussian P th

α function entering the definition of a thermal
state and the one resulting from the homodyne probing of the
fields’ quadratures. When d 	 √

V/2, Erf[
√

2d/
√

V ] → 1,
with NGHZ,2 → 1, making the correlation function identical to
the one obtained for the case of a tripartite spin-1/2 GHZ state
[20]. This is the key of our results. As confirmed by the analysis
performed in the remainder of the article, we can generalize
the functional form in Eq. (11) and claim that the correlation
function for any ETS-based multipartite state will encompass
an angular part that, under ideal rotations, is identical to the one
achieved for spin-1/2 particles. The modulus of the correlation
function, though, also depends in a crucial way on the degree
of distinguishability of the multipartite-state components, as
encompassed by the error function. This accounts for the clear
universal behavior of the correlation functions associated with
ETS-based states against the key parameter of the local thermal
components.

When inefficient homodyne detectors are considered, all
having the same detection efficiency η, the correlation function
is easily found from CGHZ,2(γ,δ,ν) with the replacements d →
ηd and V → 1 + η2(V − 1) in the error function appearing
in Eq. (11). So the effect of an inefficient detector is just
to slow down the saturation of the d-dependent term in the
correlation function. This simply means that, for set values of
V and for η < 1, a larger value of d is required to achieve
the maximum allowed degree of violation of a Svetlichny
inequality. In more detail, for V 	 1 we need to displace
the local thermal states by dη � d

√
1 + (V η2)−1 in order

for the corresponding correlation function to reach the value
of CGHZ,2(γ,δ,ν) corresponding to η = 1 (i.e., for perfectly
efficient detectors). The scaling is quite favorable at large
values of V , which shows that highly thermal states that are
initially considerably displaced with respect to the origin of
phase space are extremely insensitive to the effects of ineffi-
cient homodyne detection. One could even ignore the actual
detection inefficiency and, at large V , displace the local states
as if the homodyne measurements were ideal, without affecting

the performance of the scheme. From the preceding discussion
it is straightforward to understand that, under the present
conditions and for the GHZ-like ETSs addressed earlier, we get

SGHZ,2
η (γ,δ,ν) ∝ SGHZ,2(γ,δ,ν)Erf3

[ √
2dη√

1 + η2(V − 1)

]
,

(12)

where SGHZ,2(γ,δ,ν) is the Svetlichny function for the ideal
case of spin-1/2 particles and the proportionality sign is due
to a factor that tends to 1 as d2 	 (η−2 + V − 1)/2. This
shows that nonclassicality as witnessed by the violation of
the Svetlichny inequality will be observed up to its maximum
allowed degree even for large initial temperatures of the
multipartite state. Figure 2 shows the Svetlichny function
against V and d for η = 0.1. Maximum violations of the
inequality can be observed for any value of V by choosing a
sufficiently large d. The parameter d is the “knob” to tune in
order to optimize the nonclassical properties of a given state
at an assigned value of the thermal spread V . Intuitively, this
means that the entanglement in an ETS is a delicate trade-off
between the distinguishability of its state components, as
measured by their mutual distance d in phase space, and the
width V of each thermal distribution. When the Gaussian
probability functions defining each thermal state are so large
that they overlap significantly, the state components become
quasi-indistinguishable, and entanglement is correspondingly
destroyed. It should thus be clear that, per assigned value of V ,
a way to counteract such an entanglement washing-out effect
is to make the state components sufficiently distinguishable
in phase space, which implies the increase of d.

An analogous behavior is found also for the alternative
form of GHZ-like ETS ρ

(3)
GHZ,1. In this case, though, due to the

complications related to the calculations that are necessary to
get the correlation functions, an analytic expression for the

FIG. 2. (Color online) Violation of Svetlichny inequality by a
tripartite GHZ-like ETS under effective rotations and inefficient
homodyne detection (efficiency η = 0.1). We show the Svetlichny
function against displacement d and variance V of the local thermal
distributions. The floor of the plot is given by the local realistic bound
of 4. For d 	 √

V , the upper bound of 4
√

2 is achieved, exactly as it
would be for a pure GHZ state of three spin-1/2 particles under sharp
measurements.
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FIG. 3. (Color online) Comparison between the Svetlichny func-
tion associated with state ρ

(3)
GHZ,1 (solid lines) and ρ

(3)
GHZ,2 (dashed

lines) for V = 5,10 and η = 0.3 (assumed to be the same for every
detector).

Svetlichny function turns out to be not possible. Nevertheless,
the inequality can be well assessed, quantitatively, by relying
on a numerical approach that allows us to assess the behavior
of SGHZ,1

η (γ,δ,ν) against d, at set values of V and η. While,
qualitatively, the very same features highlighted for the
case of ρ

(3)
GHZ,2 hold also in this case (monotonic growth of

the Svetlichny function with d and saturation to the degree
of maximum violation for d 	 √

V ), it is interesting to
determine if one of the state-generation strategies proposed
here offers any advantage when evaluated against the violation
of Svetlichny inequality. In Fig. 3 we show a quantitative
comparison between SGHZ,1

η (γ,δ,ν) and SGHZ,2
η (γ,δ,ν) for two

values of V (arbitrary choices) and using the same detection
inefficiency η. We can clearly see that, despite the evident
similarities in the form of the two Svetlichny functions, the
generation protocol illustrated in Fig. 1(b) turns out to be
slightly more convenient: The local realistic bound of 4 [see
Eq. (2)] is surpassed for slightly smaller values of d, when
the beam-splitter-based generation scheme is used. Such a
trend is shown regardless of the value of V > 1 and η chosen
for our numerical test and we have strong numerical evidence
that the distance between the Svetlichny functions associated
with the two generation schemes opens up (at small values of
d) as V increases. In Sec. III we see that a similar result holds
for a quadripartite linear cluster state. It is worth stressing the
existence of another possibility to generate tripartite GHZ-like
ETSs by means of the scheme in Fig. 1(b). Instead of relying
on a resource having the form of ρ th′

(V,d), one could well
use state ρ th′′

(V,d) = Ûρ th(V,d)Û−1, where the unitary
evolution Û = e−iπ(â† â)2/2 is obtained by means of a self-Kerr
nonlinear medium. In this case, a single-mode resource having
the form ρ th′′

(V,d) ∝ ∫
d2αP th

α (V,d)|r+
α 〉〈r+

α | is achieved,
where |r+

α 〉 ∝ (|α〉 + i| − α〉). We have checked that, for the
GHZ-like ETS that is generated by using ρ th′′

(V,d) in the
protocol of Fig. 1(b), there is always a set of local rotations that,
complemented by dichotomized homodyne measurements,
allow for the violation of the tripartite Svetlichny inequality
in a way fully analogous to what has been addressed so far.

The qualitative features discussed earlier do not depend on
the form of the multipartite state being considered. In fact,

0 10 20 30 40 50 60

1

2

3

4

d

|S
 W
|

V=1000

V=100

V=5

4.35465

FIG. 4. (Color online) Svetlichny function for a tripartite W-like
ETS at various values of V . The local realistic bound is 4 (shaded
region of the plot). The maximum achieved violation of Svetlichny
inequality, reached at large values of d , is quantitatively the same as
in the spin-1/2 case.

by following arguments similar to those valid for a GHZ-like
ETS state, one can easily verify that the correlation function
corresponding to an ETS version of the W state, which can be
generated as discussed in [21], reads (for η = 1)

CW(θ,φ,µ) ∝ [cos θ cos φ cos µ

+ 2 cos(θ + φ + µ)]Erf3

[√
2d√
V

]
. (13)

The angular part is identical to what has been ob-
tained by Cereceda [17] for a tripartite spin-1/2 W state
(1/

√
3)

∑3
j=1 σ̂x,j |000〉123. This class of states is known to

violate the Svetlichny inequality by �0.355 [17], which
is achieved by projecting each party onto the eigenstates
of cos ϑσ̂z + sin ϑσ̂x(ϑ = θ,φ,µ). In our formalism, this is
equivalent to applying the local rotations R̂j (2 arctan[(cos ϑ −
1)/ sin ϑ],0) to each mode and performing dichotomic homo-
dyne measurements as described previously. The correspond-
ing Svetlichny function SW is shown in Fig. 4 for several
values of V and η = 1. Evidently, a large-enough ratio d/

√
V

makes a W-like ETS state violate the tripartite Svetlichny
inequality up to the maximum degree allowed to the spin-1/2
counterpart of such states. The inclusion of detection ineffi-
ciency and the corresponding results are perfectly analogous
to what was discussed in this section regarding the GHZ-like
ETS case.

III. QUADRIPARTITE CASE: GHZ AND
CLUSTERLIKE ETSs

A. Quadripartite GHZ-like ETS

We now extend our study to the case of quadripartite
ETS. As a first, simple step, we address the extension of
our previous study to nonlocality of a quadripartite GHZ-like
ETS. As done in the tripartite case, we focus our attention
to the general state-engineering scheme depicted in Fig. 1(a),
which can be straightforwardly generalized to the four-partite
scenario by considering a fourth local displaced thermal state
and, correspondingly, an additional ancilla-mode interaction.
For equal local temperatures and displacements, the resulting
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FIG. 5. (Color online) Svetlichny function for a four-partite GHZ-
like ETS. As before, we have used η = 0.1. Local realistic theories
enforce a bound of 8, while the maximum achievable quantum
mechanically is 8

√
2.

quadripartite GHZ-like ETS takes the form

ρ
(4)
GHZ = N3

∫
d2αd2βd2γ d2δP th

α (V,d)P th
β (V,d)P th

γ (V,d)

×P th
δ (V,d)|GHZ(α,β,γ,δ)〉1234〈GHZ(α,β,γ,δ)|,

(14)

with N3 a normalization factor, α,β,γ,δ ∈ C,
and |GHZ(α,β,δ,γ )〉 = |α,β,γ,δ〉 + | − α,−β,−γ,−δ〉.
In Ref. [18], Seevinck and Svetlichny have generalized the
original argument by Svetlichny and provided the explicit
form for the inequality to assess in the quadripartite scenario.
This reads

S(a,b,c,d) = |C(abcd) − C(a1bcd) − C(ab1cd) − C(abc1d)

+ C(a1b1cd1) + C(a1bc1d1) + C(ab1c1d1)

+ C(a1b1c1d1) − C(abcd1) − C(a1b1cd)

− C(a1bc1d) − C(a1bcd1) − C(ab1c1d)

− C(ab1cd1) − C(abc1d1) + C(a1b1c1d)| � 8.

(15)

Quantum mechanically, there are genuinely multipartite en-
tangled states that violate the local realistic bound of 8. In
particular, a four-party GHZ state violates this inequality
maximally, achieving |S(a,b,c,d)| = 8

√
2 for the same set

of local operations considered in Sec. II. When tested using
the state in Eq. (14), the four-party Svetlichny function shows
a behavior similar to what is shown in Fig. 2: For any specified
value of V and of the detection efficiency η, a sufficiently large
displacement ensures the violation of SI up to the maximum
allowed value 8

√
2. Figure 5 shows a significant example of

such a behavior.

B. Quadripartite linear clusterlike ETS

Unlike the tripartite case, where only two inequivalent
classes of multipartite entangled states exist [26], a plethora
of choices are available in the quadripartite scenario. Among
the states that can be considered, the class of cluster states
is of considerable interest by virtue of the role they play in

the one-way paradigm for quantum computing [27]. It is thus
interesting and relevant to assess the case embodied by such
states and to build up their ETS counterpart. In what follows,
we focus our attention to the analog of the spin-1/2 cluster
state

|C1/2〉 = (|0000〉 + |1100〉 + |0011〉 − |1111〉)/2, (16)

with {|0〉,|1〉} the logical states of each particle and the
subscript 1/2 reminding us that this form holds for a register
of spins. Schemes for the generation of coherent state-encoded
linear cluster states having a structure similar to the preceding
have been put forward [28] and their usefulness as quantum
channels for teleportation has been assessed by one of us [29].
Here we describe suitable generation protocols for linear
clusterlike ETS and then use them to test genuine quadripartite
nonlocality. The first scheme we propose is a straightforward
modification of both the protocol put forward in Ref. [28] and
the general procedure utilized in order to generate GHZ-like
ETSs [cf. Fig. 1(a)]. It is based on conditional displacement
operations actuated by two ancillary two-level systems result-
ing from the same sort of interaction Hamiltonian introduced
in Sec. II. Differently from the scheme for GHZ-like ETSs,
here a mutual coupling between the ancillary systems has to
be arranged according to Ĥ12 = h̄�|11〉AB〈11|, where A and
B are labels identifying the two ancillae, whose state after the
network of couplings depicted in Fig. 6(a) is projected onto
the {|+〉,|−〉}A,B bases. Upon detection of |++〉AB , the state
of modes j = 1, 2, 3, and 4 becomes

ρ
(1)
cluster =

∫
d2αd2βd2γ d2δP th

α (V,d)P th
β (V,d)

×P th
γ (V,d)P th

δ (V,d)|C(α,β,γ,δ)〉1234〈C(α,β,γ,δ)|,
(17)

with α,β,γ,δ ∈ C. By identifying a logical |0〉 (|1〉) state of
mode 1 with a coherent state of amplitude |α〉1 (|−α〉1) and
using an analogous encoding for the remaining modes, state
|C(α,β,γ,δ)〉 turns out to be the coherent-state-encoded linear
cluster state

|C(α,β,γ,δ)〉 = 1
2 (|α,β,γ,δ〉 + |α,β,−γ,−δ〉
+ |−α,−β,γ,δ〉 − |−α,−β,−γ,−δ〉).

(18)

We address an alternative state-engineering procedure in the
next section. The nonlocality properties of spin-1/2 cluster
states have been addressed in a seminal work by Scarani,
Acin, Schenck, and Aspelmeyer [30], which we dub from
now on SASA. Motivated by the fact that a linear cluster state
does not maximally violate a four-partite Mermin inequality,
SASA looked for an inequality that is maximally violated
by quadripartite linear cluster states. By using the stabilizer
operators, they have formulated a simple four-term correlator,
here named the SASA function. In more detail, for the form of
the linear cluster state under scrutiny here, the spin-1/2 SASA
function is obtained as the expectation value of the correlation
operator

ÔSASA = σ̂z,1 ⊗ 1̂2 ⊗ σ̂x,3 ⊗ σ̂z,4 − σ̂z,1 ⊗ 1̂2 ⊗ σ̂y,3 ⊗ σ̂y,4

+ σ̂x,1 ⊗ σ̂y,2 ⊗ σ̂y,3 ⊗ σ̂x,4

+ σ̂x,1 ⊗ σ̂y,2 ⊗ σ̂x,3 ⊗ σ̂y,4. (19)
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FIG. 6. (Color online) (a) Conditional scheme for the generation of a four-partite linear cluster state via local thermal states, conditional
displacements, and postselection. The interpretation of the symbols is the same as in the caption of Fig. 1. Differently from the GHZ-
like ETS case, here we need two ancillary two-level systems and their mutual interaction. In panel (b) we show an alternative way of
generating a linear cluster ETS (see Ba an and Hoa in Ref. [34]). Two thermal states of annihilation operators âj (j = 1,2) enter a nonlinear
cross-Kerr medium where the interaction Ĥχ (3) = h̄χâ

†
1â1â

†
2â2 takes place for a time π/χ . The output modes are then superimposed to

two ancillary modes prepared in their vacuum state at 50:50 beam spitters. Local phase shifters (not shown) complete the generation
process.

calculated over the cluster state. Classically, by associating ±1
to any of the operators involved in ÔSASA, it is straightforward
to check that the inequality |〈ÔSASA〉| � 2 holds. Quantum
mechanically, by construction, we get 〈C1/2|ÔSASA|C1/2〉 = 4.
No other state can achieve a larger value, thus making the
SASA inequality optimal for the class of states under scrutiny.
Remarkably, such inequality has been experimentally tested
using the polarization degree of freedom of four photonic
modes [31].

Our aim now is to prove that state ρcluster defined in Eq. (17)
violates SASA inequality up to its maximum value when the
local thermal states are sufficiently displaced in phase space
with respect to the variance V . As done before, the necessary
correlators are implemented by dichotomizing the outcomes
of homodyne measurements performed over the four modes
j = 1,2,3,4 and using appropriate local operations R̂j ’s. By
following the lines depicted in Sec. II, we get the SASA
function BSASA

BSASA(V,d) = 2Erf 3[
√

2d
√

V ](1 + Erf [
√

2d
√

V ]), (20)

where perfectly efficient homodyne detectors have been
assumed, for the sake of clarity. Our analysis can be straightfor-
wardly extended to the case of inefficient detectors simply by
performing the replacements for d and V discussed for the case
of a tripartite GHZ-like ETS state. Figure 7 shows the trend of
Eq. (20) against V and d for a considerable range of values. For
V ∼ 103, only moderate values of d are sufficient to violate the
local realistic bound, although maximum violation occurs only
at d >∼ 50. Hence, our linear cluster ETS maximally violates
this inequality for any value of V by choosing d sufficiently
large.

The fact that one of the parties in SASA has to use only a
single measurement setting (the local observable for mode 2
has to be 1̂ in two cases out of four) marks the fundamental

difference between such an inequality and any Mermin- or
Svetlichny-like argument, where at least two measurement
settings are required for each of the parties involved. Indeed,
the SASA inequality does not fall into the class of generalized
Mermin inequalities, such as those proposed by Collins et al.
[19], even more given that it stems from the use of stabilizer
operators for the cluster state at hand. It is therefore interesting
to test the behavior of our four-mode clusterlike ETS against
Mermin-like inequalities. For this task, we consider the works
by Werner and Wolf [32] and Żukowski and Brukner [33], who
independently proposed equivalent and general inequalities
for an arbitrary number of particles, using two measurement
settings per party. Here we concentrate on the formulation by
Żukowski and Brukner, whose inequality for spin-1/2 particles

1

500

1000

BSASA(V,d)

V

0

50

100

d

0

2

4

FIG. 7. (Color online) Violation of SASA inequality by a
quadripartite clusterlike ETS under effective rotations and homodyne
detection. The SASA function is plotted against V and d . The local
realistic bound is shown by the plane at BSASA = 2.
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takes the form

|BWWZB| = |C(abcd) + C(abcd1) + C(abc1d) − C(abc1d1)

+ C(ab1cd) − C(ab1cd1) − C(ab1c1d)

− C(ab1c1d1) + C(a1bcd) − C(a1bcd1)

− C(a1bc1d) − C(a1bc1d1) − C(a1b1cd)

− C(a1b1cd1) − C(a1b1c1d) + C(a1b1c1d1)| � 4

(21)

with BWWZB indicating the Werner-Wolf-Żukowski-Brukner
parameter. By using the spin-1/2 linear cluster state |C1/2〉, it
is seen that the local observable for particle j needed to build
up the correlations all have the form

R̂(φj ) = 1
√

2

(
1 eiφj

e−iφj −1

)
, (22)

so that k = (φ1,φ
′
1) and analogous definitions hold for the

remaining set of parameters. Numerical maximization of
the left-hand side of Eq. (21) over such sets leads to the
violation of the WWZB inequality by a factor

√
2 for the

set of angles φj = 3π/16,φ′
j = 11π/16,∀ j . We retain such

values for our test of nonlocality involving the clusterlike ETS
and calculate the appropriate correlators by means of our
dichotomized homodyne measurements. The corresponding
WWZB function is too lengthy to be given here and we thus
rely on Fig. 8 for a comprehensive account of our results, which
show that violation up to the maximum allowed to the class
of states addressed here is achievable under the same general
working conditions valid in the case of the SASA inequality.

C. Alternative generation scheme for linear clusterlike ETSs

The protocol for state generation suggested in the previous
section is not the only possibility one has to generate linear
clusterlike ETSs. Indeed, along the lines of the scheme for
tripartite GHZ-like ETS proposed in Fig. 1(b), one can design
situations where a suitably off-line-prepared nonclassical state
of two modes is made available for interference at a set of
beam splitters. This is the case for the procedure depicted in

1

500

1000

V

0

50

100

d

2

4

0

BWWZB(V,d)

FIG. 8. (Color online) Violation of the WWZB inequality by
a four-party linear cluster like ETS under effective rotations and
homodyne detection. The local realistic bound is 4 and is indicated
by the horizontal plane. For any V , a correspondingly large value of
d guarantees a violation of the WWZB inequality by a factor

√
2, in

agreement with the spin-1/2 case.
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FIG. 9. (Color online) Comparison between the SASA functions
associated with states ρ

(1)
cluster (dashed line) and ρ

(2)
cluster (solid line) for

V = 1, 5, and 10.

Fig. 6(b), where two thermal displaced states are fed into a
cross-Kerr medium of large third-order nonlinear rate χ . A
similar scheme has previously been put forward by Ba An and
Hoa [34]. The intermode coupling model within the medium
thus reads Ĥχ (3) = h̄χâ

†
1â1â

†
3â3. By assuming an interaction

time equal to π/χ and using the results of Ref. [35] one finds
that the output modes are in state

ρψ =
∫

d2αd2βP th
α (V,d)P th

β (V,d)|ψ〉13〈ψ |, (23)

with |ψ〉13 = |α〉1|s+
β 〉3 + |−α〉1|s−

β 〉3. Interference of such a
state with two vacuum-state modes at 50:50 beam splitters,
together with local phase-shifting operations [not shown in
Fig. 6(b)], leave us with the state

ρ
(2)
cluster =

∫
d2αd2βP th

α (V,d)P th
β (V,d)ρc(α′,β ′), (24)

with ρc(α,β) = |C(α′,α′,β ′,β ′)〉1234〈C(α′,α′,β ′,β ′)| and
α′ = α/

√
2, β ′ = β/

√
2. The crucial difference between

ρ
(1)
cluster and ρ

(2)
cluster lies in the lack of independence between

modes 1 and 3, as well as 2 and 4, which share the same
amplitudes. This is the reason behind some difficulties in
the full analytical treatment of the problem at hand, similar
to those experienced in treating the situation described in
Fig. 1(b). We thus rely on a numerical analysis. Given that
SASA inequality is optimal for linear cluster states, we
concentrate on this case and compare the performance of
the SASA function associated with ρ

(2)
cluster and the behavior

of Eq. (20) revealed in Fig. 7. Features qualitatively similar
to those shown in the tripartite case are evident in Fig. 9,
where the beam-splitter-based approach is shown to be more
advantageous as it allows for the violation of SASA inequality
at slightly smaller values of d.

IV. CONCLUSIONS

We have assessed the problem of revealing genuine mul-
tipartite nonlocality in many-mode entangled states based on
chaotic local components. We have identified in the Svetlichny
inequality and stabilizer-based arguments the crucial tools for
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our study, which has been performed by considering relevant
instances of multipartite entangled states. In particular, we
have considered tripartite GHZ- and W-like ETSs as well as
quadripartite linear cluster states, revealing that the nonlocal
properties of the class of states at hand can be faithfully
revealed regardless of the thermal character of their local
constituents and effectively counteracting the effects of detec-
tion inefficiency. A small-scale experimental demonstration
of our examples may be realized, not without some efforts
related in particular to the technical difficulties in achieving
strong optical nonlinearities. A three-mode GHZ ETS with
V >∼ 1 and d ∼ 1.1 can be generated, for instance, from the
scheme in Fig. 1(a) using as an input state the superpositions of
two coherent states with d ∼ 1.6, which were experimentally
demonstrated in a recent seminal experiment [36]. This would
pave the way toward the construction of a GHZ-like ETS
and the test of tripartite nonlocality. The scaling up of such
technology toward the full implementation of the schemes here
at hand could also take advantages from important progresses
achieved in obtaining the demanding, yet necessary, strong
nonlinearities.

Our work stands as a contribution to the current quest for
quantum effects at the border of classicality, here embodied
by large local temperatures and fuzzy measurement devices.
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