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We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear
operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a
class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and
thoroughly assess the effects of detection inefficiency.
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I. INTRODUCTION

Correlations among systems are important in modern
physical science. They frequently allow us to unveil hidden
aspects of natural phenomena, and remarkably they represent
a powerful litmus test in the study of the differences between
classical and quantum worlds. In fact, quantum mechanics
allows correlations that have no counterpart in the classical
domain and thus represent the intrinsic advantage upon which
some applications of quantum information processing are
based [1].

The concepts of entanglement and nonlocality [2] embody
the most striking examples of the profound implications of
quantum correlations in the behavior of multipartite systems
[2]. The work by Bell in this respect is a milestone in providing
a fundamental test for proving how the (intuitively reasonable)
joint assumptions of locality and realism are in striking contrast
with the description of quantum mechanical correlations [2,3].
The enormous interest given to investigations around the
Bell inequality in the past thirty years, however, has not yet
clarified in an unambiguous way the interplay between the
two assumptions. In this context, the proposal by Leggett for a
nonlocal realistic model stands as a seminal contribution [4],
which has been received with great interest by the physics
community on both the theoretical and experimental levels.
The original idea by Leggett has been recently put within the
grasp of current state-of-the-art experimental capabilities by a
clever reformulation of his incompatibility theorem [5]. Some
of the most demanding assumptions behind the formalism
in the latter work have been subsequently relaxed in a way
so as to make the experimental test of nonlocal realism
more experimentally friendly. In particular, the requirement
for rotational invariance of the correlation function entering
Leggett’s inequality can be successfully bypassed [6–8]. So far,
efforts have almost exclusively involved linear-optics settings
where biphoton entangled states generated via parametric
down conversion have been used as resources for testing
nonlocal realistic assumptions [5–9]. In these cases, the probed
nonclassical correlations were encoded in the discrete vari-
ables embodied by photonic polarization degrees of freedom.

However, it has long been known that quantum correlations
encoded into continuous variable (CV) states can violate
Bell inequalities: among others, Banaszek and Wódkiewicz
have proven that the Bell inequality as formulated by
Clauser-Horne-Shimony-Holt (Bell-CHSH) can be violated by

Gaussian CV states upon parity measurements and displace-
ment operations [10], and Chen et al. have identified a pseu-
dospin formalism that optimizes the Bell-CHSH inequality
violation [11]. Jeong et al. have studied the Bell inequality
tests for CV states with dichotomic observables [12], and
Paternostro et al. have addressed the case of Gaussian CV
states measured by standard homodyne detectors [13].

Remarkable examples of CV resources are provided by
entangled states of two quasidistinguishable coherent states,
or entangled coherent states (ECSs) [14], which are useful
resources in many quantum information processing tasks.
Although, for the sake of conciseness, we omit a discussion
on the ample range of applications for ECSs [15,16], it is
important to mention that the Bell inequality violation with
ECSs and their mixtures has been successfully investigated us-
ing, for instance, photon-parity measurements and dichotomic
measurements [12,17,18]. More recently, it has been shown
that even threshold detectors or classical measurements such
as homodyning (which are both unable to reveal single quanta)
can be used for Bell-CHSH tests when an appropriate set
of local operations is available [19]. This approach has been
useful in the demonstration of nonlocality properties of highly
mixed states close to the classical border, as in Ref. [20], where
it was shown that even extremely inefficient measurements
in the classical limit may be used to demonstrate significant
violation of local realism.

Guided by the success in revealing the Bell inequality
violations with ECSs, here we investigate nonlocal realism
of an ECS through local nonlinear operations and homodyne
detection and prove that the violation of Leggett-type inequal-
ities is not an exclusive privilege of discrete-variable quantum
correlated systems [20]. We develop a formal apparatus for
the determination of the proper joint correlations entering
Leggett-type functions that have been proposed in recent
formulations of inequalities showing the incompatibility of
nonlocal realism and quantum mechanics. We demonstrate that
for an ECS having sufficient amplitudes of its coherent-state
components, which makes them explicitly multiphoton, the
degree of violation of such inequalities becomes optimal and
the associated Leggett functions mimic the behavior expected
for two-qubit singlet states. We also study the effects of
homodyne detection inefficiencies and highlight a strategy
to counteract them. In contrast to any test performed with
biphoton states, our proposal allows us to compensate for the
spoiling effects of detection inefficiencies simply by preparing
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an appropriate ECS resource, which can be done offline.
Moreover, an interesting comparison between Bell and Leggett
functions against the amplitude of an ECS is made. Although
the experiment proposed here presents some challenges, its
experimental realization is not far fetched. In fact, we believe
our study will provide additional motivations to achieve large
nonlinear effects that can be useful for tests of fundamental
physics and the processing of quantum information.

The remainder of this article is organized as follows.
In Sec. II, we first briefly discuss the basic assumptions
in Leggett’s original model [4] and concisely discuss the
implications for nonlocal correlations. We then introduce the
entangled resource used throughout our study, the local unitary
operations that Alice and Bob should implement, and we obtain
an explicit form for the universal correlation function of the
outcomes associated with bilocal homodyne measurements.
This is used for the analysis performed in Sec. III, where
the simplest of the Leggett-type inequalities proposed in
Refs. [6,7] is studied. In Sec. IV, we address the case of
a recently derived optimal Leggett-type inequality, which is
quantitatively studied and compared to the case from Sec. III.
In Sec. V, we account for the effects of detection inefficiency,
showing that a strategy exists for effectively counteracting
such nonideal experimental conditions. Finally, in Sec. VI, we
summarize our findings and present a brief discussion of the
practical feasibility of the proposed experiment.

II. RESOURCES, TOOLS, AND GENERAL FORMALISM

A. Brief summary of Leggett’s inequality

The model introduced by Leggett in his 2003 paper [4]
follows other investigations that aimed to identify the
fundamental features that define quantum mechanics. Given
the state of a bipartite system (in Ref. [4], this was encoded
in the polarization degrees of freedom of biphoton states),
the crucial assumption in Leggett’s model is that purity of the
state of each local subsystem should be retained. The marginal
probabilities associated with local measurements performed
on each of the subsystems should thus be compatible with such
an assumption (they should be valid nonnegative probability
distributions). However, Leggett’s model does not make any
assumption about the joint correlations between different
measurement outcomes on the two subsystems, thus explicitly
allowing for a degree of nonlocality (i.e., Leggett’s model
can in general violate a Bell inequality). The main point of
Ref. [4] is that the compatibility requirements imposed on local
marginals are strong enough to constrain even the nonlocal
correlations. Quantum mechanics violates such constraints.

Various formulations of Leggett’s original argument have
been recently put forward, and violation of nonlocal realism by
polarization-encoded entangled states has been experimentally
demonstrated in a series of seminal papers [5–8]. It is worth
mentioning that in contrast to a case of a Bell inequality,
where the bound imposed by local realistic theories does
not depend on the measurement settings used in the actual
implementation of the test, nonlocal realistic models enforce
constraints that critically depend on the measurements being
implemented. In the remainder of this article, we address two
such formulations and show that ECSs violate them up to the
maximum allowed by a given configuration of measurement

settings. In order to avoid unnecessary redundancies and
technicalities, we refer to Refs. [5–8] for the full derivation of
the inequalities that are used here.

B. Resource state and tools

In this subsection, we formally introduce the class of CV
states used in our analysis together with the formalism and
tools necessary for the measurements required by the Leggett
tests at hand. Although bosonic modes of any nature could be
used to realize our proposal, it is natural to consider hereafter
ECSs of optical field modes. Among the states falling into the
family of ECSs, we consider

|ECS〉AB = |α, α〉AB + | − α,−α〉AB√
2(1 + e−4|α|2 )

, (1)

where |α〉 = D̂(α)|0〉 is a coherent state of amplitude ampli-
tude α, D̂(α) = exp[αb̂† − α∗b̂] is the displacement operator,
and |0〉 is the vacuum state of a field mode with associated
creation (annihilation) operator b̂† (b̂). In what follows, for
ease of calculation and without affecting the generality of
our discussions, we consider only the case of α ∈ R. After
generation of state (1), modes A and B are distributed to
two agents, called Alice and Bob, respectively. These have
the task of performing local effective rotations and homodyne
measurements over the respective subsystem. A sketch of such
a thought experiment is shown in Fig. 1.

In contrast to an optimized Bell-CHSH inequality, which
requires measurement settings identified by vectors lying on

FIG. 1. (Color online) Scheme of the experiment for testing
nonlocal realism with an ECS. The source generates an ECS of
the form considered in the body of the article. Alice and Bob
perform local rotations through the sequence of unitary operations
in Eq. (3). The locally rotated optical states are then mixed with a
strong local oscillator (LO), and homodyne detectors (HDs) are used
for final measurements. The leftmost and rightmost spheres show
the directions of the vectors identifying the measurement settings at
Alice’s and Bob’s sites, respectively.
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the equatorial plane of a single-qubit Bloch sphere, the Leggett
inequality needs the ability to perform out-of-plane measure-
ments [5]. This means that the following transformations
should be realized (j = A,B):

|α〉j → sin
θj

2
|α〉j + e−iϕj cos

θj

2
|−α〉j ,

(2)

|−α〉j → eiϕj cos
θj

2
|α〉j − sin

θj

2
|−α〉j .

The 2 × 2 matrix describing Eq. (2) in the space spanned by
{|α〉, |−α〉} can be decomposed into the sequence of elemen-
tary rotations Uz(−ϕj/2)Ux(π/4)Uz(ϑj/2)Ux(π/4)Uz(ϕj/2),
with Ux,z(ξ ) = exp[iξσx,z], and where σ k is the k-Pauli
matrix (k = x, y, z). We now use the analysis performed
in [16], where it is shown that the effect of Uz(ξ ) on
a coherent state |α〉 can be effectively approximated by
a phase-space displacement operation D̂(iξ/2α), whereas
Ux(π/4) can be implemented by means of a proper Kerr-like
single-mode nonlinearity ÛNL = exp[−iπ (â†â)2/2]. There-
fore, the physical implementation of Eqs. (2) is given by the
sequence

R̂(θj , ϕj ) = D̂j (−iϕj /4α)ÛNLD̂j (iθj /4α)ÛNLD̂j (iϕj /4α).

(3)

From now on, the explicit form of Eqs. (2) are specified by the
directions of the unit vectors a ≡ (θA, ϕA) and b ≡ (θB, ϕB),
identified by the corresponding set of angles expressed in
spherical polar coordinates. After a lengthy but straightforward
calculation, one gathers the explicit transformation experi-
enced by |± α〉j :

|α〉j
→ 1

2

[
e

iθj

4

(∣∣∣∣α + iθj

4α

〉
+ ie

iϕj

2

∣∣∣∣−α − iϕj

2α
− iθj

4α

〉)

+ ie− iθj

4

(
e

iϕj

2

∣∣∣∣−α − iϕj

2α
+ iθj

4α

〉
+ i

∣∣∣∣α − iθj

4α

〉)]
,

|−α〉j
→ 1

2

[
ie

iθj

4

(
i

∣∣∣∣−α − iθj

4α

〉
+ e− iϕj

2

∣∣∣∣α − iϕj

2α
+ iθj

4α

〉)

+ e− iθj

4

(
ie− iϕj

2

∣∣∣∣α − iϕj

2α
− iθj

4α

〉
+

∣∣∣∣−α + iθj

4α

〉)]
.

(4)

These expressions are the starting point of our analysis. After
the local transformations implemented by Alice and Bob,
homodyne measurements are performed on system A and
B [21]. These are arranged so that mode A (B) is projected
onto the in-phase quadrature eigenstate |x〉 (|y〉) [13,20]. We
can thus determine the joint probability-amplitude function

C({θ}, {ϕ}, x, y) =AB 〈x, y|R̂(θA, ϕA)R̂(θB, ϕB )|ECS〉AB,

(5)

where {θ} ≡ {θA, θB} and {ϕ} = {ϕA, ϕB} identify the two sets
of relevant angles. For our test, we need a set of bounded
dichotomic observables, which we construct by assigning
value +1 to the outcome of a homodyne measurement at
Alice’s (Bob’s) site such that x � 0 (y � 0) and −1 otherwise.
The joint probability of outcomes is thus written as

Pkl({θ}, {ϕ}) =
∫ ks

ki

dx

∫ ls

li

dy|C({θ}, {ϕ}, x, y)|2, (6)

where the subscripts k, l = ± correspond to Alice’s and Bob’s
assignments of outcomes ±1 and the integration limits are
such that +s = ∞,+i = −s = 0 and −i = −∞. We can now
introduce the correlation function

CL({θ}, {ϕ}) =
∑

k,l=±
Pkk({θ}, {ϕ}) −

∑
k �=l=±

Pkl({θ}, {ϕ}), (7)

which is needed to build up the proper Leggett-type function.
The explicit calculation of CL({θ}, {ϕ}), performed using
the dependence of 〈x|α〉 on Hermite polynomials and the
Rodrigues formula [21], leads to

CL({θ}, {ϕ}) = e−(1/8α2)
∑

j=A,B (8iα2+4θj +ϕj )(4θj +ϕj )

32
(
1 + e4α2

)
⎧⎨
⎩8e4α2+(1/8α2)

∑
j=A,B (8iα2+8θj +ϕj )ϕj

∏
j=A,B

(
f−θj ,0 + e8iθj fθj ,0

)

− 4e4α2
∏

j=A,B

[
f−θj ,−ϕj

− e2θj (4i+ϕj /α
2)fθj ,−ϕj

] − 4e4α2+2i(ϕA+ϕB )
∏

j=A,B

(
e2θj ϕj /α

2
f−θj ,ϕj

− ei8θj fθj ,ϕj

)

+ 8ei
∑

j=A,B (4θj +ϕj )
∏

j=A,B

(
e2θj ϕj /α

2
gθj ,−ϕj

+ gθj ,ϕj

)
⎫⎬
⎭ (8)

with fθj ,ϕj
= Erf[

√
2α + i(4θj + ϕj )/2

√
2α] and gθj ,ϕj

=
Erfi[(4θj + ϕj )/2

√
2α]. This equation is the building block

for the nonlocal realistic tests performed in Secs. III and IV.

III. LEGGETT-TYPE INEQUALITY VIOLATION

In this section, we use an ECS resource for a Leggett-type
test that does not require the impractical average of the
correlation function over infinitely many measurement settings

but, at the same time, does not rely on properties of rotational
invariance of CL({θ}, {ϕ}), as required in Ref. [5]. We make
use of the simplest version of the class of inequalities discussed
in Refs. [6,7]. Specifically, in Ref. [6], CL({θ}, {ϕ}) should be
evaluated using seven pairs of bipartite measurement settings.
We therefore introduce the unit vectors a ≡ (θA, ϕA) and
b ≡ (θB, ϕB ) specified by the set of corresponding angles in
spherical polar coordinates. A Leggett-type inequality can now
be tested by considering the unit vectors a1,2,3 and b1−7, each
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specifying a rotation that Alice (Bob) should perform on her
(his) mode. Explicitly,

a1 = b5 ≡ (π/2, 0), a2 = b6 ≡ (π/2, π/2),
(9)

a3 = b7 ≡ (0, 0), b1 ≡ (π/2, ϕ), b4 ≡ (ϕ, π/2),

with b2 and b3, which are found from b1 and b4, respectively,
by taking ϕ → π/2 + ϕ. These vectors are clearly represented
in the Bloch spheres of Fig. 1. With these definitions, we
consider the Leggett function [6,7]:

L = |CL(a1, b1)+CL(a2, b2) + CL(a1, b5) + CL(a2, b6)|
+ |CL(a2, b3)+CL(a3, b4) + CL(a2, b6) + CL(a3, b7)|.

(10)

In contrast to a Bell-CHSH test, Leggett’s nonlocal realistic
theory imposes a bound on L that actually depends on the rela-
tive direction of the measurement-setting vectors. Specifically,
the inequality that nonlocal realistic models should satisfy
reads L � 8 − 2| sin(ϕ/2)| [6,7]. In what follows, we show
that an ECS of sufficiently large amplitude α always violates
this constraint.

Both the bound and the Leggett function have been plotted
in Fig. 2(a) against the angle ϕ. In analogy with what happens
in a Bell-CHSH test on ECS performed with homodyne

FIG. 2. (Color online) (a) Violation of nonlocal realism by the
Leggett function L in Eq. (10) for α = 10 (dashed curve) and α = 60
(solid curve). The upper bound for the Leggett model is also plotted
against the angle ϕ. The vertical dashed line indicates the value ϕ 

0.2507 rad at which the Leggett-type inequality in [8] is maximally
violated, regardless of α. (b) Violation of Leggett’s model by L against
the amplitude of the coherent-state component in the ECS considered
in the body of the article. In this plot, we have assumed ϕ = 0.25.
The upped bound for Leggett model (straight line) is surpassed for
α � 7.5.

measurements [19], we expect the dependence of the Leggett
function on the amplitude α of the ECS resource. In fact,
both the degree of violation and the values of ϕ such that
L is larger than the corresponding bound depend on α, as
shown in Fig. 2(a), where the cases of α = 10 and 60 are
presented. On the other hand, the value of ϕ maximizing the
discrepancy with the nonlocal realistic theory is insensitive to
the amplitude of the coherent states. Numerically, we have
found that the function L = L − 8 + | sin(ϕ/2)|, which mea-
sures the degree of violation of such a nonlocal realistic
model, is maximized for ϕ 
 0.25 rad, which is the value
we retain in our calculations. For this choice of ϕ, Fig. 2(b)
reveals that the maximum degree of violation is achieved quite
quickly as α grows. For α >∼ 10, a quasiplateau is achieved
close to L ∼ 7.87, which is in excellent agreement with
the expected value of L, at ϕ = 0.25, for a pure singlet
state [6,8]. This demonstrates that nonlocal realistic models
should be abandoned for an ECS of sufficient amplitude.
Even modest values of α allow for the maximum violation
of such Leggett-type inequality, therefore mimicking the
results expected and observed for the singlet state of two
qubits.

As already stated, Leggett’s model assumes that the state
of the local elements of a bipartite state is pure. The interplay
between local and nonlocal realism in the space of parameters
of a given bipartite state is an issue not yet fully explored
[20]. Here, we perform a step in this direction by comparing
the behavior of L and the Bell-CHSH function obtained by
using an ECS, local rotations, and homodyne measurements
[19]. Figure 3 shows the Leggett and Bell-CHSH functions,
numerically optimized over the corresponding measurement
settings, against α. The Bell-CHSH inequality is violated
already for α >∼ 1 while, as seen in Fig. 2(b), α should be
increased up to 7 in order to violate the Leggett-type inequality
we are studying. The existence of an ample region where
L � 0 while local realism should be abandoned is interesting.
Although no firm statement can be drawn, it is tempting to
retain nonlocal realistic theories to explain all the measurement
results under our assumptions in such region, a point that has
been discussed in detail in Ref. [20].

FIG. 3. (Color online) Violation of local and nonlocal realism
against the amplitude α of the ECS components. We show the
Bell function B (together with the local realistic bound 2) and the
function L, which violates the Leggett-type inequality when positive.
The shaded region corresponds to values of α where local realistic
theories should be abandoned while Leggett’s inequality is still
satisfied.
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FIG. 4. (Color online) Measurement settings at Alice and Bob’s
site for the test of nonlocal realism as proposed by Branciad et al. in
Ref. [8]. The pairs of vectors (bi , b′

i) with i = 1, 2, 3 lie on orthogonal
planes, and the vectors form angles equal to ϕ. The pair with
i = 1, 2, 3 lies on the plane with z, x, y = 0, respectively.

IV. OPTIMAL LEGGETT-TYPE INEQUALITY

Very recently, Branciard et al. proposed and experimentally
tested a new family of Leggett-type inequality that supersedes
those presented in Refs. [6,7] in terms of number of required
measurement settings at Bob’s site. The only assumption in
Branciard et al.’s derivation is the existence of valid condi-
tional probability distribution for the outcomes of the measure-
ments performed by Alice and Bob [8]. The simplest inequality
that can be derived in this context needs the Leggett function

LS = (1/3)
3∑

i=1

|CL(ai , b+
i ) + CL(ai , b−

i )| (11)

and reads LS � 2 − (2/3)| sin(ϕ/2)|. The number of
measurement settings required at Bob’s site for this test is
only 6. While ai’s (i = 1, 2, 3) coincide with those used in
order to build Eq. (10), we have

b±
1 ≡ (π/2,±ϕ/2), b±

2 ≡ (π/2 ∓ ϕ/2, π/2),
(12)

b±
3 ≡ (±ϕ/2, 0).

As shown in Fig. 4, the pairs of measurement-setting
vectors (b+

i , b−
i ) lie on orthogonal planes and form an angle

ϕ. By following the discussion in Sec. III, it is straightforward
to check the violation of nonlocal realism by an ECS. The
results are shown for α = 60 in Fig. 5, where at ϕmax 
 0.65
the maximal violation of the Leggett model is achieved. At
this value, while the local realistic bound equals 
 1.787, we
have LS 
 1.898. Both this value and ϕmax are in excellent
agreement with the expectations for the discrete-variable
case [8]. As before, the degree of violation depends on the
amplitude of the coherent state components used in the ECS
resource. A picture analogous to the one presented in Fig. 2 can
be easily drawn. We omit it here for the sake of conciseness.

V. EFFECTS OF DETECTION INEFFICIENCY

To include the effects of nonideal efficiency of the homo-
dyne detectors, we need to modify our approach. An imperfect
homodyne detector with efficiency η can be modeled by
a beam splitter with transmittivity η superimposing modes
j = A,B with an ancillary mode aj prepared in vacuum
state and cascaded with a perfect homodyne detector. In
this way, part of the field that should arrive at the perfect

FIG. 5. (Color online) Violation of a Leggett-type inequality by
the function LS in Eq. (11) for α = 60. The upper bound for Leggett
model is also plotted against the angle ϕ. The leftmost vertical dashed
line indicates the value ϕ 
 0.65 rad at which the Leggett-type
inequality in [8] is maximally violated. The rightmost dashed line,
corresponding to ϕ 
 1.28 rad, sets the upper bound for ϕ ∈ [0, π/2]
for the Leggett-type inequality.

homodyne detector is tapped by the beam splitter. The beam-
splitter operation between modes j and aj is defined as
B̂jaj

= exp[ζ (b̂†j b̂aj
− b̂j b̂

†
aj

)/2], where cos ζ = √
η. Via the

dichotomization process described in Sec. II, the correlations
entering a Leggett function can also be expressed as

CL
d ({θ}, {ϕ}) =

∫
dxArdyBrs(xryr )P({θ}, {ϕ}, xr , yr ), (13)

where x = xr + ixi and y = yr + iyi are the complex in-phase
quadrature variables and P({θ}, {ϕ}, xr , yr ) is a marginal
probability distribution calculated from the total Wigner
function of modes A and B after the trace over the ancillae.

The calculation of the latter is sketched as follows.
First, we determine the Weyl characteristic function of state
R̂(θA, ϕA)R̂(θB, ϕB )|ECS〉AB , which reads

χ =AB 〈ECS|D̂A(µA, θA, ϕA)D̂B(µB, θB, ϕB )|ECS〉AB.

(14)

This equation shows that χ is the sum of matrix elements
(over coherent states) of rotated displacement operators
D̂(µj , θj , ϕj ) = R̂†(θj , ϕj )D̂j (µj )R̂j (θj , ϕj ), each being very
easily evaluated using the operator-expansion formula [21],
Eqs. (2), and the relation

〈σ |D̂j (µj )|τ 〉 = e− 1
2 (|σ |2+|µj |2+|τ |2)+σ ∗µj +τ (σ ∗−µ∗

j ), (15)

where |σ 〉 and |τ 〉 are arbitrary coherent states. The Wigner
function is then calculated through the Fourier transform of χ

as

W{θ},{ϕ}(xA, yB ) = 1

π4

∫
d2µAd2µBχex∗

AµA+y∗
BµB−H.c.. (16)

While the calculation is straightforward, the explicit form
of this function is rather uninformative, and we omit it.
The effects of detection inefficiencies are now included by
convoluting W{θ},{ϕ}(xA, yB ) with the Wigner function of
two ancillary modes prepared in their vacuum state and
considering the action of the beam splitters used to model
the inefficient detectors on the quadrature variables. We call
Wd

{θ},{ϕ}(xA, yB, η) the Wigner function of the reduced state
of A and B after the degrees of freedom of the ancillae are
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FIG. 6. (Color online) (a) Leggett function with inefficient detection Ld plotted against the coherent-state amplitude α and the detection
inefficiency η. The horizontal plane is the nonlocal realistic bound for the inequality in Refs. [6,7] at ϕ 
 0.25. (b) Ld versus α for decreasing
values of η, which goes from 1 to 0.1 (in steps of 0.1) from the leftmost to the rightmost curve. The straight line indicates the nonlocal realistic
bound.

integrated out. From this, the marginal probability distribution
is extracted as

P({θ}, {ϕ}, xr , yr ) =
∫

dxidyiW
d
{θ},{ϕ}(xA, yB, η), (17)

which is all we need in order to get CL
d ({θ}, {ϕ}). With

this, the Leggett function Ld is found as in Eq. (10) by
replacing CL({θ}, {ϕ}) with CL

d ({θ}, {ϕ}), and the inequality
discussed in Sec. III can be studied. The results are shown
in Fig. 6. The value of ϕ that maximizes the inequality
violation is independent of η, which is kept as 0.25 throughout
this section. The effects of decreasing detector efficiencies
amounts in increasing the threshold values of α at which
Ld = Ld − 8 + 2| sin(ϕ/2)| becomes positive. This is clearly
seen in Fig. 6(b), where it is shown that even with extremely
inefficient detectors, a sufficiently large value of α allows for
maximal violation of nonlocal realism, a feature that is unique
to the proposed test for nonlocal realism based on the use of
ECS resources.

VI. CONCLUSIONS

We have investigated the violation of nonlocal realism using
ECSs, local rotations implemented by nonlinear media and
inefficient homodyne measurements. Our study reveals that
by reducing the overlap between the components of the ECS
used to test nonlocal realism, therefore faithfully mimicking a
two-qubit state, violations of an optimal Leggett inequality up
to the maximum allowed value are achieved.

Our work contributes to the characterization of the prop-
erties of ECSs as resources with important and intriguing
applications in quantum technology. The fact that ECSs allow
for the violation of nonlocal realism is an accomplishment
that should be valued alongside the violation of Bell and

Mermin-Klysko inequalities by this very same class of states
[19]. On one hand, our study enlarges the range of useful
and interesting applications of the class of entangled states
embodied by ECSs. On the other hand, we believe our work is
endowed with further relevance, as it provides the recipe for the
implementation of all the necessary steps in the Leggett test at
hand and relies on experimentally nondemanding homodyne
measurements. A demonstration of our predictions may be
realized by generating the required ECS using a beam splitter,
with one input mode in the vacuum state and the other
prepared in a superposition of two coherent states, as recently
implemented in Ref. [22]. The resource state therefore is not
far-fetched. However, it is clear from our analysis that an
important role is played by the nonlinear dynamics at the basis
of the effective local rotations used for the Leggett test. The
crucial point here would be the achievement of a sufficient
nonlinear rate. Very important progress has been made in this
direction [23], and one can be confident that the technological
gap will soon be filled. Our work contributes to current studies
on the interplay between locality and realism by proposing a
scenario where such a tradeoff, which is crucial in the context
of modern quantum mechanics, can be quantitatively analyzed.
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[10] K. Banaszek and K. Wódkiewicz, Phys. Rev. A 58, 4345 (1998);
Phys. Rev. Lett. 82, 2009 (1999).

[11] Z. B. Chen, J. W. Pan, G. Hou, and Y. D. Zhang, Phys. Rev. Lett.
88, 040406 (2002).

[12] H. Jeong, W. Son, M. S. Kim, D. Ahn, and C. Brukner, Phys.
Rev. A 67, 012106 (2003).

[13] M. Paternostro, H. Jeong, and T. C. Ralph, Phys. Rev. A 79,
012101 (2009).

[14] B. C. Sanders, Phys. Rev. A 45, 6811 (1992); B. C. Sanders,
K. S. Lee, and M. S. Kim, ibid. 52, 735 (1995).

[15] P. T. Cochrane, G. J. Milburn, and W. J. Munro, Phys. Rev. A
59, 2631 (1999); S. J. van Enk and O. Hirota, ibid. 64, 022313

(2001); X. Wang, ibid. 64, 022302 (2001); H. Jeong, M. S. Kim,
and J. Lee, ibid. 64, 052308 (2001); W. J. Munro, K. Nemoto,
G. J. Milburn, and S. L. Braunstein, ibid. 66, 023819 (2002);
T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and
S. Glancy, ibid. 68, 042319 (2003); H. Jeong and M. S. Kim,
Quant. Inf. Comp. 2, 208 (2002); Nguyen Ba An, Phys. Rev.
A 68, 022321 (2003); 69, 022315 (2004); M. Paternostro,
M. S. Kim, and P. L. Knight, ibid. 71, 022311 (2005); A. P. Lund,
T. C. Ralph, and H. L. Haselgrove, Phys. Rev. Lett. 100, 030503
(2008).

[16] H. Jeong and M. S. Kim, Phys. Rev. A 65, 042305 (2002).
[17] H. Jeong and T. C. Ralph, Phys. Rev. Lett. 97, 100401 (2006).
[18] D. Wilson, H. Jeong, and M. S. Kim, J. Mod. Opt. 49, 851

(2002).
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