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Witnessing entanglement in phase space using inefficient detectors
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We propose a scheme for witnessing entanglement in phase space by significantly inefficient detectors.
The implementation of this scheme does not require any additional process for correcting errors, in contrast
to previous proposals. Moreover, it allows us to detect entanglement without full a priori knowledge of the
detection efficiency. It is shown that entanglement in single-photon entangled and two-mode squeezed states
can be witnessed with detection efficiency as low as 40%. Our approach enhances the possibility of witnessing
entanglement in various physical systems using current detection technologies.

DOI: 10.1103/PhysRevA.81.012302 PACS number(s): 03.67.Mn, 03.65.Ud, 42.50.Dv

I. INTRODUCTION

Entanglement is one of the most remarkable features of
quantum mechanics which cannot be understood in the context
of classical physics. It has been shown that entanglement
can exist in various physical systems [1,2] and play a role
in quantum phenomena such as quantum phase transition
[3]. Moreover, its properties can be used as a resource for
quantum information technologies such as quantum comput-
ing, quantum cryptography, and quantum communication [4].
Therefore, detecting entanglement is one of the most essential
tasks both for studying fundamental quantum properties and
for applications in quantum information processing. Although
various entanglement detection schemes have been proposed
[5,6], their experimental realization suffers from imperfections
of realistic detectors since measurement errors wash out
quantum correlations. This difficulty becomes more significant
with increasing system dimensionality and particularly in con-
tinuous variable systems where entanglement is increasingly
attracting interest [7].

Quantum tomography provides a method to reconstruct
complete information of quantum states in phase-space
formalism [8–10]. The reconstructed data can be used to
determine whether the state is entangled or not with the help of
an entanglement witness (EW) [6]. Bell inequalities that were
originally derived for discriminating quantum mechanics from
local realism [11] can also be used for witnessing entanglement
since their violation guarantees the existence of entanglement.
Banaszek and Wódkiewicz (BW) [12] suggested a Bell-type
inequality (referred to as BW inequality in this article) which
can be tested by way of reconstructing the Wigner function at
a few specific points of phase space. However, imperfections
of tomographic measurements constitute a crucial obstacle for
practical applications. Several schemes have been considered
to overcome this problem [10], such as numerical inversion
[13] and maximum-likelihood estimation [14], but they require
a great amount of calculations or iteration steps for high-
dimensional and continuous variable systems.

In this article we propose an alternative entanglement
detection scheme in phase-space formalism, which can be
used in the presence of detection noise. We formulate an EW
in the form of a Bell-like inequality using the experimentally
measured Wigner function. For this, we include the effects

of detection efficiency into possible measurement outcomes.
Possible expectation values of the EW are bounded by the
maximal expectation value when separable states are assumed.
Any larger expectation value guarantees the existence of
entanglement.

Our approach shows the following remarkable features:
(i) in contrast to previous proposals [10,14], it does not require
any additional process for correcting measurement errors;
(ii) it allows us to witness entanglement, for example, in single-
photon entangled and two-mode squeezed states with detection
efficiency as low as 40%; (iii) our scheme is also valid when
the precise detection efficiency is not known prior to the test;
(iv) finally, we note that our approach is applicable for detect-
ing any quantum state represented in phase-space formalism.

We will first define an observable operator associated with
the detection efficiency and the experimentally measured
Wigner function in Sec. II. We then formulate an EW in
the form of Bell-type inequality based on the phase-space
formalism in Sec. III. Using the proposed EW, we demonstrate
the detection of entanglement in the single-photon entangled
(Sec. IV) and two-mode squeezed states (Sec. V) with
inefficient detectors. We also discuss the effects of imperfect
estimation of detection efficiency in Sec. VI and conclude this
article in Sec. VII.

II. OBSERVABLE ASSOCIATED WITH EFFICIENCY

We begin by introducing an observable associated with the
detection efficiency η and an arbitrary complex variable α:

Ô(α) =
{

1
η
�̂(α) + (

1 − 1
η

)
1 if 1

2 < η � 1,

2�̂(α) − 1 if η � 1
2 ,

(1)

where �̂(α) = ∑∞
n=0(−1)n|α, n〉〈α, n| is the displaced parity

operator and 1 is the identity operator. |α, n〉 = D̂(α)|n〉 is
the displaced number state produced by applying the Glauber
displacement operator D̂(α) to the number state |n〉.

Let us then consider the expectation value of observable (1)
when the measurement is carried out with efficiency η. In
general, measurement errors occur when not all particles are
counted in the detector. Thus, the real probability distribu-
tion of particles, P (n), transforms to another distribution,
Pη(m), by the generalized Bernoulli transformation [15]:
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Pη(m) = ∑∞
n=m P (n)

(
n

m

)
(1 − η)n−mηm. Thus, the expectation

value of the parity operator is obtained as

〈�̂(α)〉η =
∞∑

m=0

(−1)mPη(α,m) =
∞∑

n=0

(1 − 2η)nP (α, n), (2)

where 〈·〉η implies the statistical average measured with
efficiency η. Here Pη(α,m) and P (α, n) are the measured and
real particle number distributions in the phase space displaced
by α, respectively.

We define the Wigner function experimentally measured
with efficiency η as

Wη(α) ≡ 2

π
〈�̂(α)〉η, (3)

which is given as a rescaled Wigner function by Gaussian
smoothing. Note that a smoothed Wigner function can be
identified with a s-parametrized quasiprobability function
as Wη(α) = ((α; −(1 − η)/η)/η, where W (α; s) = {2/[π (1 −
s)]} ∑∞

n=0[(s + 1)/(s − 1)]nP (α, n) [16]. This identification
is available both for homodyne [8,17] and number-counting
tomography methods [9]. After series of measurements with
efficiency η, we can obtain the expectation value of the
observable (1) as

〈Ô(α)〉η =
{

π
2η

Wη(α) + 1 − 1
η

if 1
2 < η � 1,

πWη(α) − 1 if η � 1
2 ,

(4)

which is bounded as |〈Ô(α)〉η| � 1 for all η.

III. ENTANGLEMENT WITNESS IN PHASE SPACE

Let us formulate an EW in the framework of phase space.
Suppose that two separated parties, Alice and Bob, measure
one of two observables, denoted by Â1, Â2 for Alice and B̂1,
B̂2 for Bob. All observables are variations of the operator (1)
as Âa = Ô(αa) and B̂a = Ô(βb) with a, b = 1, 2. We then
formulate a Hermitian operator as a combination of each local
observable Âa , B̂b in the form

Ŵ = Ĉ1,1 + Ĉ1,2 + Ĉ2,1 − Ĉ2,2, (5)

where Ĉa,b = Âa ⊗ B̂b is the correlation operator. We call Ŵ
an EW operator. Note that the operator in Eq. (5) can also be
regarded as a Bell operator B̂ which distinguishes nonlocal
properties from local realism. The bound expectation value of
the operator in Eq. (5) is determined according to whether it is
regarded as Ŵ or B̂. In other words, the entanglement criterion
given by the operator (5) is different from the nonlocality
criterion, as we will show.

Let us first obtain the bound expectation value of the
operator (5) as an EW by which one can discriminate entangled
and separable states. For a separable state ρ̂sep = ∑

i pi ρ̂
A
i ⊗

ρ̂B
i where pi � 0 and

∑
i pi = 1, the expectation value of the

correlation operator measured with efficiency η is given by

〈Ĉa,b〉sep
η =

∑
i

pi

∞∑
n,m

(1 − 2η)n+m

×〈α, n|ρ̂A
i |α, n〉〈β,m|ρ̂B

i |β,m〉
=

∑
i

pi〈Âa〉iη〈B̂b〉iη. (6)

Since expectation values of all local observables with effi-
ciency η are bounded as |〈Âa〉iη|, |〈B̂b〉iη| � 1 for a, b = 1, 2,
we can obtain the statistical maximal bound of the EW
operator (5) with respect to the separable states

∣∣〈Ŵ〉sep
η

∣∣ =
∣∣∣∣∣
∑

i

pi

(〈Â1〉iη〈B̂1〉iη + 〈Â1〉iη〈B̂2〉iη

+〈Â2〉iη 〈B̂1〉iη − 〈Â2〉iη〈B̂2〉iη
)∣∣∣∣∣

� 2
∑

i

pi = 2 ≡ Wsep
max. (7)

Therefore, if |〈Ŵ〉ψη | > Wsep
max = 2 for a quantum state ψ , we

can conclude that the quantum state ψ is entangled.
Let us then consider the operator (5) as a Bell operator.

Note that the local-realistic (LR) bound of a Bell operator is
given as the extremal expectation value of the Bell operator,
which is associated with a deterministic configuration of all
possible measurement outcomes. If 1/2 < η � 1, the maximal
modulus outcome of (1) is |1 − 2/η| when the outcome of
parity operator �̂(α) is measured as −1. Thus, the expectation
value of (5) is bounded by local realism as |〈B̂〉η| � BLR

max =
2(1 − 2/η)2. Likewise for η � 1/2, we can obtain BLR

max = 18.
Note that BLR

max � Wsep
max for all η, and BLR

max = Wsep
max in the case

of unit efficiency (η = 1). This shows that some entanglement
can exist without violating local realism, and thus the Bell
operator can be regarded as a nonoptimal EW as pointed out
already in [18]. For the purpose of this article we will focus
on the role of an EW in the following parts.

From Eqs. (5) and (7), we can finally obtain an EW in the
form of an inequality obeyed by any separable state:

|〈Ŵ〉η> 1
2
| =

∣∣∣∣ π2

4η2

[
W

η

1,1 + W
η

1,2 + W
η

2,1 − W
η

2,2

]

+ π (η − 1)

η2

[
W

η

a=1 + W
η

b=1

]+ 2

(
1 − 1

η

)2∣∣∣∣ � 2,

|〈Ŵ〉η� 1
2
| = π2

[
W

η

1,1 + W
η

1,2 + W
η

2,1 − W
η

2,2

]
− 2π

[
W

η

a=1 + W
η

b=1

] + 2| � 2, (8)

where W
η

a,b is the two-mode Wigner function measured with
efficiency η (here we replace the notation αa and βb in the
conventional representation of two-mode Wigner function
Wη(αa, βb) with the notation a, b for simplicity), and W

η

a(b)=1
is its marginal single-mode distribution. We note that the EW in
Eq. (8) can also be derived from the Bell inequality formulated
using s-parametrized quasiprobability functions [19] when
regarding effects of detector inefficiency as changes to s. Any
violation of Eq. (8) guarantees that the measured quantum
state is entangled. Remarkably, our scheme allows one to
detect entanglement without correcting measurement errors.
Note that in the case of unit efficiency (η = 1) the inequality
in Eq. (8) becomes equivalent to the BW inequality [12]. It
is also notable that any violation of this inequality for η < 1
ensures the violation of the BW inequality in the case of a unit
efficiency (η = 1). Therefore, the proposed EW in Eq. (8) can
be used effectively for detecting entanglement instead of the
BW inequality in the presence of measurement noise.
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IV. TESTING SINGLE-PHOTON ENTANGLED STATES

Let us now apply the EW in Eq. (8) for detecting entangled
photons. We here first consider the single-photon entangled
state |�〉 = (|0, 1〉 + |1, 0〉)/√2, where |0, 1〉(|1, 0〉) is the
state with zero (one) photons in the mode of Alice and one
(zero) photon in the mode of Bob [20]. This state can be
created by a single-photon incident on a 50:50 beam splitter.
Its two-mode Wigner function measured with efficiency η is

W
η

a,b = 4

π2
(1 − 2η + 2η2|αa + βb|2)

× exp[−2η(|αa|2 + |βb|2)] (9)

and its marginal single-mode distribution is

Wη
a = 1

π
(2 − 2η + 4η2|αa|2) exp[−2η|αa|2]. (10)

The expectation values of operator (5) with properly chosen
αa and βb are plotted in Fig. 1(a) against the overall efficiency
η. It is remarkable that entanglement can be detected even with
detection efficiency η as low as 40%.

V. TESTING TWO-MODE SQUEEZED VACUUM STATES

Let us consider the EW in continuous variable systems,
for example, two-mode squeezed vacuum states (TMSSs).

a
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FIG. 1. (Color online) Maximum expectation value of the EW
operator in Eq. (5) for an input of (a) a single-photon entangled
state and (b) a two-mode squeezed state with r = 0.4 (black) and
r = 0.8 (gray). Entanglement exists if the expectation value exceeds
the dashed line W sep

max = 2. Note that the shaded region which exceeds
BLR

max = 2(1 − 2/η)2 (for 1/2 < η � 1) is the criterion of nonlocality.
(c) Witnessing entanglement with varying squeezing rate r of a
two-mode squeezed states for detector efficiencies η = 1 (solid
line), η = 0.99 (dashed line), η = 0.7 (dot-dashed line), and η = 0.5
(dotted line).

This state can be generated by nondegenerate optical
parametric amplifiers [21] and be written as |TMSS〉 =
sechr

∑∞
n=0 tanhn r|n, n〉, where r > 0 is the squeezing pa-

rameter. The measured Wigner function with efficiency η for
a TMSS is given by

W
η

a,b = 4

π2η2R(η)
exp

(
− 2

R(η)
{S(η)(|αa|2 + |βb|2)

− sinh 2r(αaβb + α∗
aβ

∗
b )}

)
, (11)

and its marginal single-mode Winger function is

Wη
a = 2

πηS(η)
exp

(
−2|αa|2

S(η)

)
, (12)

where R(η) = 2(1 − 1/η)(1 − cosh 2r) + 1/η2 and S(η) =
cosh 2r − 1 + 1/η. The expectation values of the EW oper-
ator (5) for two-mode squeezed states are shown in Fig. 1(b)
with different squeezing rates r . It shows that our scheme
allows one to detect some continuous variable entanglement
with detector efficiency of about 40%. As shown in Fig. 1(c),
violations of the inequality show different tendencies depend-
ing on efficiency η with increasing the squeezing parameter r .
In the case of low squeezing rates the violation is maximized
when η = 0.5, while for larger squeezing rates about r � 1.2
the violation is maximized when η = 1. This is because the
dominant degree of freedom of entanglement detected by
the observable in Eq. (1) changes decreasing efficiency η.
Note that in the case η = 0.5 the dominant contribution to
the entanglement arises from quantum correlations between
the vacuum and the photon being present, while for η = 1 it
comes from higher order correlations of photon number states.

VI. TESTING WITH A PRIORI ESTIMATED EFFICIENCY

So far it has been assumed that the detector efficiency is
known precisely prior to the tests both in our scheme presented
earlier in this article and in previous proposals [10,13,14].
This can be realized, for example, by a full characterization of
detectors when doing a quantum tomography on the detectors
which has been experimentally achieved [22]. However, in
most cases a priori estimates of the detector efficiency (≡ε)
may not be perfect and thus can be different from the real
efficiency η that affects measured data. Let us assume that
we can discriminate perfectly only whether the real efficiency
η > 1/2 or η � 1/2. If η � 1/2, we can see that the EW in
Eq. (8) is formulated only by experimentally measured Wigner
functions. Thus, in this case our EW can be tested without
knowing the real efficiency. On the other hand, for the case
η > 1/2, the efficiency variable η is explicitly included in the
EW (8) and should be replaced with the estimated efficiency
ε as

|〈Ŵ〉η> 1
2
| =

∣∣∣∣ π2

4ε2

[
W

η

1,1 + W
η

1,2 + W
η

2,1 − W
η

2,2

] + π (ε − 1)

ε2

× [
W

η

a=1 + W
η

b=1

] + 2

(
1 − 1

ε

)2∣∣∣∣ � 2. (13)

Note that Eq. (13) is valid subject to the condition

η(real efficiency) � ε (estimated efficiency),
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FIG. 2. (Color online) Witnessing entanglement with a real
efficiency η = 0.55 when varying the estimated efficiency ε for an
input of (a) a single-photon entangled state and (b) a two-mode
squeezed state with r = 0.4 (black) and r = 0.8 (gray).

since otherwise the right-hand side of inequality in Eq. (13) is
not valid, that is, the expectation values of separable states are
not bounded byWsep

max = 2. In Fig. 2 we plot maximal values of
the left-hand side of Eq. (13) against the estimated efficiency
ε for single-photon entangled and two-mode squeezed states.
The figure shows that entanglement can be detected even if this
efficiency is estimated imperfectly. For example, an estimated
efficiency of ε = 0.65 for a detector with real efficiency
η = 0.55 allows the detection of entanglement of a two-mode
squeezed state with r = 0.4 as shown in Fig. 2(b). The value of
the left-hand side of Eq. (13) decreases as the gap between the
real and estimated efficiencies increases. Nevertheless, any
violation of the inequality (13) guarantees the existence of
entanglement irrespective of the accuracy of the estimate.

VII. CONCLUSIONS

We have formulated an EW that allows one to detect
entanglement even with significantly imperfect detectors. The
proposed EW in (8) can be used to test arbitrary quantum
states represented in phase space using the Wigner function.
It can be implemented by both homodyne [8,17] and number-
counting tomography methods [9] without additional steps for
correcting measurement errors. Moreover, since the required
minimal efficiency of our scheme is as low as 40%, it may
be realizable using current detection technologies. In addition,
our EW can be used without knowing the detection efficiency
precisely prior to the test, which may allow more realistic
implementation. We note that our approach is applicable to,
for example, cavity QED or ion trap systems with the help of
the direct measurement scheme for Wigner functions in such
systems [23]. It will also be valuable to apply our scheme to
quantum cryptography in which witnessing entanglement is
a primal step for secure quantum key distribution [24]. We
expect that our scheme enhances the possibility of witnessing
entanglement in complex physical systems using current
photo-detection technologies.
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