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We analyze effects of squeezing upon superpositions of coherent states �SCSs� and entangled coherent states
for Bell-inequality tests. We find that external squeezing can always increase the degrees of Bell violations, if
the squeezing direction is properly chosen, for the case of photon parity measurements. On the other hand,
when photon on/off measurements are used, the squeezing operation can enhance the degree of Bell violations
only for moderate values of amplitudes and squeezing. We point out that a significant improvement is required
over currently available squeezed SCSs in order to directly demonstrate a Bell-inequality violation in a real
experiment.
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I. INTRODUCTION

Einstein, Podolsky, and Rosen �EPR� questioned com-
pleteness of quantum mechanics based on the idea of local
realism �1�. Bell suggested a profound and useful inequality
imposed by local hidden variable theories, which reflects
EPR’s idea �2�. A couple of refined versions of Bell’s in-
equality followed the original one �3,4�, and numerous ex-
perimental demonstrations have also been performed �5,6�.
In these studies, quantum states of light have played a crucial
role. Indeed, all Bell-inequality tests in which the spacelike
separation between two local parties is satisfied have been
performed using photons. In the meantime, it is worth noting
that a loophole-free Bell-inequality test is yet to be per-
formed. The major obstacle in typical photon-based experi-
ments, where two local parties are separate enough, is prob-
ably the detection loophole �7�. Very recently, a Bell-
inequality test free from the detection loophole was
performed using remote atomic qubits �8�, however, it did
not satisfy the spacelike separation required for a loophole-
free Bell test.

Recently, various types of continuous-variable states have
been studied in order to suggest proposals for loophole-free
Bell-inequality tests �9�. As non-Gaussian continuous-
variable states have rich structures in the phase space, it is
important to explore possibility of efficient Bell-inequality
tests using those states. Among non-Gaussian continuous-
variable states, superpositions of two coherent states �SCSs�
�10,11� in free-traveling optical fields have been found a very
useful tool for fundamental tests of quantum theory �12–17�
as well as for quantum information applications �18–23�. In
particular, they are useful for Bell-inequality tests using vari-
ous measurements such as photon on/off detection, photon
number detection, and homodyne detection �12–15�. Once
single-mode SCSs are generated, a 50:50 beam splitter can
be used to generate entangled coherent states �ECSs� �24�
with which one can perform Bell-inequality tests
�12,13,15–17�.

Recently, “squeezed” SCSs were generated and detected
�25–27�, where the size of the states ��=�2.6� was reason-

ably large for fundamental tests of quantum theory and
implementations of quantum information processing �28�.
Squeezed SCSs can be more robust against decoherence than
unsqueezed ones �29� while they have similar nonclassical
properties and usefulness in quantum information applica-
tions �30–32�. Remarkably, it has been clearly pointed out
that the squeezed SCSs recently generated can be used for
proof-of-principle experiments such as quantum teleportation
and single qubit gates without any modifications �32�. This
strongly motivates us to study effects of squeezing on SCSs
and ECSs for various purposes.

In this paper, we study effects of squeezing on SCSs and
ECSs for the purpose of Bell-inequality tests using photon
parity measurements and on/off measurements. We show that
the squeezing operation can increase the degrees of Bell vio-
lations when photon parity measurements are used, while it
depends on the values of amplitudes and squeezing for the
case of photon on/off measurements. We also point out that
fidelity of the generated SCS should be improved up to at
least 92% with respect to ideal state in order to demonstrate
direct Bell violations in real experiments.

This paper is organized as follows. In Sec. II, two differ-
ent approaches to entangle and squeeze SCSs are briefly pre-
sented. One is to pass a squeezed SCS through a beam split-
ter to generate an entangled state, and the other is to apply
the two-mode squeezing operation on an ECS. We then ana-
lyze, in Sec. III, the effects of the single-mode and two-mode
squeezing for Bell-inequality tests. In Sec. IV, we apply our
theoretical evaluation to experimentally feasible squeezed
SCSs considering experimental imperfections. A summary is
given in Sec. V with final remarks on prospects for experi-
mental tests of Bell inequalities using SCSs.

II. ENTANGLING AND SQUEEZING SUPERPOSITIONS
OF COHERENT STATES

We present two particular types of SCSs, namely, even
and odd SCSs, as

�SCS����� = N�������� � �− ��� , �1�

where N� are normalization factors, ��� is a coherent state of
amplitude �, and � is assumed to be real for simplicity with-
out loss of generality. The SCS with the plus �minus� sign*h.jeong37@gmail.com
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between the coherent states in Eq. �1� is called an even �odd�
SCS because it contains an even �odd� number of photons
regardless of the value of �. The size of a SCS may be
defined by the magnitude of the amplitude �. The ECSs at
modes a and b are defined as

���� = N�����a���b � �− ��a�− ��b� ,

���� = N�����a�− ��b � �− ��a���b� , �2�

which can be generated by splitting �SCS���2��� at a 50:50
beam splitter with an appropriate phase. We refer to the nor-
malization factor N� as N���2�� hereafter. Note that ��−�
and ��−� are maximally entangled �i.e., each of them con-
tains 1 ebit�, which in general show stronger Bell violations
than ��+� and ��+� �13�.

For Bell-inequality tests, we shall use two types of en-
tangled states, i.e., entangled squeezed SCSs �ESSs� and
squeezed ECSs �SECSs�. The former can be obtained by
beam-splitting after single-mode-squeezing SCSs, and the
latter by two-mode-squeezing after beam-splitting a SCSs as
shown in Fig. 1. The squeezed SCSs �SSCS� and ESSs can
be represented as

�SSCS����� = S�s��SCS����� , �3�

���� = Bab�SSCS���2���a�0�b, �4�

where Sa�s�=exp� s
2 �a2−a†2�� is the single-mode squeezing

operator, Bab=exp� �
4 �a†b−a†b�� the 50:50 beam splitter op-

erator, and a and a† �b and b†� the bosonic annihilation and
creation operators for mode a �mode b�. The ESSs become
the same as ���� for the case of s=0. The SECSs are

���
s � = Sab�s����� ,

���
s � = Sab�s����� , �5�

where Sab�s�=exp�s�ab−a†b†�� is the two-mode squeezing
operator. We assume that the squeezing parameter s is real
for both Sa�s� and Sab�s�. The corresponding state is then
squeezed along the real axis in the phase space for s�0
while it is squeezed along the imaginary axis for s	0.

III. VIOLATIONS OF BELL’S INEQUALITY WITH
PHOTON PARITY AND ON/OFF MEASUREMENT

SCHEMES

A. Bell-CHSH inequality with the Wigner functions

Banaszek and Wódkiewicz �BW� studied Bell’s inequality
in the phase space, in terms of the Wigner �Q� function based
upon photon number parity �on/off� measurements and the
displacement operation �33�. The Wigner function approach
is based upon the Bell’s inequality version of Clauser, Horne,
Shimony, and Holt �CHSH�, while the Q function is upon the
version of Clauser and Horne �CH� �33�. The displaced par-
ity operator used for the Bell-CHSH inequality is

P��� = 
even��� − 
odd���

= D����
n=0

�

��2n�	2n� − �2n + 1�	2n + 1��D†��� , �6�

where D���=exp��a†−��a� is the displacement operator,
and the Bell operator is

BCHSH = Pa��� � Pb��� + Pa���� � Pb��� + Pa��� � Pb����

− Pa���� � Pb���� . �7�

The Wigner functions for state  may be obtained by taking
the average of the parity operator P��� as �33,35�

W��� =
2

�
Tr�P���� �8�

and for two-mode state ab as

W��,�� = 
 2

�
�2

Tr�abPa��� � Pb���� . �9�

Thus the Bell-CHSH inequality can be represented by the
Wigner function as

�BCHSH� = 
�

2
�2

�W��,�� + W���,�� + W��,��� − W���,����

� 2, �10�

where W�� ,�� is the two-mode Wigner function and we re-
fer to BCHSH= 	BCHSH� as the Bell-CHSH function. This in-
equality can be violated with appropriate measurement op-
erators and entangled states, and its maximum value, 2�2, is
known as Cirel’son’s bound �34�.

Using Eqs. �1� and �8�, the Wigner functions for the even
and odd SCSs can be calculated as

W�
SCS��� = N�

2 �W�2���� + W−�2���� � 2X�2����� , �11�

where W����=2e−2�� − ��2 /� is the Wigner function of coher-
ent state ��� and X����=2e−2���2 cos�4 Im������ /�. The
Wigner functions of the ESSs can be obtained using Eqs. �4�
and �9�, and they can also be expressed as

W��
��,�� = W�

SCS
�s − �s

�2
�W0
� + �

�2
� , �12�

where W0��� is the Wigner function of the vacuum and the
superscript s is used to indicate

�s = � cosh s + ��sinh s = es Re � + ie−s Im � . �13�

for an arbitrary complex number �. The two-mode Wigner

FIG. 1. Entangling and squeezing procedure for �a� an ESS and
�b� a SECS. The ESS is obtained by single-mode-squeezing
�SCS���2��� and feeding it into a 50:50 beam splitter, whereas the
SECS by feeding �SCS���2��� into a 50:50 beam splitter and two-
mode-squeezing it.
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functions for the ECSs are calculated in the same manner as
�13�

W��
��,�� = N�

2 �W����W����

+ W−����W−���� � 2X����X���� � 2Y����Y����� ,

W��
��,�� = N�

2 �W����W−����

+ W−����W���� � 2X����X���� � 2Y����Y����� , �14�

where Y����=2e−2���2 sin�4 Im������ /�. The Wigner func-
tions for SECSs are then

W�
�
s ��,�� = W��

��̃s,�̃s� ,

W�
�
s ��,�� = W��

��̃s,�̃s� , �15�

where

�̃s = � cosh s + �� sinh s, �̃s = � cosh s + �� sinh s . �16�

Note that when s=0, W�
�
s �� ,��=W��

�� ,�� and
W�

�
s �� ,��=W��

�−� ,��.
It is known that the Bell violation for an ECS approaches

Cirel’son’s bound �34� when the amplitude � becomes large
�13�. Figure 2 shows that a couple of characteristic properties
in common when squeezing is applied to the states being
considered. The squeezing operation increases the degree of
the Bell violation up to some extent for small �, but has a
tendency of degrading it for squeezing in the specific direc-
tion for larger �. For example, the squeezing in both the real
and imaginary directions in the phase space, enhances viola-
tion for �+ ��−� until � reaches around 0.5 �1.0�. On the
other hand, for larger values of � squeezing in the real direc-
tion �i.e., s�0� decreases the degree of violation while
squeezing in the imaginary direction �i.e., s	0� increases the
violation.

In fact, for larger �, squeezing along the real axis makes
the interference fringes less sharp and this could be related to
the decrease in the Bell violations. In the case of ��

s with

large �, since �̃s��̃s�→���−���� as s→−� where ��
= 1

2e−s��−���, and hence W�
�
s �� ,��→W��

��� ,−����,
which is the very condition when maximum violations occur
for W��

�� ,��. But as s→�, the interference part

X���̃s�X���̃s�−Y���̃s�Y���̃s� in the Wigner function fades
out, which may play a crucial role in degrading the Bell
violations. The case of ��

s can be explained in a similar way.
Therefore, in the case of photon parity measurements,
squeezing in a well-chosen quadrature direction can enhance
Bell violations of tested states, though its contribution gets
slighter as the amplitudes of the states grow larger.

B. Bell-CH inequality with the Q functions

The operator used for tests of the Bell-CH inequality is

BCH = Qa��� � Qb��� + Qa���� � Qb��� + Qa��� � Qb����

− Qa���� � Qb���� − Qa��� � Ib − Ia � Qb��� , �17�

where

Q��� = D����0�	0�D†��� �18�

is a displaced “no photon” operator and I is the identity
operator. Subsequently, the Bell-CH function BCH= 	BCH� is
given in terms of Q representation as

BCH = �2�Qab��,�� + Qab���,�� + Qab��,��� − Qab���,����

− ��Qa��� + Qb���� , �19�

where Qa��� and Qb��� are marginal Q functions in the
corresponding modes. As implied above, the Q functions
of single-mode state  and two-mode state ab can be
obtained using the operator Q��� as �1 /��Tr�Q���� and
�1 /��2Tr�abQa��� � Qb����, respectively �35�. The Q func-
tions for the SSCS are then given as

Q�
SSCS��� = N�

2 �Q�2�
+ ��� + Q�2�

− ��� � 2Q�2�
X ���� , �20�

subsequently for ESSs as

FIG. 2. �Color online� Optimized Bell-CHSH function B
= �BCHSH�max for �a� �+ �b� �− �c� �+

s �d� �−
s �e� �+

s �f� �−
s for parity

measurements. The split line in each graph indicates no squeezing
�s=0�. Note that the plots for �� are similar to the ones for ��

s , and
that B’s of ��

s are rather similar and symmetric to the ones ��
s

with respect to s=0 line. One can observe that for small � squeez-
ing in any direction can enhance Bell violations, whereas for large �
squeezing in specific direction only can enhance them. In any case,
squeezing causes Bell violations to increase monotonically from the
nonsqueezed values and converge to specific ones.
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Q��
��,�� = Q�

SSCS
� − �

�2
�Q0
� + �

�2
� , �21�

where
Q�

���� = cos �Q��−s
��s� , �22�

Q�
X��� = cos �Q0��s�e−��−s�

2
cos�2 Im��s

��s�� , �23�

where �s=� cos�� /2�+�� sin�� /2�, �−s=� cos�� /2�
−�� sin�� /2�, � /2=tan−1�tanh s

2 �, Q����=e−�� − ��2 /�, and
Q0���=e−���2 /�. Note that as s→��−��, �s

→�2 Re����i�2 Im����.
In the meantime, the Q functions for SECSs are

Q�
�
s ��,�� = N�

2 �Q++��,�� + Q−−��,�� � 2Q+
XY��,��� , �24�

Q�
�
s ��,�� = N�

2 �Q+−��,�� + Q−+��,�� � 2Q−
XY��,��� , �25�

where

Q����,�� = cos2 �Q���s
��̃s�Q���s

��̃s� ,

Q����,�� = cos2 �Q���s
��̃s�Q���s

��̃s� , �26�

Q�
XY��,�� = cos2 �Q0��̃s�Q0��̃s�e−2���s�

2

� cos�2 Im��s
��s � �s

��s�� , �27�

with �̃s=� cos�� /2�+�� sin�� /2� and �̃s=� cos�� /2�
+�� sin�� /2�. Since the Bell-CH inequality is equivalent to
the Bell-CHSH inequality for the case of bipartite systems
and dichotomic measurements, the above Bell-CH function
can be replaced with the Bell-CHSH function, which shall be
further clarified in the following subsection.

C. Bell-CHSH inequality with on/off measurements

One can test the Bell-CHSH inequality by the following
displaced “on/off” measurement operator

O��� = 
on��� − 
off��� = D†���
�
n=1

�

�n�	n� − �0�	0��D��� ,

�28�

which assigns +1 or −1 to each measured result depending
on whether �any� photons are detected or not at a detector
such as an avalanche photodiode. Then the Bell-CHSH in-
equality can be represented in the same way as done in Eq.
�10� just with P replaced with O, so that the Bell-CHSH
function becomes

BCHSH = A��,�� + A���,�� + A��,��� − A���,��� �29�

with

A��,�� = 1 − 2�Qa�− �� − 2�Qb�− �� + 4�2Qab�− �,− �� ,

�30�

where the Q functions are the ones obtained in the previous
subsection. It is worth noting that this Bell-CHSH function is
related to the previous Bell-CH function as

BCHSH��,�� = 4BCH�− �,− �� + 2. �31�

A Bell-inequality test with photon on/off measurements is
obviously more feasible than that of photon number parity
measurements. However, if the average photon number of
the state under consideration is too large, Bell violations can-
not be observed using photon on/off measurements because
the possibility of getting a “off” result approaches zero �13�.
Because of this, Bell violations for ESSs and SECSs shown
in Fig. 3 show different behaviors compared to the cases of
photon parity measurements. In the case of “+” states
��+ ,�+��+��, quadrature squeezing in any direction in-
creases Bell violations only for small �. Meanwhile, in the
case of “−” states ��− ,�−��−��, squeezing in specific direc-
tion increases the violations only for ��1, whereas it is not
any desirable for violations for small �. In any case, large
squeezing in any quadrature direction causes Bell violations
to eventually vanish. This is different from the cases for the
parity measurements where large values of squeezing cause
the Bell functions to converge to certain values �smaller or
larger than the ones in the cases of no squeezing�.

FIG. 3. �Color online� Optimized Bell-CHSH function B
= �BCHSH�max for �a� �+ �b� �− �c� �+

s �d� �−
s for on/off measure-

ments. The lowest two plots are for �e� �+ �thick�, �+
s �thin�, and

�+
s �dashed�, respectively, with �=0.5 and for �f� �− �thick�, �−

s

�thin�, and �−
s �dashed� with �=1.0. The plots of ��

s not presented
here are similar to those of ��

s provided the sign of s is altered as
in the parity measurement case. Note that for small �, squeezing +
states increases B up to some extent �e�, and that for large �,
squeezing − states in specific direction only contributes to maximal
values of BCHSH’s �f�.
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IV. ESTIMATION OF BELL VIOLATIONS WITH
REALISTIC STATES

We are also interested in whether a recently generated
SSCS �25�, which can be immediately used to generate an
ESS, may be used for tests of Bell’s inequality. The size of
the generated SSCS, an “even” one, was as large as �
=�2.6 and the squeezing degree was 3.5 dB along the real
axis in the phase space. The ideal state that can be generated
with a two-photon number state using the scheme described
in Ref. �25� is �36�

��2� = �2/3�2� + �1/3�0� . �32�

This state is a very good approximation of an ideal SSCS

�SSCS+� = S�s0��SCS+��0�� , �33�

where s0=0.4, �0=�2.6, and the fidelity between the two
states is as high as �	�2 �SSCS+��2�99%. If state �33� is in-
jected into a 50:50 beam splitter, it becomes ��+� with �
=�2.6 /2. When this ideal two-mode state is used to obtain
the Bell function BCHSH, its optimized value is 2.419 �2.033�
with photon number parity �on/off� measurements. In the
meantime, state ��2� shows a Bell-inequality violation as
large as BCHSH=2.401�2.006� using parity �on/off� measure-
ments. In order to analyze the case of the actually generated
�mixed� state exp, which is degraded by experimental imper-
fections such as non-unit efficiencies, noises, and errors re-
lated to measuring devices, we use the following Wigner
function in Ref. �25�,

Wexp�x,p� =
exp�− x2/� − p2/��

����
1 −
���1 − ��2

2�� − �� �2

+
1

2

���1 − ��2

2�� − �� �2��
�2

2
 x2

�
+

��2p2

�2 �2

+ 2�1 − �
1 +
��� − ��2

2��� − ���� x2

�
+

��2p2

�2 �
+ �2 ��� − ��2

2��� − �� x2

�
−

��2p2

�2 � + 1 − �
1 +
��� − ��2

2��� − ����2

+
�2

2
 ��� − ��2

2��� − ���2� , �34�

where x=�2 Re��� , p=�2 Im��� in our case, and the four
parameters �, �, �, and � are defined by gain and various
imperfection parameters �37�. However, since the Bell func-
tion depends very sensitively on such imperfection param-
eters, we assume perfect measuring devices with no errors, in
which case

� → g, � → � − �g − 1�2/g, � → 1/g, � → 1,

�35�

where g is an optical parametric amplifier gain describing the
two-photon number state, and then the fidelity F
= 	�2�exp��2� depends only on g. Note also that for testing
the on/off measurement case, we can transform the above
Wigner function into the Q function simply by just replacing
the parameters � , � , � by �+1, �+1, �

�+1�. As can be
seen in Fig. 4, in order for exp to show Bell violations, the
fidelity should be improved up to around 92% in the case of
parity measurements. However, we note again that the viola-
tions are possible only when all the experimental imperfec-
tions nearly vanish, which is extremely demanding. When
on/off measurements are used, the fidelity should be even
more improved up to at least 99% to show a Bell violation.

V. REMARKS

We have studied how squeezing influences the degree of
Bell-inequality violations of several different beam-split-
entangled SCSs. It has been found that squeezing can always
increase Bell violations, given the squeezing direction is
properly chosen, for the case of photon parity measurements.
On the other hand, in the case of the photon on/off measure-

FIG. 4. Optimized Bell-CHSH function B= �BCHSH�max vs fidel-
ity F of exp with respect to ��2� for the case of �a� photon parity
measurements and �b� photon on/off measurements. Dotted line in
each plot indicates the local realistic bound for Bell-CHSH inequal-
ity. Bell violation for the case of parity measurements can be ob-
served when the fidelity approaches 92% while that for on/off mea-
surements case cannot be observed until the fidelity goes over 99%.
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ments, squeezing can enhance Bell violations only for well-
chosen values of amplitudes and squeezing. Therefore, it
should be noted that for certain measurement schemes, the
squeezing action is not always helpful in enhancing Bell vio-
lations of entangled states of light.

In order to demonstrate a Bell violation in a real experi-
ment, a significant improvement is required over the cur-
rently available SSCS. For example, the fidelity of the gen-
erated state should be improved up to 92% even when all the
other conditions including the efficiency of photon parity
measurements are ideal. There are ongoing efforts to effec-

tively generate high-fidelity SSCSs using currently available
experimental resources �38�. It would be a more realistic
target to perform homodyne tomography to reconstruct a
generated SSCS and “indirectly” show a Bell violation using
Eq. �7�.
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