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We derive a Bell inequality based on a generalized quasiprobability function, which is parametrized by one
nonpositive real value. Two types of known Bell inequalities formulated in terms of the Wigner and the Q
functions are included as limiting cases. We investigate violations of our Bell inequalities for single-photon
entangled states and two-mode squeezed vacuum states when varying the detector efficiency. We show that the
Bell inequality for the Q function allows the lowest detection efficiency for violations of local realism.
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I. INTRODUCTION

Ever since the famous arguments of Einstein-Podolsky-
Rosen �EPR� �1�, quantum nonlocality has been a central
issue for understanding the conceptual foundations of quan-
tum mechanics. Quantum nonlocality can be demonstrated
by the violation of Bell inequalities �BIs� �2� which are
obeyed by local-realistic �LR� theories. Realizations of BI
tests are thus of great importance in testing the validity of
quantum theories against LR theories. In addition, BI tests
play a practical role in the detection of entanglement, which
is one of the main resources for quantum information pro-
cessing. Bell inequality tests for two-dimensional systems
have already been realized �3�, while BI tests in higher-
dimensional and continuous-variable systems remain an
active area of research �4,5�.

Phase-space representations are a convenient tool for the
analysis of continuous-variable states as they provide in-
sights into the boundaries between quantum and classical
physics. Any quantum state �̂ can be fully characterized by
the quasiprobability function defined in phase space �6�. In
contrast to the probability functions in classical phase-space,
the quasiprobability function is not always positive. For ex-
ample, the Wigner function of the single-photon state has
negative values in certain regions of phase space �7�. Since
the negativity of the quasiprobability function inevitably re-
flects a nonclassical feature of quantum states, the relation
between negativity of quasiprobabilities and quantum nonlo-
cality has been investigated �8,9�. Bell argued �8� that the
original EPR state will not exhibit nonlocality since its
Wigner function is positive everywhere and hence serves as a
classical probability distribution for hidden variables. On the
other hand, Banaszek and Wódkiewicz �BW� showed how to
demonstrate quantum nonlocality using the Q and the
Wigner functions �9�. They suggested two distinct types of
BIs: one of which is formulated via the Q function and re-
ferred to in this paper as the BW-Q inequality while the other
is formulated using the Wigner function and is referred to as
the BW-W inequality. Remarkably, the BW-W inequality was
shown to be violated by the EPR state �9�. This indicates that

there is no direct relation between the negativity of the
Wigner function and the nonlocality.

Quasiprobability functions can be parametrized by one
real parameter s as �6,10�

W��;s� =
2

��1 − s�
Tr��̂�̂��;s�� , �1�

where �̂�� ;s�=�n=0
� ��s+1� / �s−1��n�� ,n��� ,n� and �� ,n� is

the number state displaced by the complex variable � in
phase space. It is produced by applying the Glauber displace-

ment operator D̂��� to the number state �n�. We call W�� ;s�
the s-parameterized quasiprobability function, which be-
comes the P, the Wigner, and the Q functions when setting
s=1,0 ,−1 �10�, respectively. For nonpositive s, the function
W�� ;s� can be written as a convolution of the Wigner func-
tion and a Gaussian weight

W��;s� =
2

��s�	 d2� W���exp
−
2�� − ��2

�s� � . �2�

This can be identified with a smoothed Wigner function af-
fected by noise, which is modeled by Gaussian smoothing
�11–13�. Therefore decreasing s reduces the negativity of the
Wigner function and is thus often considered to be a loss of
quantumness. For example, the Q function �s=−1�, which is
positive everywhere in phase space, can be identified with
the Wigner function smoothed over the area of measurement
uncertainty.

The purpose of this paper is to propose a method for
testing quantum nonlocality using the s-parametrized qua-
siprobability function. We will first formulate a generalized
BI in terms of the s-parametrized quasiprobability function
in Sec. II. This will lead us to a s -parameterized Bell in-
equality, which includes the BW-Q and the BW-W inequali-
ties as limiting cases. We will then present a measurement
scheme to test BIs using imperfect detectors in Sec. III. The
measured Bell expectation value can be written as a function
of the parameter s and the overall detector efficiency �. In
Sec. IV violations of BIs will be demonstrated for single-
photon entangled states and in Sec. V for two-mode
squeezed vacuum states �TMSSs�. We find the range of s and
� which allows observing nonlocal properties of these two*s.lee2@physics.ox.ac.uk
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types of states. We will show that the test involving the Q
function permits the lowest detector efficiency for observing
violations of local realism. We also find that the degree of
violation is irrespective of the negativity of the quasiprob-
ability function. Finally, in Sec. VI, we discuss the charac-
teristics and applications of the s-parametrized BI.

II. GENERALIZED BELL INEQUALITIES OF
QUASIPROBABILITY FUNCTIONS

We begin by formulating a generalized BI in terms of
quasiprobability functions. Suppose that two spatially sepa-
rated parties, Alice and Bob, independently choose one of

two observables, denoted by Â1 , Â2 and B̂1 , B̂2, respectively.
No restriction is placed on the number of possible measure-
ment outcomes �which may be infinite�. We assume that the
measurement operators of the local observables

Â1 , Â2 , B̂1 , B̂2 can be written as

Âa = Ô��a;s�, B̂a = Ô��b;s�, for a,b = 1,2

using a Hermitian operator

Ô��;s� =��1 − s��̂��;s� + s1 if − 1 � s 	 0

2�̂��;s� − 1 if s 	 − 1

 �3�

parametrized by a real nonpositive number s and an arbitrary
complex variable �. Here, 1 is the identity operator. The

possible measurement outcomes of Ô�� ;s� are given by its
eigenvalues,


n = ��1 − s�
 s + 1

s − 1
�n

+ s if − 1 � s 	 0

2
 s + 1

s − 1
�n

− 1 if s 	 − 1, � �4�

and their eigenvectors are the displaced number states. The
maximum and the minimum measurement outcomes of

Ô�� ;s� for any nonpositive s are 
max=1 and 
min=−1, re-

spectively. For s=0, we have Ô�� ;0�=�̂�� ;0�=�n=0
�

�−1�n�� ,n��� ,n�, the displaced parity operator, while for s

=−1 we find that Ô�� ;−1�=2������−1 projects onto the
coherent states.

A Bell operator can be constructed using the measurement

operators Âa , B̂b by way of a construction similar to the
Clauser-Horne-Shimony-Holt �CHSH� combination

B̂ = Ĉ1,1 + Ĉ1,2 + Ĉ2,1 − Ĉ2,2, �5�

where Ĉa,b= Âa � B̂b is the correlation operator. Since the ex-
pectation values of the local observables are bounded by

��Âa���1 and ��B̂b��	1 for any nonpositive s, the expecta-
tion value of the Bell operator defined in Eq. �5� is bounded

by ��B̂����B�	2 in LR theories. Note that the expectation

value of �̂�� ;s� for a given density operator �̂ is propor-
tional to the s-parameterized quasiprobability function �6,10�

W��;s� =
2

��1 − s�
Tr��̂�̂��;s��

=
2

��1 − s��n=0

� 
 s + 1

s − 1
�n

��,n��̂��,n� , �6�

from which both the Wigner and the Q functions can be
recovered by setting s=0 and s=−1, respectively. We do not

consider the case s�0 when the eigenvalues of �̂�� ;s� are
not bounded. We thus obtain the following generalized BI:

�B��−1�s	0� = ��2�1 − s�4

4
�W��1,�1;s� + W��1,�2;s�

+ W��2,�1;s� − W��2,�2;s��

+ �s�1 − s�2�W��1;s� + W��1;s�� + 2s2� 	 2,

�B��s	−1� = ��2�1 − s�2�W��1,�1;s� + W��1,�2;s�

+ W��2,�1;s� − W��2,�2;s�� − 2��1 − s�

��W��1;s� + W��1;s�� + 2� 	 2, �7�

where W�� ,� ;s�= �4 /�2�1−s�2�Tr��̂�̂�� ;s� � �̂�� ;s�� is
the two-mode s-parametrized quasiprobability functions and
W�� ;s� and W�� ;s� are its marginal distributions. We call
Eq. �7� the s-parametrized Bell inequality for quasiprobabil-
ity functions. This BI is equivalent to the BW-W inequality
when s=0, which has the form of the standard CHSH in-
equality �14�, and the BW-Q inequality when s=−1 in the
form of the BI proposed by Clauser and Horn �15�. In these
cases the corresponding generalized quasiprobability func-
tion reduces to the Wigner function W�� ,��=W�� ,� ;0� and
the Q function Q�� ,��=W�� ,� ;−1�, respectively �9�.

III. TESTING QUANTUM NONLOCALITY

In this section we present a scheme to test quantum non-
locality using the s-parametrized BIs. For a valid quantum
nonlocality test, the measured quantities should satisfy the
LR conditions, which are assumed when deriving BIs. Thus,
here, we employ the direct measurement scheme of qua-
siprobability functions using photon number detectors pro-
posed in �12�.

A pair of entangled states generated from a source of cor-
related photons is distributed between Alice and Bob, each of
whom makes a local measurement by way of an unbalanced
homodyne detection �see Fig. 1�. Each local measurement is
carried out using a photon number detector with quantum
efficiency �d preceded by a beam splitter with transmissivity
T. Coherent fields �
� and ��� enter through the other input
ports of each beam splitter. For high transmissivity T→1 and
strong coherent fields 
 ,�→�, the beam splitters of Alice
and Bob can be described by the displacement operators

D̂��� and D̂���, respectively, where �=
��1−T� /T and �
=���1−T� /T �12�. In measurements ��s+1� / �s−1��n̂ with n̂
=�nn�n��n�, the photon number operator is performed on the
outgoing modes using perfect photon number detectors. Then
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the expectation value directly yields the value of the
s-parametrized quasiprobability function at the point in phase
space specified by the complex variables � and �. For ex-
ample, the Wigner function can be obtained by the parity
measurements �−1�n̂�s=0� and the Q function by on-off �i.e.,
photon presence or absence� measurements �s=−1�.

Let us now consider the effects of the detector efficiencies
�. If the true photon number distribution is given by P�n�,
then the measured distribution can be written as a function of
the overall detection efficiency �=�dT as P��m�
=�n=m

� P�n�� n
m ��1−��n−m�m �16�. For �=0 the measured qua-

siprobability function is

W��0;s� =
2

��1 − s� �
m=0

� 
 s + 1

s − 1
�m

P��m�

=
2

��1 − s��n=0

� 
1 − � + �
s + 1

s − 1
�n

P�n�

=

W
0;−
1 − s − �

�
�

�

�
W�0;s��

�
. �8�

The s-parametrized quasiprobability function measured by a
detector with efficiency � can therefore be identified with the
quasiprobability function with parameter s�=−�1−s−�� /�.
Other sources of noise �e.g., dark counts and mode mis-
match� could be included into this approach but are ne-
glected here for simplicity.

Finally, the expectation value of observable �3� is given as

�Ô��;s��� = �
��1 − s�2

2�
W��;s�� + s if − 1 � s 	 0

��1 − s�
�

W��;s�� − 1 if s 	 − 1, �
�9�

where � · �� represents the expectation value obtained by mea-
surement with efficiency �. Note that Eq. �9� is the statistical

average of directly measured data without postselection. The
expectation value of the Bell operator �5� written as a func-
tion of s and � is given by

�B̂�−1�s	0��� =
�2�1 − s�4

4�2 �W
�1,�1;−
1 − s − �

�
�

+ W
�1,�2;−
1 − s − �

�
�

+ W
�2,�1;−
1 − s − �

�
�

− W
�2,�2;−
1 − s − �

�
��

+
�s�1 − s�2

�
�W
�1;−

1 − s − �

�
�

+ W
�1;−
1 − s − �

�
�� + 2s2,

�B̂�s	−1��� =
�2�1 − s�2

�2 �W
�1,�1;−
1 − s − �

�
�

+ W
�1,�2;−
1 − s − �

�
� + W
�2,�1;

−
1 − s − �

�
� − W
�2,�2;−

1 − s − �

�
��

−
2��1 − s�

�
�W
�1;−

1 − s − �

�
�

+ W
�1;−
1 − s − �

�
�� + 2. �10�

Note that the Bell expectation values in Eq. �10� for s=0 and
s=−1 give the same results as tests of the BW-W and the
BW-Q inequalities, respectively.

IV. VIOLATION BY SINGLE-PHOTON ENTANGLED
STATES

We investigate violations of the s-parametrized BI �7� for
the single-photon entangled state �17�

��� =
1
�2

��0,1� + �1,0�� , �11�

where �n ,m� is the state with n photons in Alice’s mode and
m photons in Bob’s mode. This state is created by a single
photon incident on a 50:50 beam splitter. Its two-mode
s-parametrized quasiprobability function is given by

W���,�;s� =
4

�2�1 − s�2
−
1 + s

1 − s
+

2

�1 − s�2 �� + ��2�
�exp�−

2����2 + ���2�
1 − s

� , �12�

and its marginal single-mode distribution is

FIG. 1. The optical setup for the BI test. Each local measure-
ment is carried out after mixing the incoming field with a coherent
state �denoted by �
� for Alice and ��� for Bob� in a beam splitter
�BS� of high transmissivity T. The photon number detectors �PNDs�
have efficiency �d.
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W���;s� = �1/���2 − 2� + 4�2���2�exp�− 2����2� . �13�

Note that for 0�s�−1 Eq. �12� has negative values in cer-
tain regions of phase space but for s=−1 it becomes the Q
function W��� ,� ;−1��0.

The maximum expectation values �B�max= ��B̂��max are ob-
tained for properly chosen �1, �2, �1, and �2. Figure 2 shows
the range of parameters s and detector efficiencies � for
which the BI is violated, �B�max�2. Interestingly, the degree
of violation is not directly related to the negativity of the
quasiprobability functions. The test of the BI using the Q
function �s=−1� yields strong violations and is most robust
to detector inefficiencies. This is because the observable �3�
becomes dichotomized at s=−1 corresponding to detection
of none vs some photons. For a given s, the amount of vio-
lation decreases with decreasing �. The minimum value of �
indicates the required detector efficiency for a successful
nonlocality test �18�. For example, the minimum bound is
about 83% for the Q function �s=−1�. We also find the mini-
mum parameter s which allows demonstrating quantum non-

locality for a given detector efficiency. For example, for a
perfect detector ��=1�, the corresponding BI is violated
when s�−1.43.

V. VIOLATION BY TWO-MODE SQUEEZED STATES

We consider the TMSSs, i.e., a continuous-variable
entangled state written as

�TMSS� = sech r�
n=0

�

tanhn r�n,n� , �14�

where r�0 is the squeezing parameter. It can be realized, for
instance, by nondegenerate optical parametric amplifiers
�19�. In the infinite squeezing limit r→�, the TMSS be-
comes the normalized EPR state, which is the maximally
entangled state associated with position and momentum �9�.

For a nonpositive s the quasiprobability function of the
TMSS is given by

WTMSS��,�;s� =
4

�2R�s�
exp
−

2

R�s�
�S�s�����2 + ���2�

− sinh 2r��� + ������� , �15�

and its marginal single-mode distribution is

WTMSS��;s� =
2

�S�s�
exp
−

2���2

S�s�
� , �16�

where R�s�=s2−2s cosh 2r+1 and S�s�=cosh 2r−s. Note
that these are positive everywhere in phase space. In Fig.
3�a� violations of the s-parametrized BI are shown for
TMSSs. The test using the Q function �s=−1� is most robust
with respect to detector inefficiencies. The amount of viola-
tion shows different tendencies depending on the squeezing
parameter r. In the case of low squeezing rates, i.e., when the
amplitudes of small-n number states are dominant, the vio-
lation is maximal if we choose the Q function �s=−1� as

�1.5

�1.0

�0.5

0.0

s

0.8

0.9

1.0

Η
2.0

2.4

2.8

�B�max

FIG. 2. �Color online� Maximum Bell expectation value �B�
= ��B̂�� for the single-photon entangled state. Only the range of pa-
rameters s and detector efficiencies � with �B��2 are shown.
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FIG. 3. �Color online� Demonstration of quantum nonlocality for TMSSs. �a� Maximum Bell values are shown for different squeezing r
in the range of s and � where the BI is violated. �b� Violation of the BI as a function of the squeezing r for different s and �=1 �solid line�,
�=0.95 �dashed line�, and �=0.9 �dotted line�.
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shown in Fig. 3�b�. This implies that the dominant contribu-
tion to the violation comes from correlations between the
vacuum and the photons present. For larger squeezing rates
r�1.2, the violation reaches a maximal value B�2.32 when
we test the Wigner function �s=0� �20�. This indicates that
the parity measurements are effective for verifying higher-
order number correlations. However, the parity measure-
ments require very high detector efficiency as shown in Fig.
3�b�. The range of s within which one can demonstrate non-
locality becomes narrower around s=0 and s=−1 with in-
creasing squeezing rate r. This is because observable �3� is
dichotomized at s=0 and s=−1.

VI. DISCUSSION AND CONCLUSIONS

We demonstrated that quantum nonlocality has no direct
relation to the negativity of s-parametrized quasiprobability
functions. In fact the Q function �s=−1� which never be-
comes negative can still be used to verify nonlocal properties
as we showed in Fig. 2 and yields strong violations of the
corresponding BI. This implies that the quantum properties
of nonlocality and negativity of the quasiprobability func-
tions should be considered distinct features of quantum me-
chanics. Furthermore, we showed that the Q function test
allows the lowest detector efficiency for demonstrating quan-
tum nonlocality. For example, it requires only ��83% for a
single-photon entangled state and ��75% for TMSSs with
r=0.4 to detect nonlocality. This indicates that two-mode
correlations between vacuum and many photons can be more
robust to detector inefficiencies than correlations between the
vacuum and a single photon.

The parameter s determines the characteristics of the de-
tected nonlocal correlations. For example, if we choose
s=−1 the violation of the BI exhibits only correlations be-
tween vacuum and photons. In order to test higher-order pho-
ton number correlations, we need to increase s to zero, so
that the factor ��s+1� / �s−1��n multiplied to the photon num-
ber probability increases in Eq. �6�. Although parity mea-
surements �s=0� allow us to detect higher-order correlations
effectively, they also require very high detector efficiencies
as shown in Fig. 3. If we properly choose a certain parameter
−1�s�0, e.g., s=−0.7, we can detect higher-order correla-
tions with a lower detector efficiency than that required for
testing the BI using the Wigner function. However, we note
that the violation of the BI with s=−0.7 disappears with
increasing squeezing rate as shown in Fig. 3�b�; this restricts
the possible applications to schemes using light that contains
only a few photons.

Let us finally discuss whether we can regard decoherence
effects as changes to s. Interactions with the environment
and the detection noise tend to smoothen quasiprobability
functions. For example, when solving the Fokker-Planck
equation for the evolution of the Wigner function of a system

interacting with a thermal environment, one obtains �21�

W��,�� =
1

t���2	 d2� Wth���W
� − r����
t���

,� = 0� .

�17�

Here the parameters r���=�1−e−�� and t���=�e−�� are given
in terms of the energy decay rate �, and

Wth��� =
2

��1 + 2n̄�
exp
−

2���2

1 + 2n̄
� �18�

is the Wigner function for the thermal state of average ther-
mal photon number n̄. The effect of the thermal environment
is then identified with temporal changes of the parameter

s��� � −
r���2

t���2 �1 + 2n̄� = �1 − e����1 + 2n̄� . �19�

Therefore, one might be tempted to consider an environment
in a thermal state as giving rise to a temporal change in s in
Eq. �3�. However, this idea is not applicable to tests of quan-
tum nonlocality. The s-parametrized BI is derived for observ-
ables �3� which contain s as a deterministic value of LR
theories. Thus the local-realistic bound is no longer valid
when dynamical observables are considered �even though
they give the same statistical average�. However, this idea
might be useful for witnessing entanglement �22�.

In summary, we have formulated a BI in terms of the
generalized quasiprobability function. This BI is param-
etrized by a nonpositive value s and includes previously pro-
posed BIs such as the BW-W �s=0� and the BW-Q �s=−1�
inequalities �9�. We employed a direct measurement scheme
for quasiprobability functions �12� to test quantum nonlocal-
ity. The violation of BIs was demonstrated for two types of
entangled states: single-photon entangled and two-mode
squeezed vacuum states. We found the range of s and �
which allow the observation of quantum nonlocal properties.
We discussed the types of correlations and their robustness to
detection inefficiencies for different values of s. We also
demonstrated that the negativity of the quasiprobability func-
tion is not directly related to the violation of BIs. The real-
ization of s-parametrized BI tests is expected along with the
progress of photon detection technologies �23� in the near
future. Our investigations can readily be extended to other
types of states such as photon subtracted Gaussian states
�24,25� or optical Schrödinger cat states �26�.
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