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Measurement-device-independent verification of channel steering
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Extending the concept of steerability for quantum states, channel steerability is an ability to remotely control
the given channel from a coherently extended party. Verification of channel steering can be understood as
certifying coherence of the channel in a one-sided device-independent manner with respect to a bystander. Here
we propose a method to verify channel steering in a measurement-device-independent way. To do this, we first
obtain Choi matrices from given channels and use the canonical method of measurement-device-independent
verification of quantum steering. As a consequence, exploiting channel-state duality which interconverts
steerability of channels and that of states, channel steering is verified. We further analyze the effect of imperfect
preparation of entangled states used in the verification protocol, and find that the threshold of the undesired noise
that we can tolerate is bounded from below by steering robustness.
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I. INTRODUCTION

Quantum steering is a nonclassical phenomenon in that
local measurements on one side can induce ensembles of local
quantum states on the other side, which cannot be explained
by any classical correlations or local hidden states. This phe-
nomenon has attracted great attention since it was implied in
Einstein-Podolsky-Rosen’s seminal paper [1] and mentioned
by Schrödinger [2] as a “paradox.” Recently, steering has been
put into mathematical rigor [3,4], and a number of theoretical
developments [5–21] and experimental realizations [19–30]
have followed.

The concept of steering of quantum states can be extended
to quantum channels [31]. Channel steering is a nonclassical
phenomenon in that local measurements on a bystander’s
side can induce an instrument of reduced channels on the
other side, which cannot be explained by any classical cor-
relations or reduced subchannels. An operational meaning
of the steering is verification of nonseparability when the
steered party is trusted while the steering party is untrusted
[4]. Thus an analogous operational meaning can be obtained
for the channel steering; the channel steering is verification
of coherent extension of the channel, when input and output
parties of the reduced channels are trusted but a bystander
is untrusted. Coherent extension of the channel means that
there is information leakage to a bystander more than clas-
sical randomness [31]. Therefore, verification of the channel
steering can be regarded as identifying whether the bystander
has access to quantum information being transmitted through
the original channel.

The analogy between the concepts of state steering and
channel steering enables channel-state duality which pre-
serves steerability [31]. In Ref. [31], it was proved that a given
quantum channel is steerable if and only if the corresponding
quantum state obtained by channel-state duality is steerable.
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This result links the state steering and channel steering; the
two concepts are not independent topics; rather, they are
interconvertible. One can see the analogy between the state
steering and channel steering in Fig. 1.

Meanwhile, in the definition of the steering, whether the
parties are trusted or not is important. We say that a party
is trusted when it is reliable and it has perfect control over
its experiment. In the case of the state steering, this implies
that one can reconstruct the local state of the steered party,
while for the channel steering this implies that one can recon-
struct the reduced channel. In practical situations, however,
these assumptions are hard to achieve because reliability
of experimenters, accuracy of the measurement apparatus,
and protecting quantum processing from external noise are
imperfect. The steering verification protocol is free from such
prerequisites with respect to only one party (the steering
party in the state steering or the bystander in the channel
steering), so that it is called one-sided device independent
(1s-DI). Recently, to alleviate the prerequisites, alternative
verification schemes that remove trust on the parties in en-
tanglement verification [32] and steering verification [33]
were proposed. Although the alternative schemes still re-
quire trust on generating devices or measurement devices of
external parties, this does not require perfect control over
the experiments of the parties. We can thus say that these
are alleviated scenarios that are called measurement-device
independent (MDI). In entanglement verification and steering
verification, canonical techniques to convert the entanglement
criterion and steering criterion from their original scenarios to
the MDI scenarios have been well established [34–36]. The
MDI method was exploited in quantum key distribution tasks
to overcome detector-side channel attacks and obtain better
secure distances [37,38].

In this paper, motivated by previous developments, we
propose an MDI verification scheme of channel steering.
To do this, we first convert steerability of the channels to
that of the states with the aid of the channel-state duality.
Subsequently, we transform the steering witness in the 1s-DI
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FIG. 1. Comparison between state steering and channel steering.
Left: Given a local state ρA, an extended state ρAB is such that
one can retrieve the original local state ρA by discarding system
B. If a set of measurements {Ma|x}a,x is performed on system B,
system A collapses to an assemblage {ρa|x}a,x . By checking whether
measurements on system B really steered system A, we determine
steerability of the state. Right: Channel steering can be defined in an
analogous way. Given a channel from system D to system B, �D→B,
one can come up with an extended channel with one input D and
two output systems B and A such that the original channel �D→B

is retrieved by discarding an added output system A, a bystander.
If a set of measurements {Ma|x}a,x is performed on a bystander’s
system, the channel reduces to an instrument from D to B, {�D→B

a|x }a,x .
By checking whether measurements on a bystander’s system really
steered a channel from D to B, we determine steerability of the
channel.

scenario to the steering criterion in the MDI scenario. We
then verify steerability of the state obtained by channel-state
duality, using an MDI steering criterion. This leads to verifica-
tion of the channel steering in an MDI manner. Furthermore,
we show that the channel-state duality of steerability is still
preserved as long as we use a bipartite state that is pure
and of the full Schmidt rank although it is different from
the originally intended one. This means that misalignment of
bipartite pure states for channel-state duality does not change
the protocol. We analyze the effect of noise in generating
bipartite pure states, and find that even if the preparation is
corrupted by noise we are still able to authenticate steerability
of the channel, provided that the portion of the noise is below
some threshold which is bounded by the steering robustness
introduced in Ref. [12]. This will allow us to inspect informa-
tion leakage from the given channel to the bystander without
the assumption of perfect control over the experiment.

The rest of this paper is organized as follows. In Sec. II,
we review state steering and MDI verification. In Sec. III,
the concept of channel steering is explained. In order to com-
bine the aforementioned concepts, we introduce channel-state
duality, and show that channel-state duality of steerability
is still preserved using any bipartite pure state with the full
Schmidt rank in Sec. IV. In Sec. V, we propose a scheme
to verify channel steering in an MDI way. We consider the
effect of imperfect state preparation, and conclude that MDI
verification of the channel steering is possible up to some
amount of noise. Further, we find that the allowed portion of

noise is given by steering robustness. We conclude the paper
in Sec. VI.

II. QUANTUM STATE STEERING

A positive semidefinite operator ρ with unit trace is called
a quantum state or a state. A quantum substate or a substate
is defined as a positive semidefinite operator ρa with its trace
less than or equal to unity [12]. An ensemble E of a state ρ

is a set of substates {ρa}a such that the sum of all elements is
the state ρ,

∑
a ρa = ρ. A collection of ensembles {Ex}x =

{ρa|x}a,x shall be called a state assemblage or simply an
assemblage. A state assemblage {ρa|x}a,x is called unsteerable
if every substate ρa|x arises from classical processing of some
ensemble {ρλ}λ as

ρa|x =
∑

λ

p(a|x, λ)ρλ, (1)

with some probability distribution p(a|x, λ). Normalized sub-
states {ρλ/Tr[ρλ]}λ are conventionally referred to as hidden
states. If an assemblage is not unsteerable, it is called steer-
able.

One can construct similar concepts for observables. A
positive-operator-valued measurement (POVM) is a set of
positive semidefinite operators {Ma}a such that the sum of all
elements equals an identity,

∑
a Ma = I . A collection of

POVMs, {Ma|x}a,x, is called a measurement assemblage. A
measurement assemblage {Ma|x}a,x is called jointly measur-
able or compatible if every POVM element Ma|x arises from
classical processing of some POVM {Mλ}λ, usually named the
grand POVM, as

Ma|x =
∑

λ

p(a|x, λ) Mλ, (2)

with some probability distribution p(a|x, λ). If a measurement
assemblage is not compatible, it is called incompatible.

It is straightforward to see a one-to-one correspondence
between state assemblages and measurement assemblages.
One can obtain a state assemblage from an extended state by
performing measurements in a measurement assemblage on a
partial state as

ρa|x = TrB[ρAB(I ⊗ Ma|x )]. (3)

Conversely, one can construct a measurement assemblage
from a state assemblage as

Ma|x := (ρ̃)−
1
2 ρ̃a|x(ρ̃)−

1
2 , (4)

where ρ = ∑
a ρa|x, and the tilde denotes an operator pro-

jected on range(ρ). It is proved that they have steerability
correspondence, i.e., a state assemblage is unsteerable if and
only if a measurement assemblage in Eq. (4) is compatible
[13].

A convex combination of two unsteerable assemblages
yields an unsteerable assemblage [39], which means that the
set of unsteerable assemblages is convex. Therefore, for every
steerable assemblage {ρa|x}a,x, we can draw a hyperplane
which separates {ρa|x}a,x and the set of unsteerable assem-
blages. Such a separation is realized by a set of positive
semidefinite operators {Fa|x}a,x, called the steering witness,
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such that ∑
a,x

Tr[Fa|xρa|x] > sup
{σUS

a|x }

∑
a,x

Tr
[
Fa|xσUS

a|x
]
, (5)

where the supremum is taken over the set of unsteerable
assemblages. The right-hand side of Eq. (5) is usually called
the steering bound and is conventionally denoted by α.

In an experiment, to obtain knowledge of a state assem-
blage, one needs to have a perfect measurement apparatus
because the state tomography via imperfect measurements can
yield an incorrect state assemblage different from the real one.
Therefore, not to mislead the determination of steerability,
we require high reliability of the experimenter. In the case
of steering, the steering party is untrusted while the steered
party is trusted, thus only the steering party is free from
the reliability requirement. This property is called one-sided
device independence of steering verification.

Recently, based on the semiquantum nonlocal games [32],
another scheme of steering verification was introduced [33],
where an experimenter who has a state assemblage is ques-
tioned in quantum states and answers in real numbers. Ac-
cording to the experimenter’s responses, one can determine
whether the state assemblage is steerable or not. This does not
require reliability of the experimenter (i.e., steered party), and
it is thus called a measurement-device-independent scenario.
The MDI steering verification was experimentally demon-
strated [35] and the canonical way to convert the 1s-DI
steering witness to that in the MDI scenario was proposed [36]
in an analogous way with the entanglement witness [34]. We
will revisit this topic in Sec. V.

III. QUANTUM CHANNEL STEERING

A completely positive and trace-preserving linear map
�[ · ] is called a quantum channel. Every quantum channel
�[ · ] can be written as

∑
i Ki [ · ] K†

i with
∑

i K†
i Ki = I , where

the operators {Ki}i are called Kraus operators [40]. A quantum
subchannel is defined as a completely positive and trace non-
increasing linear map �a[ · ] [12]. Every quantum subchannel
�a[ · ] can be written as

∑
i Ki [ · ] K†

i with
∑

i K†
i Ki � I ,

where the set of operators {Ki}i is a subset of a set of Kraus
operators. An instrument of a quantum channel � is a set
of quantum subchannels {�a}a such that the sum of every
element is the quantum channel,

∑
a �a = �. A collection

of instruments {�a|x}a,x is called a channel assemblage. A
channel assemblage is said to be unsteerable if every subchan-
nel �a|x arises from classical processing of some instrument
{�λ}λ as

�a|x =
∑

λ

p(a|x, λ)�λ, (6)

with some probability distribution p(a|x, λ). If a channel
assemblage is not unsteerable, it is called steerable.

For a quantum channel from a system D to B, �D→B, we
can come up with a channel extension with one sender D
but two receivers B and A, �D→BA, which satisfies �D→B =
TrA ◦ �D→BA. If an extended quantum channel �D→BA can be
expressed as a sum of decompositions into quantum state and

quantum subchannel,

�D→BA =
∑

λ

�D→B
λ ⊗ ρA

λ , (7)

we call it an incoherent extension. If a channel extension is
not incoherent, it is called coherent.

There is a correspondence between an instrument and a
POVM; for every POVM, we can obtain an instrument by
performing measurements on one side of an extended channel,
and for every instrument we can find a POVM which induces
the given instrument from an extended channel. Along this
correspondence, one can consider every channel assemblage
{�D→B

a|x }a,x as an induced one from an extended channel being
performed by POVM {MA

a|x}a,x:

�D→B
a|x [ · ] = TrA[(I ⊗ Ma|x ) �D→BA[ · ] ]. (8)

One can then define channel steerability of an extended
channel �D→BA as steerability of an instrument of the re-
duced subchannels {�D→B

a|x }a,x obtained by Eq. (8). As a
consequence, the following two statements are equivalent: (i)
channel assemblage is steerable, and (ii) the bystander (say,
Alice) has the ability to remotely control the channel �D→B by
performing measurements {Ma|x}a,x on her side. Furthermore,
it was proved that verification of the channel steering is equiv-
alent to corroborating that the channel extension is coherent
when Alice is not trusted [31]. This is an analogous argument
with the state steering in that steering verification is equivalent
to corroborating that the shared state is entangled when Alice
is not trusted [4].

IV. CHANNEL-STATE DUALITY

The two aforementioned concepts of steering can be linked
via channel-state duality, or Choi-Jamiołkowski isomorphism
[41,42]. For a quantum channel �D→B : B(HD) → B(HB),
we can construct an extended quantum state ρCB ∈ B(HC ⊗
HB), where HC is a Hilbert space isomorphic to HD, by

ρCB = (IC ⊗ �D→B)[ |�〉〈�| ]. (9)

Here, |�〉 ∈ HC ⊗ HD is the maximally entangled state

|�〉 = 1√
d

∑
i

|ii〉, (10)

where {|i〉}i is an orthonormal basis of Hilbert space HD (and
thus of HC). In this paper, symbol |�〉 will be exclusively used
to denote the maximally entangled state. The mapping from a
quantum channel to a quantum state in Eq. (9) is bijection if
we restrict the range of the mapping to quantum states where
the reduced state after tracing out system B is the maximally
mixed state. A resultant quantum state in Eq. (9) is called a
Choi matrix of the channel �D→B.

Channel-state duality links the interesting properties of
channels and states. For example, (i) a channel is unital if
and only if the reduced state after tracing out system C
of the dual state is the maximally mixed state, (ii) it is a
measure-and-prepare channel if and only if its dual state is
separable [43], and (iii) it is an entanglement binding [44]
if and only if the dual state is bound entangled [45]. The
correspondence between the properties of channels and states
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is also shown to hold for steerability [31]. A channel extension
�D→BA of the channel �D→B is unsteerable if and only if
its Choi matrix is unsteerable by any local measurements on
A. One can reexpress this correspondence between channel
assemblages and state assemblages; a channel assemblage
{�a|x}a.x is unsteerable if and only if the state assemblage that
consists of its Choi matrices is unsteerable.

In this paper, we find that steerability correspondence can
be obtained not only by the maximally entangled state but
also by any bipartite pure state |ψ〉 with the full Schmidt
rank. From now on, for simplicity, we will denote the state as-
semblage obtained from Choi-Jamiołkowski isomorphism of
a channel assemblage using |ψ〉, {(IC ⊗ �D→B

a|x )[ |ψ〉〈ψ | ]}a,x,

as {ρ|ψ〉
a|x }a,x and call it a Choi assemblage obtained by |ψ〉.

Theorem 1. Let |ψ〉 ∈ HC ⊗ HD be a pure state with the
full Schmidt rank. Then a channel assemblage {�D→B

a|x }a,x is
unsteerable if and only if the Choi assemblage obtained by
|ψ〉, {ρ|ψ〉

a|x }a,x, is unsteerable.
Proof. To prove the sufficiency, let us assume that the

given channel assemblage {�D→B
a|x }a,x is unsteerable. Then we

can write �D→B
a|x = ∑

λ p(a|x, λ) �λ, and the Choi assemblage
obtained by |ψ〉 reads {∑λ p(a|x, λ) (I ⊗ �λ)[ |ψ〉〈ψ | ]}a,x,
where { ( I ⊗ �λ )[ |ψ〉〈ψ | ]}λ is an ensemble. This is exactly
the form of Eq. (1), which proves the sufficiency.

To prove the necessity, let us assume that a Choi assem-
blage of the given channel assemblage {�D→B

a|x }a,x obtained
by |ψ〉 is unsteerable. Then there exists some conditional
probability distribution p(a|x, λ) and a set of quantum states
{σCB

λ }λ which satisfy(
IC ⊗ �D→B

a|x
)
[ |ψ〉〈ψ | ] =

∑
λ

p(a|x, λ)σCB
λ . (11)

The polar decomposition of σCB
λ can be written as

σCB
λ =

∑
i

pi,λ|ψi,λ〉〈ψi,λ|, (12)

with some pure states |ψi,λ〉 ∈ HC ⊗ HB and probability dis-
tributions pi,λ. Using the property of the maximally entangled
state, the pure states can be expressed as

|ψ〉 = (I ⊗ K )|�〉 = (KT ⊗ I )|�〉, (13)

|ψi,λ〉 = (I ⊗ Ki,λ)|�〉 = (KT
i,λ ⊗ I )|�〉, (14)

with some operators K and Ki,λ in B(HD) [and thus in
B(HC )]. Here, K is a full-rank operator due to the full
Schmidt-rank assumption of |ψ〉. This guarantees that K is
invertible. From Eqs. (11) and (13), summing over a and
tracing out system B yields (K†K )T /d = ∑

λ σC
λ . Meanwhile,

from Eqs. (12) and (14), tracing out system B gives σC
λ =∑

i pi,λ(K†
i,λKi,λ)T /d . Combining the two results, we obtain

an equality of (K†K )T = ∑
i,λ pi,λ(K†

i,λKi,λ)T which guaran-
tees that {√pi,λKi,λK−1}i,λ is a set of Kraus operators. The
quantum states σCB

λ can then be written as

σCB
λ = (

IC ⊗ �D→B
λ

)
[|ψ〉〈ψ |], (15)

where �D→B
λ [ · ] = ∑

i pi,λKi,λK−1 [ · ] (K−1)†K†
i,λ is a sub-

channel and {�λ}λ is an instrument. Furthermore, it is

straightforward to show that a mapping

A 	→ K−1 A (K−1)† (16)

is bijective. The bijectivity of the map (16) and the channel-
state duality together with Eqs. (11) and (15) complete the
necessity proof. �

We note that steerability correspondence proved in
Ref. [31] can be derived as a special case of Theorem 1 that is
obtained by setting K to be the identity.

V. MDI VERIFICATION OF CHANNEL STEERING

In order to determine steerability of a channel assemblage
{�D→B

a|x }a,x as in the form of Eq. (6), one needs to perform
channel tomography to ascertain whether it can be obtained
from classical processing of some instrument. However, chan-
nel tomography requires perfect control over input and output
systems. For example, experimenters must be reliable, and
their generating device for input states and measurement de-
vice for tomography must be accurate enough. Consequently,
for a deficient apparatus or untrustworthy experimenters, one
cannot be assured of results of steerability determination.
Therefore, to alleviate the demands, MDI verification of the
channel steering is needed, thus in this section we will propose
how to verify channel steering in an MDI manner.

For the first step, we will verify steerability of the Choi
assemblage obtained by |ψ〉 instead of that of the channel
assemblage, employing the channel-state duality of steering.
Suppose a channel assemblage {�D→B

a|x }a,x of which one in-
tends to find out steerability. One can obtain the corresponding
Choi assemblage obtained by |ψ〉, {ρ|ψ〉

a|x }a,x, by preparing
bipartite pure states with the full Schmidt rank |ψ〉〈ψ | ∈
B(HC ⊗ HD) and transmitting part D through subchannels
�D→B

a|x while preserving part C. In this process, one who
supervises the experiment actively participates in the verifi-
cation protocol by generating quantum states, and we shall
call him or her the referee. To verify steerability of the Choi
assemblage obtained by |ψ〉 in an MDI way, we will adopt the
canonical method of an MDI verification protocol proposed
in Refs. [34,36]. Let {Fa|x}a,x ⊂ B(HC ⊗ HB) be a steering
witness for the Choi assemblage {ρ|ψ〉

a|x }a,x such that∑
a,x

Tr
[
Fa|x ρ

|ψ〉
a|x

]
> sup

{σUS
a|x }

∑
a,x

Tr
[
Fa|x σUS

a|x
]

:= α, (17)

where the supremum is taken over all unsteerable assem-
blages {σUS

a|x }a,x ⊂ B(HC ⊗ HB). The existence of such a wit-
ness is guaranteed by the convexity of unsteerable assem-
blages [39] and the hyperplane separation theorem. Based on
Refs. [34,36], we can decompose a steering witness into

Fa|x − α

|X | I =
∑
z,y

β
z,y,x
1,1,a τz ⊗ ωy, (18)

for any a and x, where X is an index set of x, and {τz}z ⊂
B(HC ) and {ωy}y ⊂ B(HB) are tomographically complete sets
of states. Here, the decomposition of the steering witness does
not need to be unique. To accomplish the MDI verification of
steerability, the referee prepares quantum states τ T

z ∈ B(HC′ )
and ωT

y ∈ B(HB′ ), where HX ′ is a Hilbert space isomorphic
to HX for X ∈ {C, B}, and provides them to parties C and B,
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(a)

(b)

FIG. 2. Schematic of an MDI verification protocol of channel
steering. (a) Due to Theorem 1, steerability of the channel assem-
blage (left) is equivalent to steerability of the Choi assemblage
obtained by |ψ〉 (right). Thus we first obtain Choi assemblage using
bipartite pure states |ψ〉 with the full Schmidt rank, and verify
steerability of the resultant Choi assemblage {ρ |ψ〉

a|x }a,x . (b) Left: 1s-DI
verification of state steering can be accomplished by requesting
and receiving classical information from the experimenter when
the whole process can be trusted. It is depicted as a white box
which takes and yields classical information. Right: If we encode
the question in quantum states, MDI verification of state steering is
possible without any trust in the process. It is depicted as a black
box because we do not need to concern ourselves with what is taking
place inside. Therefore, by verifying the obtained Choi assemblage
in the MDI protocol, MDI verification of the channel steering is
accomplished.

say Charlie and Bob, respectively. In response to the input,
Charlie (Bob) reports one of the values, {0, 1}. It will become
clear that zero corresponds to measurement failure and 1
corresponds to measurement success. Within the dichotomic
options, they try to maximize the value called the score:

I
({

ρ
|ψ〉
a|x

}
a,x, β

) =
∑

a,x,y,z

β
z,y,x
1,1,aP

(
1, 1, a

∣∣τ T
z , ωT

y , x
)
, (19)

where P(1, 1, a|τ T
z , ωT

y , x) is a probability for which both
Charlie and Bob report 1 when the bystander’s input is x and
output is a. The meaning of the score can be understood as a
sum of the payoff that Charlie and Bob obtain for each round
according to their input and output, where the payoff is set
to be β

z,y,x
1,1,a if their outputs are both 1 (measurement success)

and zero if one of their outputs is zero (measurement failure).
Charlie and Bob will determine their optimal choice based on
their measurement outcome performed on the given state τ T

z ,
ωT

y , and their part of the output substate ρ
|ψ〉
a|x . Thus the score

can be written as

I
({

ρ
|ψ〉
a|x

}
a,x, β

)
=

∑
a,x,y,z

β
z,y,x
1,1,a Tr[(QC′C ⊗ PBB′

)
(
τ T

z ⊗ ρ
|ψ〉
a|x ⊗ ωT

y

)]
.

(20)

With this expression, we can show that the score is positive for
the steerable assemblage {ρ|ψ〉

a|x }a,x while zero for any unsteer-
able assemblage {σUS

a|x }a,x. This scheme is a straightforward
extension from Refs. [34,36] to tripartite states, and a sketch
of the protocol is provided in Fig. 2. In this figure, we used

white-box and black-box pictures to focus on the “trust” in
the process while simplifying other details.

Theorem 2. For any Choi assemblage obtained by |ψ〉, we
can construct the corresponding steering criterion without an
assumption on measurement devices.

Proof. Let us first prove that the score is nonpositive (thus
zero) for unsteerable assemblages. For any unsteerable as-
semblage {σUS

a|x }a,x, one can write σUS
a|x = ∑

λ p(a|x, λ)σCB
λ for

some probability distribution p(a|x, λ) and ensemble {σCB
λ }λ,

as in Eq. (1). Therefore, for any choice of joint POVM
elements QC′C , PBB′

, the score (20) reads

I
({

σUS
a|x

}
a,x, β

)
=

∑
a,x,y,z,λ

β
z,y,x
1,1,a p(a|x, λ)

× Tr
[
(QC′C ⊗ PBB′

)
(
τ T

z ⊗ σCB
λ ⊗ ωT

y

)]
=

∑
a,x,y,z,λ

β
z,y,x
1,1,a p(a|x, λ) Tr

[(
RC′B′

λ

)(
τC′

z ⊗ ωB′
y

)T ]
,

(21)

where RC′B′
λ is a reduced POVM element, defined by RC′B′

λ =
TrCB[ (QC′C ⊗ PBB′

)(I ⊗ σCB
λ ⊗ I ) ]. Since a reduced POVM

element is a positive semidefinite operator, unless it is the
zero operator, one can convert the reduced POVM element
to the substate ρR,λ := (RC′B′

λ )T /N so that {ρR,λ}λ forms an
ensemble, where N is a normalizing constant N = Tr[QC′C ⊗
PBB′

]. Substituting RC′B′
λ by ρR,λ, the score reads

I
({

σUS
a|x

}
a,x, β

)
= Tr

[∑
a,x,λ

p(a|x, λ)
(
RC′B′

λ

)T ∑
z,y

β
z,y,x
1,1,a

(
τC′

z ⊗ ωB′
y

)]

= N
∑
a,x

Tr

[ ∑
λ

p(a|x, λ) ρR,λ

(
Fa|x − α

|X | I

)]

= N
∑
a,x

Tr

[
ρUS

a|x

(
Fa|x − α

|X | I

)]
� 0, (22)

where ρUS
a|x = ∑

λ p(a|x, λ)ρR,λ, thus the last inequality in Eq.
(22) holds by the definition of the steering witness. This shows
that any choice of POVM elements gives a nonpositive score,
thus the optimal choice of Charlie and Bob to maximize the
score is to report zero as output. Consequently, the score is
zero for any unsteerable assemblage.

Meanwhile, for the Choi assemblage {ρ|ψ〉
a|x }a,x, Charlie and

Bob can obtain a positive score by projecting the system C′C
and BB′ into the maximally entangled state |�〉〈�|:
I
({

ρ
|ψ〉
a|x

}
a,x, β

)
=

∑
a,x,y,z

β
z,y,x
1,1,a Tr

[
(|�〉〈�| ⊗ |�〉〈�|)(τ T

z ⊗ ρ
|ψ〉
a|x ⊗ ωT

y

) ]

=
∑
a,x

Tr

[∑
z,y

β
z,y,x
1,1,a (τz ⊗ ωy) ρ

|ψ〉
a|x

]
/ dCdB

=
∑
a,x

Tr

[(
Fa|x − α

|X | I

)
ρ

|ψ〉
a|x

]
/ dCdB > 0, (23)
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where we used the property of the maximally entangled state,
Tr[ |�〉〈�|(A ⊗ B) ] = Tr[AT B] / dA, for the second equality.
The last inequality is derived by the definition of the steering
witness. Therefore we can always obtain a positive score for
the Choi assemblage {ρ|ψ〉

a|x }a,x, which completes the proof that
the score (20) is a steering criterion in the MDI scenario.

Here, in order to avoid misleading, we point out that MDI
verification of the channel steering is not free from trust
or perfect control over the experiment. Although an MDI
scenario is independent from measurement devices, it still
requires generation of quantum states such as bipartite pure
states with the full Schmidt rank |ψ〉〈ψ | to obtain the Choi
assemblage from the channel �D→B, and sets of tomograph-
ically complete quantum states {τz}z and {ωy}y. Thus we still
need to trust or control the generating devices. Nevertheless,
we can say that the MDI verification is better than the original
scenario for the following reasons.

First, in the 1s-DI scenario, it is usually not easy to test the
assumptions such as reliability of experimenters or accuracy
of the measurement apparatus. In contrast, in the MDI sce-
nario, the assumption of the generation of quantum states is
open to a test from an external party. Any ombudsman can
bring their own measurement apparatus and test generated
quantum states via state tomography. In this sense, we can
say that the MDI verification is more reliable.

Second, in the MDI scenario, measurement inefficiency
does not affect steerability verification, along a similar line
with the MDI entanglement verification [34]. When losses
occur to one of the parties, they lose quantum correlations
and thus their assemblage is described by an unsteerable one
that contributes zero to the score. Therefore, the effect is
that the probability part, Tr[(QC′C ⊗ PBB′

)(τ T
z ⊗ ρCB

a|x ⊗ ωT
y )],

is multiplied by measurement efficiencies of Charlie and Bob.
Since a positive factor does not change sign, unless one of the
measurement efficiencies of Charlie and Bob is zero, the score
is nonpositive for any unsteerable assemblage and positive for
the Choi assemblage {ρ|ψ〉

a|x }a,x. This guarantees loss tolerance
of the MDI steering verification with respect to Charlie and
Bob.

Third, in the MDI scenario, imperfect generation of quan-
tum states can be analyzed and its effect on the verification
protocol can be quantified. For imperfect preparation of quan-
tum questions, when the type of the questions and form of the
score are set in a two-qubit system, the effect of misaligned
quantum states to the score is exactly quantified in Ref. [35]
and generalized for inefficient measurements in Ref. [46].
Regardless of the type of the quantum channel through which
quantum questions are transmitted, there is no chance for
passing the steering verification using an unsteerable assem-
blage because the effect of quantum channels can be absorbed
in the optimal POVM elements [35]. Furthermore, for imper-
fect generation of pure states with the full Schmidt rank which
are used for the channel-state duality, although we cannot
obtain perfect Choi assemblage obtained by |ψ〉, we can still
verify the channel steering in an MDI way as follows.

We note that misalignment in state preparation with gen-
erating different bipartite pure states of the full Schmidt rank
does not change the protocol because the channel-state duality
holds for any bipartite pure state with the full Schmidt rank.
We also consider the case that we fail to generate a perfect

full Schmidt-rank pure state. The generated state is then a
classical mixture of the full Schmidt-rank pure state and some
undesired noise that is unsteerable as

ρCD
w = w|ψ〉〈ψ | + (1 − w)σnoise, (24)

where σnoise denotes unsteerable noise and 0 � w � 1. A
typical example is a colored noise, σnoise = ∑

i pi|ii〉〈ii|, gen-
erated by decoherence of the bipartite pure state |ψ〉〈ψ | =∑

i, j
√

pi p j |ii〉〈 j j|. We observe that if all off-diagonal parts of
the pure state |ψ〉〈ψ | disappear it results in the colored noise.
If we use the state in Eq. (24) for the channel-state duality, we
obtain(

IC ⊗ �D→B
a|x

)(
ρCD

w

)
= w ρ

|ψ〉
a|x + (1 − w)

(
I ⊗ �D→B

a|x
)
[ σnoise ], (25)

where {ρ|ψ〉
a|x }a,x is the Choi assemblage obtained by |ψ〉 from

the given channel assemblage {�D→B
a|x }a,x. One can consider

Eq. (25) as a convex combination of two state assemblages
{ρ|ψ〉

a|x }a,x and {(I ⊗ �D→B
a|x )[ σcolored ]}a,x. According to the the-

orems in Ref. [39], local operations do not increase steer-
ability of a state assemblage, thus {(I ⊗ �D→B

a|x )[ σnoise ]}a,x re-
mains unsteerable. Meanwhile, from the definition of steering
measures such as steerable weight [47] or steering robustness
[12], the steering measure is zero if and only if the assemblage
is unsteerable. Furthermore, forenamed steering measures
are convex monotones [39], which means that, for any real
number 0 � r � 1 and two assemblages {ρa|x}a,x and {σa|x}a,x,

S[ rρa|x + (1 − r) σa|x] � r S(ρa|x ) + (1 − r) S(σa|x ), (26)

where S is the steering measure. As a consequence, a nonzero
steering measure of Eq. (25) implies a nonzero steering
measure of the Choi assemblage obtained by |ψ〉, {ρ|ψ〉

a|x }a,x.
Therefore, by verifying steerability of Eq. (25), we end up
with verifying channel assemblage {�D→B

a|x }a,x.
We need to find out how much unsteerable noise can be

tolerated. In other words, this is the least amount of noise re-
quired to obliterate steerability of the assemblage. This lower
bound is determined by steering robustness of the assemblage
R({ρa|x}) [12]:

R({ρa|x}) = inf
{σa|x}

t such that

ρa|x + t σa|x
1 + t

is an unsteerable assemblage, (27)

where the infimum is taken over the set of all assemblages.
If we restrict {σa|x} to a set of unsteerable assemblages, the
obtained value, say RUS ({ρa|x}), will be larger than or equal to
R({ρa|x}), and we determine the amount of allowed noise by

RUS ({ρ|ψ〉
a|x })

1+RUS ({ρ|ψ〉
a|x })

. Therefore, the threshold of the noise in generating

the pure state |ψ〉 to verify steerability of the channel assem-

blage is lower bounded by
R({ρ|ψ〉

a|x })

1+R({ρ|ψ〉
a|x })

. This tells us that, even if

any bipartite pure state with the full Schmidt rank can be used
to obtain steerability correspondence, in a practical situation,
we should use states of which their Choi assemblage has high
steering robustness to endure the undesired noise.

We finally pose several questions. First, how much would
be a gap between R and RUS? Second, how can we find the
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pure state |ψ〉 which gives the largest steering robustness (and
RUS) for a given channel assemblage {�D→B

a|x }a,x? (A mixed
state cannot give the largest value due to the linearity of the
quantum channel and convexity of steering robustness.) Third,
does a Choi assemblage preserve the order of the steering
measure for pure states? In other words, for a given channel
assemblage {�D→B

a|x }a,x and for pure states |ψ〉 and |φ〉 such
that S(|ψ〉) � S(|φ〉), where S(|X 〉) is a steering measure of
pure state |X 〉, would it be true that S({ρ|ψ〉

a|x }) � S({ρ|φ〉
a|x })?

These deserve further investigations.

VI. CONCLUSION

We have proposed a way to verify the channel steering in
an MDI manner. We first converted a channel assemblage to
a state assemblage via Choi-Jamiołkowski isomorphism for
a bipartite pure state with the full Schmidt rank, and then
determined steerability of the state assemblage. We applied
the canonical method of MDI verification of state steering
to the Choi assemblage obtained by |ψ〉, and showed that
the steering criterion, called the score, is nonpositive for any
unsteerable state assemblages while it is positive for the Choi
assemblage. As a consequence of steerability correspondence
we proved that this verifies steerability of the given channel
assemblage.

We further analyzed the situation of imperfect preparation
of a pure state with the full Schmidt rank to obtain the Choi
assemblage. A typical case would be that the pure state suffers
from decoherence and thus some portion of it is converted into
colored noise, just like a Werner state. We showed that not
only for colored noise, but also for any type of unsteerable
noise, can we verify channel steering in an MDI manner for
a portion of undesired noise bounded from below by steering
robustness of the state assemblage.

Our paper leads to several open questions.
(1) How much is a gap between R and RUS?
(2) How can we find the pure state which gives the maximal

steering robustness for a given channel assemblage?
(3) Does a Choi assemblage preserve the order of the

steering measure for pure states?
We leave these problems for future research.
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