
ARTICLE OPEN

Optimal Gaussian measurements for phase estimation in
single-mode Gaussian metrology
Changhun Oh1, Changhyoup Lee 2, Carsten Rockstuhl2,3, Hyunseok Jeong1, Jaewan Kim4, Hyunchul Nha4,5 and Su-Yong Lee4

The central issue in quantum parameter estimation is to find out the optimal measurement setup that leads to the ultimate lower
bound of an estimation error. We address here a question of whether a Gaussian measurement scheme can achieve the ultimate
bound for phase estimation in single-mode Gaussian metrology that exploits single-mode Gaussian probe states in a Gaussian
environment. We identify three types of optimal Gaussian measurement setups yielding the maximal Fisher information depending
on displacement, squeezing, and thermalization of the probe state. We show that the homodyne measurement attains the ultimate
bound for both displaced thermal probe states and squeezed vacuum probe states, whereas for the other single-mode Gaussian
probe states, the optimized Gaussian measurement cannot be the optimal setup, although they are sometimes nearly optimal. We
then demonstrate that the measurement on the basis of the product quadrature operators X̂P̂ þ P̂X̂ , i.e., a non-Gaussian
measurement, is required to be fully optimal.
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INTRODUCTION
Gaussian states are useful resources in quantum optical technol-
ogy.1–4 Their intrinsic features that enable full analytical calcula-
tions for any Gaussian states and operations have attracted
intensive interests from the theoretical perspective in many
scientific areas. Furthermore, their experimental control is less
demanding compared to those required for non-Gaussian states
such as Fock states. Consequently, they offer much promising
building blocks for quantum information processing from a
practical point of view. Such fascinating aspects have boosted
both theoretical and experimental studies with Gaussian states
over the last decade in a broad range from fundamentals to
applications.
Gaussian states are often cooperated with the so-called

Gaussian measurements, defined as a measurement scheme that
produces a Gaussian probability distribution of outcomes for any
Gaussian state.3 Typical Gaussian measurements are the homo-
dyne and heterodyne measurements, but a general Gaussian
positive-operator-valued measure (POVM) can also be con-
structed.5 Gaussian measurements enable the full characterization
of all Gaussian states,6 so that they can be used for testing a
necessary and sufficient condition for the inseparability of
Gaussian states.7,8 It has been demonstrated that Gaussian
measurements sufficiently constitute the optimal set of POVMs
for a minimization involved in the computation of quantum
discord for Gaussian states.9,10 In particular, the homodyne
detection has offered not only an optimal tool to distinguish
two pure single-mode Gaussian states,11 but also a nearly optimal
estimation of Gaussian quantum discord for small values of
discord.12 On the other hand, it has also been shown that
Gaussian states cannot be distilled by local Gaussian operations

with classical communications.13,14 Moreover, the violation of the
Bell inequality requires non-Gaussian measurements,15,16 and
there also exist two-mode Gaussian states whose quantum
steering can be demonstrated only by non-Gaussian measure-
ments.17,18 Thus, a question arises in the context of quantum
metrology: are Gaussian measurements a sufficient tool for
Gaussian metrology, where the parameter being estimated is
encoded to Gaussian probe states?
In this work, we address this question by considering a fully

Gaussian single-mode metrology for phase estimation, as
depicted in Fig. 1. To our aim, an arbitrary single-mode Gaussian
probe state is considered to undergo a phase operation in a
Gaussian noise environment. The phase-shifted probe state is then
analyzed by Gaussian measurements, characterized by control
parameters being optimized in order to minimize the estimation
error, or equivalently to maximize the associated Fisher informa-
tion (FI).19,20 The maximal FI obtained by the optimized Gaussian
measurement sets the minimum bound of the estimation error
according to the Cramér-Rao inequality. We compare such
minimum bounds with the ultimate bound calculated by quantum
Fisher information (QFI), the FI maximized over all POVMs,
including non-Gaussian measurements.19,20 As a result, we find
that there exist three types of optimal Gaussian measurements
depending on displacement, squeezing, and thermalization of the
probe state. We also show that the optimally chosen Gaussian
measurements enable one to achieve the ultimate error bound
when a phase information is encoded in a displaced thermal state,
or a squeezed vacuum state, while non-Gaussian measurements
are required for the other kinds of single-mode Gaussian states to
attain the ultimate bound. We then prove that the required non-
Gaussian measurement is the POVMs constructed over the
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eigenbasis of the product quadrature operators X̂P̂ þ P̂X̂ . The
results of this work not only cover all partial results that have been
discussed so far in the literature21–26 (as shall be explained in
detail throughout this work), but also offer rich conclusive
discussions, with the full generality, regarding phase estimation
using single-mode Gaussian states. We thus expect our general
study to be fundamentally interesting, and also practically useful
in cases where metrological resources are limited.
In a fully Gaussian single-mode metrology for parameter

estimation as depicted in Fig. 1, we employ a single-mode
Gaussian state as a probe state, and let it evolve under the
influence of a Gaussian environment in which the encoding of a
parameter also takes place. We aim to estimate the parameter ϕ
while minimizing the associated estimation error by choosing an
optimal Gaussian measurement setup. The parameter ϕ being
encoded can be an optical phase, loss rate, squeezing parameter,
temperature, frequency, and so on. In this work, we particularly
choose a single-mode phase for the parameter ϕ while leaving the
studies on the other types of parameter estimation for future
works. In the following we shortly discuss the different ingredients
to be considered.
Any single-mode Gaussian state can always be written by a

displaced squeezed thermal state,1–3 defined as

ρ̂in ¼ D̂ðαinÞŜðξ inÞρ̂Tðnth;inÞŜyðξ inÞD̂yðαinÞ; (1)

where ρ̂T ðnth;inÞ denotes a thermal state with an average photon
number of nth;in ¼ Tr½n̂ρ̂T ðnth;inÞ�, D̂ðαinÞ ¼ expðαinây � α�inâÞ is a
displacement operator with αin ¼ αinj jeiθc , and Ŝðξ inÞ ¼
exp 1

2 ξ
�
inâ

2 � 1
2 ξ inâ

y2� �
is a squeezing operator with ξ in ¼ rineiθs

for rin � 0. A Gaussian state is known to be characterized in terms
of, by definition, only the first and second moments. So it is often
convenient to rewrite a single-mode Gaussian state of Eq. (1) by
the covariance matrix σ and the displacement vector d, defined as
σjk ¼ hfx̂j � hx̂ji; x̂k � hx̂kigi=2, and dj ¼ hx̂ji, respectively, for the
quadrature operators x̂1 ¼ ðâþ âyÞ= ffiffiffi

2
p

and x̂2 ¼ ðâ� âyÞ= ffiffiffi
2

p
i.

The latters also read as x̂1 ¼ X̂0 and x̂2 ¼ P̂0 (or X̂π=2), where the
rotated quadrature operator is given by X̂θ ¼ R̂yðθÞX̂R̂ðθÞ [or
P̂θ ¼ R̂yðθÞP̂R̂ðθÞ] and R̂ðθÞ ¼ e�iθâyâ . The σin and din for the input
state of Eq. (1) read as

σin ¼ 2nth;in þ 1
2

cosh 2rin � sinh 2rin cos θs �sinh 2rin sinθs
�sinh 2 rin sin θs cosh 2rin þ sinh2 rin cos θs

� �
; (2)

din ¼
ffiffiffi
2

p αinj jcos θc
αinj jsin θc

� �
: (3)

The average number of photons in a single-mode Gaussian
state of Eq. (1) is then written as N ¼ 1

2 Tr σ½ � þ dj j2�1
� �

.
We suppose that a phase shift by an operator R̂ðϕÞ occurs to

the Gaussian probe state of Eq. (1). The phase shifter transforms
the covariance matrix and displacement vector in a way
that θs→ θs− 2ϕ in Eq. (2) and θc→ θc− ϕ in Eq. (3), resulting
in σin,ϕ and din,ϕ.

We consider the Gaussian environment, under which the
Gaussian probe state evolves, but still remains in a Gaussian
state. The dynamics of the probe state ρ̂ evolving under a typical
Gaussian dissipative channel in thermal equilibrium can be
described by the quantum master equation, written in the
interaction picture as

dρ̂ðtÞ
dt

¼ γ

2
neL½ây� þ ðne þ 1ÞL½â�� �

ρ̂ðtÞ; (4)

where L½ô�ρ̂ðtÞ ¼ 2ôρ̂ôy � ôyôρ̂� ρ̂ôyô
� �

with a damping rate of
γ, and ne 2 R represents the average number of thermal photons
of the environment.1 The terms proportional to L â½ � and to L ây

	 

describe losses and phase-insensitive linear amplification pro-
cesses, respectively. The solution of Eq. (4) can be written for the
covariance matrix and the first moment vector as
σ ¼ 1� ηð Þσ1 þ ησin, and d ¼ ffiffiffi

η
p

din, where η ¼ e�γt denotes
the effective transmission coefficient and σ1 ¼ ne þ 1

2

� �
I2 with I2

being a 2 × 2 identity matrix. Note that the output state
characterized by σ and d is still a Gaussian state.3 The evolution
of the state ρ̂ under such thermal environment commutes with
the phase shift operation introduced above, so that all losses
present in the channel can be assumed to have occurred before
the phase shifter, causing a modification to parameters in Eq. (1).
Consequently, the state that contains the effect of losses is written
in the same decomposition of Eq. (1), but with modified
parameters given as

αin ! α ¼ ffiffiffi
η

p
αin; (5)

rin ! r ¼ 1
2
ln

ð1� ηÞð1þ 2neÞ þ ηð1þ 2nth;inÞe2rinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1þ 2nth;inÞ þ ð1� ηÞð1þ 2neÞ
	 
2þ4ηð1� ηÞð1þ 2nth;inÞð1þ 2neÞsinh2rin

q
2
64

3
75;

(6)

nth;in ! nth ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1þ 2nth;inÞ þ ð1� ηÞð1þ 2neÞ
	 
2þ4ηð1� ηÞð1þ 2nth;inÞð1þ 2neÞsinh2rin

q
� 1

2
;

(7)

for

ρ̂ ¼ D̂ðαÞŜðξÞρ̂T ðnthÞŜyðξÞD̂yðαÞ; (8)

where ξ ¼ reiθs and the modified thermal state ρ̂TðnthÞ has the
average photon number of nth. Although the modified para-
meters in Eq. (8) represent all kinds of single-mode Gaussian
states, it is worth using the expressions in Eqs. (5)–(7) to
distinguish the role of the initial thermal photons (nth,in) from
that of the environmental thermal photons (ne). Also note that the
initial phases θc and θs remain the same due to the fact that a
thermalization process does not affect the phase of the system. As
mentioned, the phase shift operation is considered to occur to this
lossy state, and in short, the probe state is transformed as

σin �!loss σ �!phase shift
σϕ; (9)

din loss
�!

d phase shift
�!

dϕ: (10)

We then analyze the output state of σϕ and dϕ by a Gaussian
measurement, which we shall introduce below.
The POVM element yielding a measurement outcome y from a

general Gaussian measurement can be written as

Π̂y ¼ 1
π
D̂ðyÞΠ̂0D̂yðyÞ; (11)

where Π̂0 is a density matrix of a single-mode Gaussian state.3,27

The probability of obtaining the measurement outcome y is
calculated by the overlap between the phase-encoded probe
state ρ̂ϕ and the displaced measurement basis Π̂y , i.e.,

pðyÞ ¼ Tr½Π̂y ρ̂ϕ�. The displacement operator D̂ðyÞ varies the
center of the measurement basis to scan across the entire

Fig. 1 Scheme of a fully Gaussian single-mode metrology. The
Gaussian probe state evolves under Gaussian environment, where
the parameter ϕ being estimated is encoded to the probe state. The
output state is then analyzed by a Gaussian measurement
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phase space, so that
R
dyΠ̂y ¼ I. Note that the probability

distribution of the measurement outcome for Π̂0 being a
squeezed thermal state can be decomposed into a mixture of
those for Π̂0 being squeezed vacuum states. We thus assume Π̂0

to be only a squeezed vacuum state without loss of generality
according to the data processing inequality.28,29 Typical types of
Gaussian measurement are the homodyne measurement
[shown in Fig. 2a] and heterodyne measurement [shown in
Fig. 2b], for which Π̂0 is an infinitely squeezed vacuum state, and
Π̂0 is a vacuum state, respectively. Such general Gaussian POVMs
can be performed experimentally by using general-dyne
measurement,30 as shown in Fig. 2b. The squeezing parameter
of seiψ with s ≥ 0, characterizing Π̂0, can be controlled in the
general-dyne measurement setup by adjusting a transmittance τ

of the beam splitter in a setup shown in Fig. 2b, i.e., s ¼
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ=ð1� τÞp

with τ ≥ 1/2, and the phase ψ can be tuned by
varying phases of the local oscillator modes in sub-homodyne
detection setups. The outcome y is then obtained as30

y ¼ 1ffiffiffiffiffi
2τ

p Xψ=2e
iψ2 þ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� τÞp Pψ=2e
iψ2; (12)

where Xψ/2 and Pψ/2 are the rotated quadrature variables, being
measured in the respective output ports of the beam splitter.
From a parameter estimation theory, the error of the estimator

ϕ̂ is typically defined by the mean-squared-error
Δ2ϕ ¼ hðϕ̂� ϕÞ2i, where 〈..〉 denotes the average taken over all
measurement results and ϕ is the true value of the parameter. It is
known that for any unbiased estimator, the error Δ2ϕ is bounded
by the inverse of FI, written by

Δ2ϕ � 1
MFðϕÞ ; (13)

where M denotes the number of repetition of measurement and
the FI is defined as

FðϕÞ ¼
Z

dy
1

pðyjϕÞ
∂pðyjϕÞ

∂ϕ

� �2

: (14)

Here, pðyjϕÞdy is a conditional probability of finding the
experimental result between y and y+ dy for a given parameter
ϕ. Inequality of Eq. (13) is called the Cramér-Rao inequality,31 and
can be asymptotically saturated in the limit of large M by the
maximum likelihood estimator.32

The Gaussian measurement of Eq. (11) we consider in this work,
by definition, produces a Gaussian probability distribution for the
measurement outcomes y’s. In this case, the FI can be calculated in
terms of the second moment matrix ∑ and the first moment vector
ν of the measurement outcome probability distribution via33,34

FðϕÞ ¼ ∂νT

∂ϕ
Σ�1 ∂ν

∂ϕ
þ 1
2
Tr Σ�1 ∂Σ

∂ϕ
Σ�1 ∂Σ

∂ϕ

� �
: (15)

In the case of a general Gaussian measurement, there are free
parameters that need to be optimized to maximize F(ϕ): the
squeezing parameters of s and ψ for Π̂0.
The Cramér-Rao bound provides the ultimate bound for a

chosen measurement setup, but there is no guarantee that the
chosen measurement setting is optimal. In other words, the FI of
Eq. (14) varies with measurements and is maximized by choosing
an optimal measurement. The optimization is done over all POVMs
such that Π̂k � 0 and

R
dkΠ̂k ¼ I, yielding the maximal FI as

HðϕÞ ¼ max
fΠ̂kg

FðϕÞ; (16)

called the QFI.19,20 Thus, the QFI gives the ultimate lower bound of
the mean-squared-error, written as

Δ2ϕ � 1
MFðϕÞ �

1
MHðϕÞ : (17)

This last expression is called the quantum Cramér-Rao
inequality.
For a given density matrix ρ̂ ¼ P

n pnjψnihψnj, where
hψnjψmi ¼ δn;m, evolving to ρ̂ϕ ¼ e�iĜϕρ̂eiĜϕ with a generator Ĝ,
the QFI can be calculated as35

HðϕÞ ¼ 2
X
n;m

ðpn � pmÞ2
pn þ pm

jhψnjĜjψmij2: (18)

In our case, the generator is given as Ĝ ¼ âyâ, and the QFI is
thus found to be24,25

HðϕÞ ¼ 2ð2nth þ 1Þ2sinh22r
2n2th þ 2nth þ 1

þ 4jαj2
2nth þ 1

cosh r � eiðθs�2θcÞsinh r


 

2:

(19)

Note that there is no dependence of ϕ, so that the ultimate
error bound is equal for all ϕ’s.

RESULTS
Optimal Gaussian measurements
We look for an optimal Gaussian measurement setup for the
phase estimation with single-mode Gaussian probe states. A
Gaussian measurement is said to be an optimal Gaussian
measurement if it is optimized to yield a maximal FI. Furthermore,
we call it the optimal measurement if the maximized FI reaches
the QFI obtainable by an optimal POVM. For single-mode Gaussian
probe states classified to three types, we explore whether the
optimal Gaussian measurement schemes can constitute the
optimal measurement setup.

Displaced thermal state. Let us first consider a displaced thermal
state (DTS) of Eq. (1) with rin= 0 in a lossy channel characterized
by η and ne. The modified parameters of Eqs. (5)–(7) due to loss
are given by

r ¼ 0; (20)

nth ¼ 1
2

ηð2nth;in þ 1Þ þ ð1� ηÞð2ne þ 1Þ � 1
	 


; (21)

α ¼ ffiffiffi
η

p
αin: (22)

Fig. 2 Optical setups of Gaussian measurements. a Setup for
homodyne detection, where the signal and the local oscillator with
phase ψ/2 are mixed by a 50:50 beam splitter and the difference of
photocurrents is measured. This setup implements the measure-
ment of the rotated quadrature operator X̂ψ=2. b Measurement setup
for general Gaussian measurement characterized by a squeezing
parameter seiψ. The signal and the vacuum are mixed by a beam
splitter with a transmittance τ, and quadrature operators X̂ψ=2 and
P̂ψ=2 are measured by the homodyne detection on the respective
output modes

C. Oh et al.
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For the DTS, the QFI of Eq. (19) takes the form of36

HDTS ¼ 4 αj j2
2nth þ 1

; (23)

whereas the FI for a general Gaussian measurement is written as

FDTS ¼ 2 αj j2 1þ 2nth þ cosh 2sDTS � cos χDTSsinh2sDTS½ �
1þ 2nthðnth þ 1Þ þ ð2nth þ 1Þcosh2sDTS ; (24)

where χDTS= 2(θc− ϕ)− ψ. We find that when sDTS→∞ and χDTS
= π, FDTS is the same as HDTS, and when nth= 0, FDVS= HDVS= 4|
α|2. This means that the homodyne detection is the optimal
measurement setup for any nth, α, η, and ne. More detailed
behaviors are explained below.
In Fig. 3a, the density plot represents FDTS as a function of |α|2

and nth, manifesting that the largest FI is obtained at the right
lower corner, where nth= 0, given the parameter regime. The
dashed lines correspond to the states with an equal average
photon number N= |α|2+ nth. This shows that for a given average
photon number, reducing thermal contributions enables one to
achieve larger FIs. The effects of loss channels are also considered
here for a given example input state of |αin|

2= 1 and nth,in= 1
(i.e., Nin= 2) when (i) ne > Nin, (ii) ne= Nin, (iii) ne= nth,in, and (iv) ne

< nth,in. The arrows represent a decrease in the transmittance
coefficient η (or equivalently an increase in the loss rate γ for a
given propagation time t), changing nth and α according to Eqs.
(21) and (22). It clearly reveals that all lossy cases decrease the FI
with η, i.e., losses are detrimental.
The estimation error bound Δϕ is also shown as a function of an

average photon number N in Fig. 3b, for any possible α and nth. It
displays that the minimal error is achieved only by the displaced
vacuum state, i.e., a pure coherent state α. The dashed lines
represent the states with an equal α but nth varying, i.e., indicating
that adding thermal photons to the probe state always increases
the estimation error. It is also shown that the corresponding errors
to examples of (i)–(iv) considered in Fig. 3a shoot up so quickly.
Therefore, the best state out of all possible displaced thermal

states for a fixed average photon number is a pure coherent state.
This conclusion continues to hold even when losses are present, i.e.,
the use of a pure coherent state with nth,in= 0 as an input attains
the ultimate limit obtained by the QFI for any ne and η. For any
cases, this ultimate limit is achieved by the homodyne detection,
one of typical Gaussian measurements. In other words, the optimal
Gaussian measurement is the optimal measurement for the case
when the displaced thermal state is used for phase estimation.

Squeezed thermal state. A second type of single-mode Gaussian
states is a squeezed thermal state (STS) in Eq. (1) with αin= 0.
Consideration of such state is important when impure squeezed
states are used in an experiment.37 Even much highly squeezed
states that have recently been generated38 have a non-negligible
thermal noise, causing an asymmetry between the squeezing and
anti-squeezing level in units of dB. In the presence of loss, the QFI
of Eq. (19) takes the form of36

HSTS ¼ CHsinh
22r; (25)

where CH ¼ 2ð2nth þ 1Þ2=ð2n2th þ 2nth þ 1Þ, and the modified
parameters of r and nth are to be obtained by Eqs. (5) and (7).
Here, HSTS reveals a remarkable positive contribution of thermal
photons of the probe state;36,39 a twofold enhancement in the QFI
is asymptotically achieved when nth→∞.39 It is also interesting to
see that for a given total energy N, HSTS is greater than the
standard quantum limit (SQL) of HSQL= 4N when

sinh2r> 2n2th � 2nth � 1þ ½1þ 4nthðnth þ 1Þðn2th þ nth þ 3Þ�1=2
n o

=4

ð2nth þ 1Þ. This condition for quantum enhancement can be
shown to be stricter than the non-classicality condition of STSs,
written as e�2rð2nth þ 1Þ>1,40,41 since in phase estimation a pure
coherent state is definitely superior to a mixture of coherent
states, into which STSs can be decomposed when the non-
classicality condition is violated.
For a squeezed vacuum state (SVS) in the absence of loss (i.e., r

= rin and nth= 0), the homodyne detection is known to be an
optimal measurement,21,22 i.e., the FI of Eq. (15) in the limit
sSVS→∞ is written as

FSVS ¼ 2sinh22r; (26)

where the optimal angle is chosen such that cos χSVS ¼ tanh 2r for
ψ ¼ θs � 2ϕ� χSVS.

22,36,37 It is apparent that the FI of Eq. (26) is
the same as the QFI when nth= 0, i.e., the optimal Gaussian
measurement is the optimal measurement when a squeezed
vacuum probe state is used in the absence of losses.
When a thermal noise is initially present in the input state or

flows into the probe state from the environment, i.e., nth≠0, a
general Gaussian measurement needs to be optimized to
maximize the FI. As a result, we find two types of optimal
Gaussian measurements depending on the value of nth. The first

type is achieved in the limit sðIÞSTS ! 1 with cos χðIÞSTS ¼ tanh2r,

while the second type is when sðIIÞSTS ¼ r with cos χðIIÞSTS ¼ 1. The

Fig. 3 Phase estimation with DTSs and optimal Gaussian measure-
ments. a The density plot represents FDTS of Eq. (24) as a function of |
α|2 and nth. The dashed lines show the cases of the states with an
equal average photon number. Four examples of Gaussian environ-
ments are considered here for a given input state of |αin|

2= 1 and
nth,in= 1: (i) ne= Nin+ 2, (ii) ne= Nin, (iii) ne= nth,in, and (iv) ne= nth,
in− 1. The direction of the arrows is along with a decrease in the
transmission coefficient η. b The Cramér-Rao bound Δϕ is shown in
terms of the averaged photon number N of the state arriving at the
measurement setup for any |α| and nth. The shaded region
represents all possible errors for any combination of |α| and nth
that builds up the photon number N considered. The lower bound
of the shaded region is given by the case using the displaced
vacuum state, and the dashed lines show the cases of the states
with an equal |α|. The four examples of (i)–(iv) considered in a are
also considered in b, showing the error bounds for all cases grow up
so rapidly
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corresponding FIs are written as

FðIÞSTS ¼ CðIÞ
F sinh22r; (27)

FðIIÞSTS ¼ CðIIÞ
F sinh22r; (28)

where CðIÞ
F ¼ 2, and CðIIÞ

F ¼ ð2nth þ 1Þ=ðnth þ 1Þ½ �2, respectively. We
then compare the prefactor C's in terms of the thermal photon

number. Figure 4 shows that when nth<n
ðSTSÞ
th;c � 2�1=2, CðIÞ

F

outperforms CðIIÞ
F , but the relative behavior is reversed when

nth>n
ðSTSÞ
th;c . At nth ¼ nðSTSÞth;c , they are the same, i.e., CðIÞ

F ¼ CðIIÞ
F . This

means that the homodyne detection is the optimal Gaussian
measurement when nth � nðSTSÞth;c , while the second type Gaussian
measurement is the optimal Gaussian measurement when

nth � nðSTSÞth;c . This is in stark contrast to the conclusion of the work
in ref. 23, where a homodyne detection is found to be always
optimal among Gaussian measurements for the case that first
moments are fixed. Such notable disagreement occurs since the
proof given in ref. 23 has not taken into account truly all Gaussian
measurements, but only the Gaussian measurements that project
the input state into mixed Gaussian states. The latter misses the
optimality of the above type-II Gaussian measurement that
outperforms the homodyne detection when nth>n

ðSTSÞ
th;c . In the

limit of small or large nth, the FI with an optimally chosen Gaussian
measurement is asymptotically close to the QFI, but not equal.
Therefore, the Gaussian measurement settings provide nearly
optimal measurement setups in the limit of small or large nth.
In Fig. 5, we present detailed behaviors of phase estimation

using STSs. In Fig. 5a, the density plot represents the optimized FI
in terms of sinh2r and nth, showing that the largest FI is achieved
at the upper right corner, in which both sinh2r and nth are
maximal given the parameter regime. In other words, adding
initial thermal photons (nth,in) with fixing a squeezing parameter
helps to increase the FI, as in the QFI. Similar positive contributions
of thermal photons have been reported in refs. 36,39. However,
when the total average photon number is fixed, which is often
restricted when a vulnerable bio-chemical transducer is
employed,42 a pure squeezed state is required for a maximal FI.
This is manifested by the dashed lines that denote the squeezed
thermal states having an equal average photon number N. We
also consider the effect of loss channel for a given example input

state of sinh2rin ¼ 1 and nth,in= 2 (i.e., Nin= 7) when (i) ne > Nin, (ii)
ne= Nin, (iii) ne= nth, and (iv) ne < nth. As before, the arrows
represent the direction along which the transmission coefficient η
decreases, or equivalently the loss rate γ increases. It is clear that
the FI monotonically decreases with a decrease of η for any cases.
Also note that unlike the initial thermal photons, the contribution
of the environmental thermal photons (ne) is always negative.
In Fig. 5b, the estimation error bound of the phase estimation

using STSs is presented, in which the shaded region includes all
possible values of error bounds for the considered states. The
region is bounded by the lower limit, achieved by the case using
the SVS. The dashed lines represent the states having an equal
squeezing strength r. This shows that an increase of nth while
keeping r unaltered helps to further decrease the estimation error,
as already remarked previously. The lossy cases considered in Fig.
5a are also presented, displaying that the errors quickly shoot up
with η.

Displaced squeezed thermal state. We finally consider the most
general single-mode Gaussian state given in Eq. (1), i.e., a
displaced squeezed thermal state (DSTS) that contains displace-
ment, squeezing, and thermal photons. For such a general state,

Fig. 4 Comparison of the prefactor C’s. The prefactor CH for the QFI
is by definition always the largest, but the CðIÞ

F and CðIIÞ
F are rather

competitive: The first type CðIÞ
F

� �
is the optimal Gaussian measure-

ment when nth � nðSTSÞth;c � 2�1=2, while the second type CðIIÞ
F

� �
is the

optimal Gaussian measurement when nth � nðSTSÞth;c . Note that none of

them is the same as the QFI, but CðIÞ
F CðIIÞ

F

� �
can asymptotically be

similar to CH in the limit of small (large) nth. In other words, the
optimal Gaussian measurements are nearly optimal setups in those
limits

Fig. 5 Phase estimation with STSs and optimal Gaussian measure-
ments. a FSTS is shown as a function of sinh2r and nth. In the region,
where nth � 2�1=2, the first type Gaussian measurement is
employed, while the second type Gaussian measurement is used
for the rest region. The dashed lines denote the states having an
equal average photon number. Four examples of Gaussian environ-
ments are considered here for a given input state of sinh2rin ¼ 1 and
nth;in ¼ 2: (i) ne ¼ Nin þ 7, (ii) ne ¼ Nin, (iii) ne ¼ nth;in, and (iv)
ne ¼ nth;in � 1. The transmission coefficient η decreases in the
direction of the arrow. b The Cramér-Rao inequality provides the
lower estimation error bound Δϕ, shown in terms of the average
photon number N of the state arriving at the measurement setup for
any r and nth. The shaded region covers all possible error bounds for
any combination of r and nth that builds up the photon number N
considered. The shaded region is lower bounded by the case using
the squeezed vacuum state, and the dashed lines show an equal r.
The four examples of (i)–(iv) considered in a are also presented in b,
showing a rapid growth of the error bounds for all cases
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the QFI of Eq. (19) is maximized with the optimal phase relation θc
= θs/2. It has been shown that for a fixed average photon number
N, HDSTS is maximized when α= 0 and nth= 0, i.e., the squeezed
vacuum state is the optimal state yielding the maximal QFI.24

One can also see that the behavior of QFI with
increasing nth turns around across points at which
2α2e2rsinh�22r ¼ ð2nth þ 1Þ3=½1þ 2nthðnth þ 1Þ�2, as in ref. 39.
Now we optimize Gaussian measurements in order to maximize

the FI of Eq. (15) for displaced squeezed thermal probe states. First
of all, we set the optimal phase relations as ψ ¼ θs � 2ϕ� χ, and
θc ¼ ðπ þ θsÞ=2, which also covers the phase relations used
above. Then, the optimal angle for χ needs to be found together
with s (measurement squeezing) for given α, r, and nth.
Let us first consider the case, where no thermal photons are

involved, i.e., nth= 0, a displaced squeezed vacuum state (DSVS).
Previously we have seen that the homodyne detection scheme
provides the optimal measurement setup for both a displaced
vacuum state and a squeezed vacuum state. One might then
conclude that the homodyne detection would be the optimal
measurement setup also for the displaced squeezed vacuum state.
However, it is not the case as we discuss now. The FIs for the
optimized Gaussian measurements we found are written as

FðIÞDSVS ¼ 4e2r αj j2; (29)

FðIIÞDSVS ¼
2sinh2r þ ð1þ coth2rÞ αj j2	 
2

2
; for r≠0; (30)

with sDSVS→∞ (homodyne detection) for both cases, but different
optimal angles of χDSVS are chosen for given α and r such that

cos χðIÞDSVS ¼ 1; (31)

cos χðIIÞDSVS ¼ coth 2r � 2

e2r αj j2þsinh4r
; (32)

respectively. The above two types of optimal Gaussian measure-
ments are complementary to each other: FðIIÞDSVS is optimal when

jcosχðIIÞDSVSj<1 for r≠0, while FðIÞDSVS is optimal when jcosχðIIÞDSVSj>1. At
the boundary, FðIÞDSVS ¼ FðIIÞDSVS. The condition of jcosχðIIÞDSVSj � 1 can

be reduced to αj j � j~αðDSVSÞmax je�rsinh2r for r≠0, where
j~αðDSVSÞmax j ¼ ffiffiffi

2
p

. Such homodyne detections are better than any
other Gaussian measurements, but cannot be the optimal
measurement that attains the QFI written as
HDSVS ¼ 2sinh22r þ 4e2r αj j2. One can also show that when r= 0,
FðIÞDSVS ¼ 4 αj j2 is the same as FDVS, whereas when α= 0, FðIIÞDSVS ¼
2sinh22r with Eq. (32) being reduced to cosχðIIÞDSVS ¼ tanh2r is equal
to FSVS of Eq. (26).
Now let us turn to the case that thermal photons exist in the

Gaussian probe state. For this general state, we find that three
types of optimal Gaussian measurements exist and the corre-
sponding FIs are written as

FðIÞDSTS ¼
4e2r αj j2
2nth þ 1

; (33)

FðIIÞDSTS ¼
2ð2nth þ 1Þsinh2r þ ð1þ coth2rÞ αj j2	 
2

2ð2nth þ 1Þ2 for r≠0; (34)

FðIIIÞDSTS ¼
ð2nthþ1Þ2 2n2thþ2nthþ1ð Þsinh22rþ2nthðnthþ1Þð2nthþ1Þe2r αj j2

2n2thðnthþ1Þ2

� ð2nthþ1Þ3=2sinh2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nthþ1Þ3sinh2rþ4nthðnthþ1Þe2r αj j2

p
2n2thðnthþ1Þ2 for r≠0;

(35)

respectively. The respective optimal values of s and χ are listed
below.

● For type-I, sðIÞDSTS ! 1& cosχðIÞDSTS ¼ 0,
● For type-II, sðIIÞDSTS ! 1& cos χðIIÞDSTS ¼

4ð2nthþ1Þsinh2rþ2coth2rð1þcoth2rÞ αj j2
4ð2nthþ1Þcosh2rþ2ð1þcoth2rÞ αj j2 ; for r≠0

● For type-III, sðIIIÞDSTS ¼ sopt & cos χðIIIÞDSTS ¼ 0,

where
sopt ¼

ln
ð2nth þ 1Þe4r αj j2þð2nth þ 1Þ3=2e2rsinh2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nth þ 1Þ3sinh22r þ 4nthðnth þ 1Þe2r αj j2

q
ð2nth þ 1Þ3sinh22r � e2r αj j2

2
4

3
5
1=2

for r≠0:

(36)

The condition jcosχðIIÞDSTSj � 1 at which the type-II is available can

be reduced to αj j � j~αðIIÞmaxje�rsinh2r for r≠0, where j~αðIIÞmaxj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2nthÞ

p
and this is the same as j~αðDSVSÞmax j when nth= 0. On

the other hand, the condition for sopt to be a positive real number
is reduced to jαj<j~αðIIIÞmaxje�rsinh2r for r≠0, where

j~αðIIIÞmaxj ¼ ð1þ 2nthÞ3=2. In addition, there exists another bound
j~αðII;IIIÞmax j to |α|, through which type-II and type-III
are comparable. That is, the FI for type-II is greater than

that for type-III when jαj<j~αðII=IIIÞmax je�rsinh2r for r≠0, where

j~αðII=IIIÞmax j ¼ ð2nth þ 1Þ 1� ð ffiffiffi
2

p � 1Þð2nth þ 1Þ	 

=nth

	 
1=2
, while the

type-III outperforms the type-II when jαj>j~αðII=IIIÞmax je�rsinh2r
for r≠0. At the boundary, the FIs for type-II and
type-III are the same. Interestingly, these three bounds

coincide at nth ¼ nðglobalÞth;c � ð ffiffiffi
2

p � 1Þ= ffiffiffi
2

p
, i.e., resulting in

j~αðIIÞmaxj ¼ j~αðIIIÞmaxj ¼ j~αðII=IIIÞmax j ¼ 23=4, and the three types of measure-
ments serve as an optimal Gaussian measurement. Although their
setups are different, the FIs are the same at the global criticial
point. Depending on the value of α, r, and nth, there exist regions,
where each of three types constitutes an optimal Gaussian
measurement:

● Type-I is an optimal Gaussian measurement when j~αðIIIÞmaxj � j~αj
for nth<n

ðglobalÞ
th;c , or when j~αðIIÞmaxj � j~αj for nth>nðglobalÞth;c .

● Type-II is an optimal Gaussian measurement when j~αj � j~αðIIÞmaxj
for nth<n

ðglobalÞ
th;c , or when j~αj � j~αðII=IIIÞmax j for nth>nðglobalÞth;c .

Fig. 6 The regions, where one of optimal Gaussian measurements
outperforms the others, are shown in terms of nth and
j~αj2 ¼ jαj2=e�2rsinh22r. Solid lines represent the boundaries at which
both intersecting types are optimal, and all of the three types are
the optimal Gaussian measurement at a global critical point of
nðglobalÞth;c , where the boundaries coincide. When nth= 0, a transition

from type-II to type-I occurs at j~αj ¼ j~αðDSVSÞmax j. When j~αj ¼ 0, a
transition from type-II to type-III occurs at nth ¼ nðSTSÞth;c :

C. Oh et al.

6

npj Quantum Information (2019)    10 Published in partnership with The University of New South Wales



● Type-III is an optimal Gaussian measurement when j~αðIIÞmaxj �
j~αj � j~αðIIIÞmaxj for nth>nðglobalÞth;c .

● All of the three types are optimal Gaussian measurements at

nth ¼ nðglobalÞth;c and ~αj j ¼ 23=4.

These regions are clearly shown in Fig. 6. Particularly, in the
limits nth � 1; nth 	 1, ~αj j � 1 or ~αj j 	 1, the Gaussian measure-
ment setups we found are nearly optimal setups, i.e., FI ≈ QFI. Also
note that this general distinction of the regions for the three types
of optimal Gaussian measurements can be applied to all particular
input states considered in the previous sections. For example,
when nth= 0, type-I Gaussian measurement leads to the FI of Eq.
(29) and type-II Gaussian measurement results in the FI of Eq. (30).
When |α|= 0, type-II Gaussian measurement gives rise to the FI of
Eq. (27), and type-III Gaussian measurement yields the FI of Eq.
(28). When r= 0, type-I Gaussian measurement leads to the FI of
Eq. (24). Such mapping from general three types to particular
optimal Gaussian measurements is summarized in Table 1.

Optimal measurements beyond Gaussian measurements
We have shown that for displaced thermal states and squeezed
vacuum states, the optimized Gaussian measurements (i.e., the
homodyne detection) constitute the optimal setup for the phase
estimation, attaining the ultimate lower limit of estimation error.
For the other kinds of single-mode Gaussian probe states, on the
other hand, three types of optimized Gaussian measurements are
found in general. However, the maximized FIs cannot exactly
reach the QFI although they are nearly optimal in several limits.
This means that a non-Gaussian measurement is required for
those cases in order to achieve the ultimate estimation limit. One
may then question: how can we find the optimal measurement?
What kind of non-Gaussian measurement is required? We answer
this question below, finally proposing optimal measurement
operators, which has been often non-trivial.43

Let us begin with rewriting the QFI of Eq. (16) in a more
compact form as

HðϕÞ ¼ Tr½ρ̂ϕL̂2ϕ�; (37)

where L̂ϕ is the so-called symmetric logarithmic derivative (SLD)
operator, defined in a way that

∂ρ̂

∂ϕ
¼ 1

2
L̂ϕρ̂ϕ þ ρ̂ϕL̂ϕ
� �

: (38)

The second equality in Eq. (17), to which Eq. (37) is substituted,
holds when two conditions are satisfied:

Im Tr ρ̂ϕΠ̂k L̂ϕ
� �	 
 ¼ 0; (39)

ffiffiffiffiffi
Π̂k

p ffiffiffiffiffi
ρ̂ϕ

q
Tr½ρ̂ϕΠ̂k �

¼
ffiffiffiffiffi
Π̂k

p
L̂ϕ

ffiffiffiffiffi
ρ̂ϕ

q
Tr½ρ̂ϕΠ̂k L̂ϕ�

; (40)

where ρ̂ϕ is the parameter ϕ-encoded probe state. These
conditions can be satisfied if one constitutes a POVM measure-
ment setup fΠkg by a set of projection operators over the
eigenbasis of L̂ϕ,

19,35 so that the ultimate error bound given by the

QFI is achieved. Especially, for a full-rank state of ρ̂ϕ, the SLD
operator is unique, and the above condition is a necessary and
sufficient condition, i.e., the optimal setup prepared by the
projection onto the eigenbasis of the SLD is the only optimal
measurement. However, when ρ̂ϕ is a non-full-rank state, the SLD
operator is not unique and other forms of SLD operators exist to
determine the respective optimal measurement setups.19

The SLD operator for a quantum state ρ̂ ¼ P
n pnjψnihψnj with

hψnjψmi ¼ δn;m can be written as,19,25,35

L̂ϕ ¼ 2
X
n;m

hψmj∂ϕρϕjψni
pn þ pm

jψmihψnj; (41)

where the summation is taken over n, m for which pn þ pm≠0. A
single-mode Gaussian state of Eq. (8) can be spectrally decom-
posed as

ρ̂ ¼
X1
n¼0

pnD̂ðαÞŜðξÞjnihnjŜyðξÞD̂yðαÞ; (42)

where pn ¼ nnth=ð1þ nthÞnþ1. Here D̂ðαÞŜðξÞjni and D̂ðαÞŜðξÞjmi
are orthonormal to each other when n≠m. After some algebra (see
Supplementary Section I for the detail), we then find the SLD
operator for an arbitrary single-mode Gaussian state, which can be
written as

L̂ϕ ¼ AR̂ðϕÞŜð2ξÞD̂ðζÞR̂ð�θs=2ÞðX̂P̂ þ P̂X̂ÞR̂yð�θs=2ÞD̂yðζÞŜyð2ξÞR̂yðϕÞ þ CI;

(43)

where

A ¼ ð2nthþ1Þsinh2r
2n2thþ2nthþ1 ;

ζ ¼ α cosh2r þ α�eiθs sinh2r þ 1
Að2nthþ1Þ

� �
;

C ¼ 2jαj2
Að2nthþ1Þ2 sinð2θc � θsÞ:

Since the second term of the SLD in Eq. (43) only rescales the
eigenvalues, it can be absorbed into the post-data processing by
an optimally chosen estimator. The first term, on the other hand,
plays a crucial role in determining the optimal measurement setup
that saturates the quantum Cramér-Rao bound. This indicates that
for displaced squeezed thermal states, the optimal measurement
setup needs to be constructed necessarily over the eigenbasis of
X̂P̂ þ P̂X̂ .44 Therefore, this result reveals that any single-mode
Gaussian measurement cannot be the optimal detection scheme
for displaced squeezed thermal states.
In particular, for displaced thermal states, the SLD of Eq. (43) can

be simplified (see Supplementary Section II for the detail) to be

L̂ϕ ¼ 2
ffiffiffi
2

p
αj j

2nth þ 1
X̂θc�ϕ�π

2
: (44)

This is the only optimal measurement setup for achieving the
ultimate bound when displaced thermal states are used, as found
also in ref. 23. It is apparent that the POVMs constructed over the
eigenbasis of L̂ϕ in Eq. (44) performs the homodyne detection. On
the other hand, for squeezed thermal states, the SLD of Eq. (43) is
simplified (see Supplementary Section III for the detail) to be

L̂ϕ ¼ ð2nth þ 1Þsinh2r
2n2th þ 2nth þ 1

X̂θs=2�ϕP̂θs=2�ϕ þ P̂θs=2�ϕX̂θs=2�ϕ

� �
: (45)

This is the only optimal measurement setup for the case of the
squeezed thermal state input, and cannot be realized by any
single-mode Gaussian measurement. This form has not been
discussed elsewhere. The SLD of Eq. (45) is valid also when nth= 0,
i.e., when the probe state is a pure state, but in this case other
type of optimal measurement apart from the SLD can exist; the
homodyne detection has been shown to be optimal, satisfying the
conditions in Eqs. (39) and (40) although it is irrelevant to the SLD
of Eq. (45) (see Supplementary Section IV for the proof).

Table 1. Reduction of three types of optimal Gaussian measurements
to the measurements considered for particular Gaussian probe states
is shown in terms of FI

nth= 0 |α|= 0 r= 0 nth= 0= |α| nth= 0= r

F(I)DSTS F(I)DSVS — FDTS — FDVS
F(II)DSTS F(II)DSVS F(II)STS — FSVS —

F(III)DSTS — F(I)STS — — —
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In general, the SLD operator for an arbitrary single-mode
Gaussian state can always be written in the form of45–47

L̂ϕ ¼ Lð0Þϕ þ Lð1ÞTϕ Q̂þ Q̂TLð2Þϕ Q̂; (46)

where Q̂ ¼ ðX̂; P̂ÞT is the quadrature vector, Lð0Þϕ is a real constant,
Lð1Þϕ is a real 2-dimensional vector, and Lð2Þϕ is a 2 × 2 real symmetric
matrix.
One can easily show that Lð2Þϕ is a zero matrix for the SLD

operator of Eq. (44), so that the L̂ϕ for displaced thermal states is
proportional to a rotated quadrature operator. This means that a
homodyne detection is the optimal measurement. The SLD
operator of Eq. (43), on the other hand, has non-zero Lð2Þϕ , i.e.,
Eq. (46) takes the form of

L̂ϕ ¼ Lð0Þϕ þ KQ̂
0T 0 1

1 0

� �
Q̂0; (47)

where Q̂0 is a quadrature operator vector transformed by
symplectic matrices and K is a real constant. Our result shows
that in this case, a non-Gaussian measurement is necessary to
implement the optimal measurement for displaced squeezed
thermal states. Note that Eq. (47) can be written as being
proportional to iðâ2 � ây2Þ, but cannot be diagonalized by the
Bogoliubov transformation that projects into the form of the
photon number operator in the diagonalized basis.48

It is also worth comparing the SLDs in Eqs. (43)–(45) with the
SLD that has been found for the estimation of loss parameter in
Gaussian metrology.49 For the case of loss parameter estimation in
Gaussian metrology, the SLD operator takes the form of
L̂ϕ ¼ Lð0Þϕ þ KQ̂

0TI2Q̂0. In this case, the Bogoluibov transformation
can be applied to diagonalize it to the form of the photon number
operator in the diagonalized basis, i.e., the optimal measurement
for the loss parameter estimation requires the capability of photon
number counting, whereas the eigenbasis of X̂P̂ þ P̂X̂ constructs
the optimal setup for the phase parameter estimation. This
difference implies that the kind of optimal setup depends on the
type of parameter being estimated.

DISCUSSION
In this work we have investigated the optimality of Gaussian
measurements for phase estimation in single-mode Gaussian
metrology. We have found the optimal Gaussian measurements
for all kinds of single-mode Gaussian probe states, and then
compared their associated FIs with the QFI obtainable with an
optimal POVM. We have shown that for the cases using displaced
thermal probe states or squeezed vacuum probe states, the
Gaussian measurement (i.e., the homodyne detection) offers the
ultimate optimal measurement setup, while for the other kinds of
single-mode Gaussian probe states, the ultimate error bounds can
be achieved only by the non-Gaussian measurement on the basis
of eigenstate of the product quadrature operator X̂P̂ þ P̂X̂ . With an
analysis for squeezed thermal state inputs (i.e., with zero first
moments), we have also demonstrated the counterexample
against the conclusion given in ref. 23 that the homodyne
detection is optimal among all Gaussian measurements when
first moments are fixed. Such remarkable discrepancy arises
because Gaussian measurements taken into account in ref. 23 do
not include truly all Gaussian measurements. Although the
optimized Gaussian measurements are not fully optimal, they
provide nearly optimal measurement setups in the limits when
nth→ 0 or ∞, or when ~αj j ! 0 or ∞. These nearly optimal setups
may be much more favored in an experiment, where practical
imperfections tend to nullify the difference between optimal and
nearly optimal setups.
The way the work is carried out can be applied to multi-mode

Gaussian metrologies,50 where entanglement starts to play an
important role in parameter estimation. One may also investigate

the optimality of Gaussian measurements for other types of
parameter estimation, such as loss parameter estimation or
frequency estimation. It would also be worthwhile to make a
more rigorous analysis that interprets the role of input thermal
photons nth,in in the case of a displaced thermal state and
a squeezed thermal state in future work. Furthermore, an
experimental scheme to implement projections onto the eigen-
basis of the optimal observable X̂P̂ þ P̂X̂ that reaches the
fundamental bound is yet unknown, so we leave this for future
study. We also expect the effect of a non-trivial Gaussian
environment, called the squeezing environment (e.g. see ref. 51),
or even structured environments (e.g., see ref. 52) to be studied in
the near future.
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