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Quantum state tomography is both a crucial component in the field of quantum information and
computation and a formidable task that requires an incogitable number of measurement configurations as
the system dimension grows. We propose and experimentally carry out an intuitive adaptive compressive
tomography scheme, inspired by the traditional compressed-sensing protocol in signal recovery, that
tremendously reduces the number of configurations needed to uniquely reconstruct any given quantum
state without any additional a priori assumption whatsoever (such as rank information, purity, etc.) about
the state, apart from its dimension.
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Introduction.—The characterization of an unknown
(true) quantum state ρt ≥ 0 of Hilbert-space dimension
d is a subject of immense study in quantum information
[1–3]. To fully reconstruct an arbitrary ρt, one may perform
a set of measurements that is enough to characterize all
d2 − 1 independent parameters that define ρt. Unfortunately,
the number of such measurements generally grows poly-
nomially with d, or exponentially with the number of
subsystems that determine the quantum-source complexity.
This poses a technical limitation on how far conventional
quantum tomography can go in practical experiments [4,5].
If we know a priori that rank fρt ¼ ρrg ≤ r is extremely

small, r ≪ d, then the concept of compressed sensing (CS),
whose foundation was first mathematically laid in the
context of imaging [6–8], facilitates the search for a unique
estimator by measuring much fewer configurations [9–12].
We say that the corresponding data are informationally
complete (IC) for ρr. The state-of-the-art CS measurements
to be performed given such prior information have been
constructed in Ref. [13].
The standard CS procedure, nevertheless, has two

important issues that need to be addressed. First, an a priori
knowledge about r is necessary to establish a preliminary
order-of-magnitude estimate for the number of configura-
tions needed to fully characterize ρr of rank no larger
than r. Accuracy of the final estimator is hence highly
dependent on the validity of this a priori guess. Second,
one has no means of verifying whether the measurement

data at hand are truly IC for ρr in the standard scheme.
Typically, accuracy surveys with target states are employed
[10–12] and the value of such a survey relies on the
precision of these target states. Therefore, the decision of
a priori rank information and presumed choices of target
states are ultimately debatable in the presence of exper-
imental errors, rendering the reliability of any related
tomography scheme questionable.
In this Letter, we establish a new adaptive tomography

paradigm that completely removes the need for any sort of
a priori information about ρr (except for its dimension d).
Our proposed adaptive compressive tomography (ACT)
also includes an efficient recipe to determine informational
completeness of the collected data. No target states are
ever required to validate the resulting state estimator.
The convex boundary of the quantum state space and the
positivity constraint plays the principal role in checking
whether the accumulated data are IC and adaptively choosing
measurements efficiently to uniquely reconstruct ρr, the two
of which completely define the purpose of ACT.
To demonstrate ACT, we perform an experiment with

the orbital angular momentum (OAM) of single photons
and apply ACT to states of various ranks engineered in
these degrees of freedom. Both experimental and simulated
results show that ACT requires a smaller number of
measurements to reconstruct rank-deficient quantum states
as compared to conventional CS tomography with known
types of CS measurements.
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The quantum state space and ACT.—In the absence of
statistical fluctuations, we measure a randomly chosen
computational basis fj0i; j1i;…; jd−1ig on ρr of Hilbert-
space dimension d. The corresponding Born probabilities
pj ¼ hjjρrjji (0 ≤ j ≤ d − 1) specify only the diagonal
elements of ρr, and there is in principle a data convex set
C ¼ fρjρ ↔ pj ∀ jg comprising infinitely many estima-
tors ρ̂ that are consistent with pj. Evidently, ρr ∈ C, and so
the only fundamental objective of ACT is to shrink C to a
single point with only kIC ≪ dþ 1 IC measurement bases
for r ≪ d. For noiseless situations, this point must be ρr.
To gain insights into how quantum positivity constraint

plays a major role in shrinking C, we argue in the
Supplemental Material (Sec. I [14]) that if one methodically
measures k0 ¼ ⌈ðr2 − rÞ=ðd − 1Þ⌉þ 1 orthonormal bases,
one of which being the eigenbasis Bρr of ρr, then ρ̂ ¼ ρr is
the unique positive estimator consistent with all measured
probabilities. For r ≪ d, the regime of our interest, k0 ¼ 2.
It is however clear that kIC > 2 in real-world settings where
ρr is completely unknown (apart from its dimension d), so
the famous no-go answer to Pauli’s phase-retrieval problem
[15,16] still stands. Regardless, the positivity constraint can
still ensure an efficient compression of the IC tomography
procedure solely by data analysis.
The goal of ACT is to uniquely reconstruct any given

unknown ρr through adaptively measuring one orthonormal
basis at a time according to collected data, as sketched in
Fig. 1. In the kth step of the adaptive scheme, ACT performs
two main procedures. (1) First, ACT checks whether the
probabilities pj0k0 ¼ trfρrΠj0k0 g obtained from outcomes
Πj0k0>0 (Πj0k0Πj00k0 ¼δj0;j00) of all the measured orthonormal
bases B ¼ fB1;B2;…;Bkg ¼ fΠ01;…;Πd−11;…;Π0k;…;
Πd−1kg so far are IC. Since the accumulated data define a

data convex set Ck of size sk that contains all quantum states ρ
consistent with pj0k0 , this procedure is tantamount to finding
out whether sk is zero or not. If sk¼kIC ¼ 0, then the estimator
ρ̂k¼kIC ≥ 0 consistent with the IC data is unique by definition,
and equal to ρr when statistical fluctuation is absent. (2) If
sk ≠ 0, the accumulated data collected are not IC and ACT
shall choose the next basis by analyzing Ck. Beginning with
k ¼ 1, a “good” adaptive bases sequence should lead to a
quick convergence of C → ρr as ACT progresses.
Informational completeness certification (ICC).—To

certify whether all collected data are IC or not in the kth
adaptive step, it suffices to note that since Ck is convex,
maximizing and minimizing the linear function fZðρÞ ¼
trfρZg for some operator Z over ρ ∈ Ck, respectively, give
unique solutions ρmax and ρmin to the corresponding maxi-
mum fmax;k and minimum fmin;k. Without loss of generality,
Z is taken to be a random full-rank state. We may define the
quantity sCVX;k ¼ ðfmax;k − fmin;kÞ=ðfmax;1 − fmin;1Þ that is a
size monotone (see Sec. II of Supplemental Material [14])
for Ck in the sense that sk < sk−1 if sCVX;k < sCVX;k−1—it is a
witness for the shrinkage of Ck. As more linearly indepen-
dent bases are measured, sCVX;k ≥ sCVX;kþ1 and sCVX;kIC

¼ 0

implies that skIC
¼ 0 and that all data collected are IC for a

unique reconstruction of ρr. Therefore, at every adaptive
step in ACT, we run: ICC in the kth step. (1) Maximize and
minimize fZðρÞ ¼ trfρZg for a fixed, randomly chosen full-
rank state Z ≠ 1=d to obtain fmax;k and fmin;k subject to the

following: (i) ρ ≥ 0, trfρg ¼ 1, (ii) trfρΠj0k0 g ¼ pðMLÞ
j0k0 for

0 ≤ j0 ≤ d − 1 and 1 ≤ k0 ≤ k. (2) Compute 0 ≤ sCVX;k ≤ 1

and check if it is smaller than some threshold ε. (3) If
sCVX;k < ε, terminate ACT. Continue otherwise.
The aforementioned strategy is, as a matter of fact, a

semidefinite program (SDP) [17] that can be efficiently
solved by a variety of numerical methods.We should clarify
here that while determining whether a set of measurement
bases B possesses the conventional CS property for the
entire class of rank-r states is an NP-hard problem [18],
ascertaining whether B gives a unique estimator for one
unknown ρrwith themeasurement data is, on the other hand,
only as computationally difficult as carrying out the semi-
definite program in ICC with a worst-case polynomial
complexity [17].
For experimental data

P
j0νj0k0 ¼ 1 (1 ≤ k0 ≤ k) with

statistical noise, Ck is defined as the maximum-likelihood
(ML) convex set in which all ρ ∈ Ck satisfy the physical

constraintspðMLÞ
j0k0 ¼ trfρΠj0k0 g imposed by theML principle

for quantum states ½pðMLÞ
j0k0 → pj0k0 forN → ∞� [2,3,19,20].

All arguments for noiseless data hold exactly for the ML
probabilities, so that the working principle of ICC is
perfectly robust against arbitrary noise in the sense that
sCVX;kIC

¼ 0 still implies skIC
¼ 0 for noisy data owing to the

preserved convexity of the newly defined Ck. Noise only
affects the reconstruction accuracy of the final unique

FIG. 1. Schematic diagram of a particular adaptive step in ACT
tomography. In a clockwise flow, ACT first performs ICC to
check whether data (blue) collected from measuring B are IC or
not. If not, it proceeds to choose a good basis to measure in the
next step.
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estimator relative to ρr, which is a different subject matter
for discussion.
Adaptive selection of measurement bases.—The optimal

orthonormal basis to pick in the kth step and measure in the
(kþ 1)th step is the one that minimizes sCVX;kþ1. Since ρr is
unknown, we can treat some a posteriori estimator ρ̂k from
Ck as a guess for ρr to generate simulated data during the
minimization of sCVX;kþ1 over all future basis choices. The
complicated dependence of sCVX;kþ1 on the future basis
however makes its brute-force optimization computation-
ally exhaustive for large d.
For a more tractable approach to adaptively measure

good bases, we first note that Ck<kIC
essentially contains

states with eigenbases that are distinct from fB1;…;Bkg
(see Sec. III of the Supplemental Material [14]). So even if
we know nothing about ρr, if it is rank-deficient, then
taking Bkþ1 to be the diagonal basis of a rank-deficient
ρ̂k ∈ Ck ensures a distinct measurement basis in each step
that generates a reasonably fast converging sequence
Bk → Bρr as k increases since Ck → ρr at the same time.
There is more than one approach to pick eigenbases of
rank-deficient states from Ck, and as an example we shall
consider the minimization of von Neumann entropy func-
tion SðρÞ ¼ −trfρ log ρg. A superfast algorithm suitable for
minimizing S over Ck exists [20,21]. Incidentally, it was
reported in Refs. [22,23] that entropy minimization also
offers high compressive efficiencies in both sparse-signal
and low-rank matrix recovery.
Complete ACT protocol.—All aforementioned argu-

ments can accommodate real experimental situations,
where the relative frequency data do not typically corre-
spond to physical quantum states for k > 1. The data
convex sets contain states that are now consistent with
the corresponding physical ML probabilities derived from
data, which are statistically consistent with the true prob-
abilities. The final unique estimator ρ̂kIC

would then incur a
statistical bias from ρr that drops as N increases. For many-
body quantum sources, the bases generated by ACT are
entangled. In practice, product bases are typically much
more practical to implement for such sources. While
verifying if a rank-deficient ρ̂k ∈ Ck can possess a product
eigenbasis is computationally difficult, ACT can still be
adjusted to feasibly generate near-optimal product bases
(PACT) by defining Bkþ1 to be the product basis that is
nearest to the eigenbasis of ρ̂k with respect to some given
norm using a nonlinear optimization routine. Both ACT
and PACT for any experimental setting are summarized as
follows: Beginning with k ¼ 1 and a random computational
basis B1: (1) measure Bk and collect the relative frequency
data

P
d−1
j0¼0

νj0k ¼ 1. (2) From fν0k0 ;…; νd−1k0gkk0¼1
, obtain

kd physical ML probabilities. (3) Perform ICC with the ML
probabilities and compute sCVX;k: (i) If sCVX;k < ε, terminate
ACTand take ρmax ≈ ρmin as the estimator and report sCVX;k.
(ii) Else Proceed. (4) Choose a rank deficient ρ̂k ∈ Ck [for
instance by minimizing the von Neumann entropy SðρÞ

in Ck]. (5) DefineBkþ1 to be the eigenbasis of ρ̂k for ACT, or
a basis close to it for PACT via some prechosen distance
minimization technique. (6) Set k ¼ kþ 1 and repeat.
Analysis and experiments.—We put both ACTand PACT

tomography schemes to the experimental test by comparing
their results with those from measuring random Pauli (RP)
bases considered in Refs. [10–12], the Baldwin-Goyeneche
(BG) bases in Ref. [13] that generalizes a known five-
bases construction for r ¼ 1 to an IC set of kIC ¼ 4rþ 1
bases for rank-r quantum states, and the set of random
orthonormal bases of kIC ≈ ⌈4rðd − rÞ=ðd − 1Þ⌉ studied in
Ref. [24]. This exact scaling shall be used to benchmark the
experimental kICs.
To demonstrate all three schemes (see Fig. 2), we

experimentally emulate a four-qubit (d ¼ 16) quantum
system and both entangled and product measurement
bases using an OAM-based setup. In particular, we con-
sider the Laguerre-Gauss (LG) modes with azimuthal and
radial mode indices l and p ¼ 0, respectively. Hence,
OAM states correspond to a subspace of the LG modes and
are characterized by a helical wave front given by eilϕ, where
l is the azimuthal index that corresponds to the OAM value,
andϕ is the azimuthal coordinate. The appropriate phase and
intensity patterns are realized using a holographic technique
called intensity masking, which is readily achieved by a
programmable spatial light modulator (SLM) [25]. By doing
so, we can prepare any many-body state and measurement
basis. The generated photons are detected using the projec-
tive technique of intensity flattening [26],where any arbitrary
spatial mode can be measured using an SLM followed by a
single mode fiber (SMF).
A heralded single photon source is achieved by pumping

a 3 mm β-barium borate type I nonlinear crystal with a
quasicontinuous wave laser at a wavelength of 355 nm,

FIG. 2. Schematic of the OAM-based experimental setup.
A 16-dimensional OAM state is generated at SLM-A using a
holographic technique that allows the tailoring of the intensity
and phase profile of the incoming beam. The modulated first-
order of diffraction is filtered out using an iris (I) and a pair of
lenses (f1 and f2). A similar holographic technique is used at the
second SLM-B to measure the state in a given basis. The first
measurement basis, B1, is given by the OAM computational
basis. In the case of the rank 1 state shown on SLM-A, the
corresponding eigenbasis is achieved after the fourth iteration.

PHYSICAL REVIEW LETTERS 122, 100404 (2019)

100404-3



producing photon pairs at 710 nm via spontaneous para-
metric down-conversion. A coincidence rate of 40 kHz,
within a coincidence time window of 5 ns, is measured after
filtering the photons to the fundamental Gaussian modes
using SMF. Subsequent to the generation and detection of
the photonic states, explained above, coincidence measure-
ments are recorded using single photon detectors and a
coincidence logic.
All results are summarized in Figs. 3 and 4, and the

messages conveyed are succinctly stated here: for noiseless
simulated data, in terms of average kIC over uniformly
(Hilbert-Schmidt) distributed rank-r true states, ACT is the
most efficient, since it guides the measurement basis to the
eigenbasis of ρr. The more many-body-suited PACT that
adaptively generates product bases requires a larger kIC to
yield IC data, but the average performance margin with
ACT is narrow for low-r states and is on par with the
scaling of entangled Goyeneche-type bases (kIC ¼ 4rþ 1)

for larger r. RP turns out to be least efficient amongst all
tested schemes. Even in the presence of real data noise,
both ACT and PACT remain the more favorable candidates
for tomography on general complex systems.
Concluding remarks.—The feasible concept of adaptive

compressive tomography developed here provides a power-
ful method to reconstruct any unknown rank-deficient
quantum state with optimally chosen entangled or product
orthonormal measurement bases, especially for quantum
sources of complex degrees of freedom, which includes
many-body systems.More importantly, the adaptive scheme
requires no a priori knowledge or assumptions about the
state or near-proximity target states because it can self-
sufficiently validate whether the measured data are informa-
tionally complete or not using semidefinite programming,
so that reliable compressive tomography can now be carried
out in real experimental situations with noisy data. The
superior compressive efficiencies of both entangled and
product versions of our adaptive schemes are confirmed
experimentally and demonstrated with respect to other
established protocols.
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FIG. 3. Plots of simulation (noiseless) and experimental values
of sCVX and ρ̂k fidelity against the measured basis number k for
d ¼ 16, where ρ̂k ≔ ρmin for the RP scheme. Estimated exper-
imental error bars reflect the propagated Poissonian-source
standard deviations. All plot markers are averaged over five
ρrs. The filled markers represent results for rank-1 ρrs whereas
the unfilled ones represent those for rank-3 ρrs. The insets
showcase simulation performances of rank-6 states as a demon-
stration of high-rank ðr ≈D=2Þ compressive tomography, with
1 ≤ k ≤ ðDþ 1Þ ¼ 17 restricted to the minimal bases number for
arbitrary-state tomography. The lower experimental fidelities
for RP and PACT are due to a technical bias of the OAM setup
for finite N, where bases close to the eigenbasis of ρr tend to give
estimated Born probabilities that are relatively more accurate than
those that are not. So for OAM sources, ACT is the most
favorable option, as both PACT and RP correspond to measure-
ment bases that are never close to the eigenbasis of ρr. Even with
noisy data, ICC can still validate whether the resulting ML
probabilities obtained from data are IC (left panels), which is the
point of ACT.
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FIG. 4. Plots of simulation (noiseless) and experimental values
of kIC and the ρ̂k¼kIC fidelity against the rank 1 ≤ r ≤ 3 of ρr.
All kIC values ascertained using ICC are averaged over five ρts
per rank. Otherwise all specifications are the same as Fig. 3.
Although, for real data, positivity modifies the kIC performances
with ML, and PACT achieves informational completeness much
quicker than RP as far as local bases are concerned. A comparison
with random IC orthonormal bases shows that ACT gives a much
lower value owing to the additional assessment of and optimi-
zation over C.
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