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Quantum fidelity is a measure to quantify the closeness between two quantum states. In an operational
sense, it is defined as the minimal overlap between the probability distributions of measurement outcomes
and the minimum is taken over all possible positive-operator valued measures (POVMs). Quantum fidelity
has been investigated in various scientific fields, but the identification of associated optimal measurements has
often been overlooked despite its great importance both for fundamental interest and practical purposes. We
find here the optimal POVMs for quantum fidelity between multimode Gaussian states in a closed analytical
form. Our general finding is applied for selected single-mode Gaussian states of particular interest and we
identify three types of optimal measurements: an excitation-number-resolving detection, a projection onto the
eigenbasis of operator x̂ p̂ + p̂x̂, and a quadrature variable detection, each of which corresponds to distinct types
of single-mode Gaussian states. We also show the equivalence between optimal measurements for quantum
fidelity and those for quantum parameter estimation when two arbitrary states are infinitesimally close. It is
applied for simplifying the derivations of quantum Fisher information and the associated optimal measurements,
exemplified by displacement, phase, squeezing, and loss parameter estimation using Gaussian states.
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I. INTRODUCTION

Quantification of the similarity between quantum states is
of the utmost importance in quantum information processing
such as quantum error correction and quantum communi-
cation [1–4]. There are various measures of the closeness
between two quantum states such as trace distance [5], quan-
tum Chernoff bound [6,7], and quantum relative entropy
[8]. Among the diverse measures, one of the most common
measures is quantum fidelity [9]. Theoretically, it is defined as
the minimal overlap of the probability distributions obtained
by an optimal positive-operator valued measure (POVM) per-
formed on two states. It has also been widely employed to
verify how close actual states are to target states in exper-
iments [10–12], practically assessing quantum information
processing protocols such as quantum teleportation [13–16]
and quantum cloning [17–21]. It has been known that the
quantum fidelity not only plays a crucial role in quantum
parameter estimation [5,22], but also sets a bound for quantum
hypothesis testing [5,23] and, particularly, quantum Chernoff
bound [6,7].

One useful platform for quantum information processing
is continuous-variable systems, such as optical fields with
indefinite photon numbers [3]. In particular, bosonic Gaus-
sian states are practical resources because they are relatively
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less demanding to generate and manipulate in experiments
[3,24–27]. Due to the importance of quantum fidelity between
Gaussian states, there have been numerous attempts to find
an analytical formula between constrained Gaussian states
[28–37], but only recently arbitrary Gaussian states have been
implemented in a computable analytical formula of quantum
fidelity [37]. The quantum fidelity can be obtained with the
optimal POVM, but the optimal measurement setting achiev-
ing quantum fidelity between Gaussian states has not yet
been found, although a general method of finding an optimal
measurement for two given quantum states is known [38].
Furthermore, an explicit relation between quantum fidelity
and quantum Fisher information, found in Ref. [22], raises a
further intriguing question on the relevance of optimal mea-
surements for quantum fidelity to those required for optimal
quantum metrology.

In this work, we find the optimal POVMs, in a closed
analytical form, enabling one to measure quantum fidelity
between two multimode Gaussian states. Such general form of
optimal POVMs allows us to classify optimal measurements
for quantum fidelity between two single-mode Gaussian states
of particular interest. In addition, we demonstrate the equiva-
lence between optimal measurements for quantum fidelity and
those for quantum Fisher information, upon which we discuss
quantum parameter estimation in the context of single-mode
Gaussian metrology [39–42], such as displacement, phase,
squeezing, and loss parameter estimation.

Preliminaries. Consider that a measurement described by
a POVM {Êx} satisfying

∫
dxÊx = 1 and Êx � 0 is performed
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FIG. 1. Quantum fidelity between two states ρ̂0 and ρ̂1 can be
measured by the minimal overlap between the probability distri-
butions p0(x) and p1(x), where the measurement outcomes x are
obtained by an optimally chosen POVM {Êx}.

on two states ρ̂0 and ρ̂1, yielding the probability distributions
for outcomes x, written by pj (x) = Tr[ρ̂ j Êx] for j = 0, 1
as shown in Fig. 1. One notable measure of statistical dis-
tinguishability of two probability distributions is the Bhat-
tacharyya coefficient [2,38,43], written as

BC(p0, p1) =
[ ∫ √

p0(x)p1(x)dx

]2

.

This quantity takes the maximum value of 1 if and only
if two given probability distributions are equivalent, i.e.,
p0(x) = p1(x) for all possible outcomes x. This notion of
distinguishability has been extended to the quantum regime
by minimizing BC(p0, p1) over all possible POVMs {Êx}. The
quantum fidelity is thus defined as

F (ρ̂0, ρ̂1) = min
{Êx}

BC(p0, p1), (1)

which further reduces to a known form as [9]

F (ρ̂0, ρ̂1) =
(

Tr
√

ρ̂
1/2
1 ρ̂0ρ̂

1/2
1

)2
.

From the definition of quantum fidelity in Eq. (1), it is ob-
vious that finding the optimal POVM is crucial to maximally
distinguish two given quantum states. It has been found that
the optimal measurements have to satisfy

Ê1/2
x

(
ρ̂

1/2
1 − μxρ̂

1/2
0 Ŵ †

) = 0, (2)

Tr
(
Ŵ ρ̂

1/2
0 Êxρ̂

1/2
1

) ∈ R, (3)

where Ŵ is a unitary operator satisfying Ŵ ρ̂
1/2
0 ρ̂

1/2
1 =√

ρ̂
1/2
1 ρ̂0ρ̂

1/2
1 and μx is a constant [38]. In the case of full-rank

states ρ̂0 and ρ̂1, the optimal measurement {Êx} is unique
and consists of projections onto the eigenbasis of a Hermitian
operator written by

M̂(ρ̂0, ρ̂1) = ρ̂
−1/2
1

√
ρ̂

1/2
1 ρ̂0ρ̂

1/2
1 ρ̂

−1/2
1 . (4)

Thus, simplifying the operator M̂ to find its eigenbasis is the
central task to identify optimal measurements. In addition, we
note a simple, but highly useful property of the operator M̂,

M̂(Û ρ̂0Û
†, Û ρ̂1Û

†) = Û M̂(ρ̂0, ρ̂1)Û †, (5)

where Û is a unitary operator.

II. OPTIMAL MEASUREMENTS FOR MULTIMODE
GAUSSIAN STATES

Consider n bosonic modes described by quadrature opera-
tors Q̂ ≡ (x̂1, p̂1, x̂2, p̂2, . . . , x̂n, p̂n), satisfying the canonical
commutation relations [44]

[Q̂ j, Q̂k] = i� jk, � = 1n ⊗
(

0 1
−1 0

)
,

where 1n is the n×n identity matrix. Transformations of
coordinates that preserve the canonical commutation relation
can be represented by symplectic transformation matrices S
such that S�ST = �.

Gaussian states are a special class of continuous-variable
states. They are defined as the states whose Wigner function is
a Gaussian distribution [3,24–27]. It is known that an arbitrary
Gaussian state ρ̂ can be written in the Gibbs-exponential form
as [37,45]

ρ̂Gibbs[G, u] ≡ exp
[ − 1

2 (Q̂ − u)TG(Q̂ − u)
]/

ZV , (6)

where u = Tr[ρ̂Q̂] is the first moment vector, G is the Gibbs
matrix defined as G = 2i� coth−1(2Vi�) with the covari-
ance matrix Vjk = Tr[ρ̂{Q̂ j − u j, Q̂k − uk}+]/2, and ZV =
det(V + i�/2)1/2 is a normalization factor which we omit
throughout this work for convenience. The Gibbs-exponential
form of Eq. (6) makes it easy to deal with the square root of
the density matrices, e.g., in Eq. (4).

Let us substitute two arbitrary Gaussian states ρ̂ j ( j =0, 1),
characterized by uj and Gj through Eq. (6), to the operator M̂
of Eq. (4) in order to find the optimal measurement for quan-
tum fidelity between Gaussian states. As the first main result
of this work, we find, after some algebra (see Appendix A for
the detail), that the operator M̂ takes the exponential form,
written up to an unimportant normalization factor as

M̂ ∝ D̂(u1) exp
[ − 1

2 Q̂TGMQ̂ − vT
MQ̂

]
D̂†(u1), (7)

where the matrix GM is the solution of the equation

ei�GM ei�G1 ei�GM = ei�G0 , (8)

D̂(u) = e−uTi�Q̂ is the displacement operator, and vM is a real
vector, which can be explicitly expressed for particular cases
as below. Note that GM is not necessarily positive definite,
unlike G0 and G1 characterizing Gaussian states, indicating
that the operator M̂ may not be written in the form of a
Gaussian state depending on the feature of GM.

When the Gibbs matrices of two multimode Gaussian
states are equal, i.e., G0 = G1 = (S−1)T[⊕n

j=1g j12]S−1 with
g j being the symplectic spectrum, Eq. (8) has a trivial solution
GM = 0, allowing Eq. (7) to take a simpler form of M̂ ∝
evT

M(Q̂−u1 ) where vM = (S−1)T[⊕n
j=1 tanh(g j/2)12](u0−u1).

The eigenbasis of the operator M̂ is thus that of a quadrature
operator followed by a unitary operator D̂(u1), which is
overall still a quadrature operator. When G0 �= G1, on the
other hand, the operator M̂ of Eq. (7) reduces to

M̂ ∝ D̂(u1)D̂(uM)ρ̂Gibbs[GM, 0]D̂†(uM)D̂†(u1), (9)

where vM = GMuM is used and the expression of uM is pro-
vided in Appendix A. Note that vM = 0 for equal displace-
ments (u0 = u1). When G0 and G1 are diagonalized by the
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same symplectic matrix S, individual modes of the states can
be completely decoupled to be a product of single-mode states
by applying a Gaussian unitary operation ÛS corresponding to
S. We thus investigate the single-mode case more intensively
in the following section.

It is known that the Gibbs matrices are singular when
symplectic eigenvalues of the covariance matrix are equal to
1/2 [37]. The continuity of the above expression enables the
singular case to be treated as a limiting case. To this end, we
replace the singular symplectic eigenvalues by 1/2 + ε with a
small positive ε, so that Eq. (8) is well defined as

ei�GM = e−i�G1/2
√

ei�G1/2ei�G0 ei�G1/2e−i�G1/2. (10)

In the limit ε → 0, the above expression leads to an optimal
measurement, but note that the optimal measurement may not
be unique when rank-deficient states are involved.

III. OPTIMAL MEASUREMENTS FOR SINGLE-MODE
GAUSSIAN STATES

The operator M̂ of Eq. (7), whose eigenstates constitute
the POVM elements of the optimal measurement, can be
analyzed for specific cases of interest. Here we concentrate
on single-mode Gaussian states, exhibiting rich physics and
the immediate relevance to quantum parameter estimation, as
will be discussed in the next section. An arbitrary single-mode
Gaussian state can be written as

ρ̂ = D̂(u)Ŝ(ξ )ρ̂TŜ†(ξ )D̂†(u),

where ρ̂T = ∑∞
n=0 n̄n/(n̄ + 1)n+1|n〉〈n| is a thermal state with

the average number of thermal quanta n̄, and Ŝ(ξ ) is a squeez-
ing operator with a squeezing parameter ξ ≡ reiθs ∈ C. Note
that when θs = 0, the Gibbs matrix in Eq. (6) is written as

G = 2 coth−1(2n̄ + 1)

(
e2r 0
0 e−2r

)
. (11)

For two given arbitrary single-mode Gaussian states, one
can always find a Gaussian unitary operator V̂ which trans-
forms one state to a thermal state and, accordingly, the other
state to a general Gaussian state but squeezed in x̂ or p̂
and displaced by u0. The property in Eq. (5) thus makes it
sufficient to consider, without loss of generality, two Gaussian
states: a general state written as ρ̂0 = ρ̂Gibbs[G0, u0], with
G0 being a diagonal matrix as Eq. (11), and a thermal state
written as ρ̂1 = ρ̂Gibbs[G1, u1 = 0], where G1 = g112 with
g1 ≡ 2 coth−1(2n̄1 + 1).

Let us first consider the case that ρ̂0 and ρ̂1 are full-rank
states, i.e., n̄ j �= 0 for both j = 0, 1. For the states with
G0 = G1, one can easily show that M̂ ∝ evT

MQ̂, where vM =
tanh(g1/2)(S−1)Tu0, and its eigenbasis is that of a quadrature
operator as in the multimode case. When G0 �= G1, on the
other hand, the operator of M̂ can be expressed as M̂ ∝
V̂ D̂(uM)ρ̂Gibbs[GM, 0]D̂†(uM)V̂ †, similar to Eq. (9). The iden-
tification of optimal measurements requires the operator of
M̂ to be diagonalized, which boils down to a diagonalization
of ρ̂Gibbs[GM, 0] for which the feature of the matrix GM, not
necessarily positive definite, matters. Interestingly, it turns
out that the type of the optimal measurements or that of
the eigenbasis of the operator ρ̂Gibbs[GM, 0] can be simply

classified by the signs of eigenvalues, d1 and d2, of the matrix
GM. The identified types are listed below as the second main
result of this work.

(i) If the signs of the eigenvalues of GM are the same
(i.e., d1d2 > 0), i.e., GM is positive definite or negative def-
inite, then the eigenbasis of M̂ is that of the number operator
n̂ = (x̂2 + p̂2 − 1)/2 followed by the unitary operation V̂
and a squeezing operation that makes the magnitude of the
eigenvalues the same. Thus, an excitation-number-resolving
detection is the optimal measurement.

(ii) If the signs of the eigenvalues are different (i.e.,
d1d2 < 0), then the eigenbasis of M̂ is that of x̂ p̂ + p̂x̂ fol-
lowed by a similar unitary operation to the one considered in
type (i). Hence, a measurement scheme performing projection
onto the eigenbasis of x̂ p̂ + p̂x̂ is the optimal measurement.

(iii) If only one of the eigenvalues is zero (i.e., either
d1 = 0 or d2 = 0), then the eigenbasis of M̂ is that of a quadra-
ture operator along a certain direction. Therefore, homodyne
detection is the optimal measurement.

Note that the optimal measurement of type (ii) is definitely
a non-Gaussian measurement [42], the implementation of
which is unfortunately unknown. The eigenvalues can be
found by solving Eq. (8) and written as a function of the
squeezing parameter r0, and thermal quanta n̄0 and n̄1 (see
Appendix B for the detail). It enables mapping the above
classification to the parameter space of r0, n̄0, and n̄1, as
depicted in Fig. 2 for a given n̄1. The case that G0 = G1, where
type (iii) is optimal, is also represented by the intersection
point where n̄0 = n̄1. Thus, the diagram shown in Fig. 2 covers
all pairs of single-mode Gaussian states through the Gaussian
unitary operator V̂ .

It is worth discussing special cases, when each type is
optimal. First, consider the case when ρ̂0 is a displaced
thermal state. Thus, G0 = diag(g0, g0), which corresponds
to the case where the distinct Gibbs matrices of two Gaus-
sian states are diagonalized by the same symplectic trans-
formation. In this case, Eq. (8) leads to ρ̂Gibbs[GM, 0] =
exp [− 1

2 (g1 − g0)Q̂TQ̂], and the eigenbasis of M̂ is the num-
ber basis followed by V̂ and D̂(uM). Hence, type (i) is optimal.

FIG. 2. Classification of optimal measurements as a function of
r0 and n̄0 for a given n̄1. The regions where type (i) and type (ii)
are optimal are divided by the the black curves, at which type (iii)
is optimal, also including the intersection point when the Gibbs
matrices of the states are identical.
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This result can also be inferred by the fact that the same
unitary operation diagonalizes both states into thermal states
and their eigenbasis is the number state. Second, consider the
case when n̄0 = n̄1 and G0 has distinct eigenvalues, i.e., ρ̂0 is
a squeezed state. It renders the signs of d1 and d2 different
regardless of r0 and n̄0 = n̄1, i.e., type (ii) is optimal. Third,
consider the case that the amount of nonzero squeezing r0

obeys a certain ratio of functions of thermal quanta n̄0 and
n̄1, given as

e±2r0 = n̄0(n̄0 + 1)(2n̄1 + 1)

n̄1(n̄1 + 1)(2n̄0 + 1)
, (12)

where the signs ± in the exponent correspond to the cases of
d2 = 0 and d1 = 0, respectively. When d2 = 0, the operator
M̂ is simply written as M̂ ∝ V̂ D̂(uM) exp [− d1

2 x̂2]D̂†(uM)V̂ †

and thus type (iii) with the quadrature measurement of x̂ is
optimal, whereas type (iii) with the quadrature measurement
of p̂ is optimal when d1 = 0.

Now consider the case of rank-deficient Gaussian states.
Since all rank-deficient Gaussian states are a pure state and the
inverse of a pure state does not exist, M̂ of Eq. (4) needs to be
treated with care. Assuming ρ̂1 to be a pure state without loss
of generality and projecting both ρ̂0 and ρ̂1 onto the support
of ρ̂1, where their inverses can be defined, one can write the
operator M̂ of Eq. (4) as

M̂ = ρ̂
−1/2
1

√
ρ̂

1/2
1 �̂1ρ̂0�̂1ρ̂

1/2
1 ρ̂

−1/2
1 ,

where �̂1 is the projector onto the support of ρ̂1 [2]. For
ρ̂1 = |ψ1〉〈ψ1| and, consequently, �̂1 = |ψ1〉〈ψ1|, it is there-
fore clear that M̂ ∝ |ψ1〉〈ψ1|. The same result can also be
derived by considering pure states as a limiting case of
zero temperature (see Appendix C for the detail). Thus, the
optimal POVM set is {|ψ1〉〈ψ1|, 1 − |ψ1〉〈ψ1|} and can be
implemented by applying the Gaussian unitary transformation
Ŝ†(ξ1)D̂†(u1) that transforms ρ̂1 to a vacuum state, followed
by performing on-off detection. It is worth emphasizing again
that the optimal measurement offered by the operator M̂ for
pure states is not unique, so that the suggested setup is merely
one of the optimal measurements, all satisfying the conditions
of Eqs. (2) and (3).

IV. RELEVANCE TO QUANTUM METROLOGY

Quantum parameter estimation is an informational task
to estimate an unknown parameter θ of interest by using
quantum systems [5,46]. In the standard scenario of quantum
parameter estimation, N independent copies of quantum states
that contain information about an unknown parameter are
measured by a POVM and the estimation is performed by
manipulating the measurement data. The ultimate precision
bound of the estimation is governed by quantum Cramér-Rao
inequality, stating that the mean square error of any unbiased
estimator is lower bounded by the inverse of quantum Fisher
information multiplied by the number of copies N [5]. Thus,
quantum Fisher information is the most crucial quantity which
determines the ultimate precision of estimation [22], which is
written as

H (θ ) = Tr
[
ρ̂θ L̂2

θ

]
,

where L̂θ is the symmetric logarithmic derivative (SLD) oper-
ator satisfying ∂ρ̂θ/∂θ = ρ̂θ L̂θ + L̂θ ρ̂θ .

The quantum Fisher information H (θ ) can be written in
terms of quantum fidelity F (ρ̂θ , ρ̂θ+dθ ) as [37]

H (θ ) = 4[1 − F (ρ̂θ , ρ̂θ+dθ )]

dθ2
.

This implies that quantum parameter estimation is related to
distinguishing two infinitesimally close states ρ̂θ and ρ̂θ+dθ .
Indeed, similar to quantum fidelity, quantum Fisher informa-
tion is defined as the maximal classical Fisher information
over all possible POVMs, and the optimal POVM {Êx} has
to satisfy [22]

Ê1/2
x

(
ρ̂

1/2
θ − λxL̂θ ρ̂

1/2
θ

) = 0, (13)

Tr[Êxρ̂θ L̂θ ] ∈ R, (14)

where λx is a constant. It is known that the projection onto
the eigenbasis of L̂θ is the optimal measurement for quantum
Fisher information [15]. This means that the SLD operator
plays the same role as the operator M̂ does for quantum
fidelity. We prove that the above conditions of Eqs. (13) and
(14) are indeed equivalent to the conditions of Eqs. (2) and
(3), resulting in the relation for arbitrary quantum states ρ̂θ

and ρ̂θ+dθ ,

M̂(ρ̂θ , ρ̂θ+dθ ) 
 1 + L̂θdθ/2, (15)

for infinitesimal dθ (see Appendix D for the proof). This
indicates that the optimal POVM for quantum fidelity between
ρ̂θ and ρ̂θ+dθ offers the optimal measurement for quantum pa-
rameter estimation, yielding the maximal Fisher information,
i.e., quantum Fisher information.

Especially for Gaussian states, since the matrix GM and the
vector vM are infinitesimal for ρ̂θ and ρ̂θ+dθ , and thus

M̂(ρ̂θ , ρ̂θ+dθ ) 
 1 − D̂(uθ )
(
Q̂TGMQ̂

/
2 − vT

MQ̂
)
D̂†(uθ ),

the SLD operator is simply written as

L̂θ dθ = −D̂(uθ )
(
Q̂TGMQ̂ − 2vT

MQ̂
)
D̂†(uθ ) + ν, (16)

where ν = Tr[D̂†(uθ )ρ̂θ D̂(uθ )Q̂TGMQ̂] can be determined
from Tr[ρ̂L̂θ ] = 0. Taking an infinitesimal limit in Eq. (8), one
can show that GM for an infinitesimal dθ is the solution of

4VθGMVθ + �GM� + 2dθ
∂Vθ

∂θ
= 0, (17)

and is formally written in a basis-independent form as

GM = i�
∞∑

m=0

W −m−1
θ

∂Wθ

∂θ
W −m−1

θ dθ, (18)

and vM = V −1
θ (∂uθ /∂θ )dθ/2. Here, uθ and Vθ are the first

moment vector and the covariance matrix of ρ̂θ , respectively,
and Wθ = −2Vθ i�. The derivation of GM and vM is provided
in Appendix E. The relation of M̂ and L̂θ , and the expressions
of GM and vM, enable one to find the SLD operator L̂θ

directly from the operator M̂. Finally, from the SLD operator,
one can easily derive the expression of the quantum Fisher
information:

H (θ ) = −Tr

[
∂Vθ

∂θ
GM

]
+ ∂uθ

∂θ
V −1

θ

∂uθ

∂θ
. (19)

012323-4



OPTIMAL MEASUREMENTS FOR QUANTUM FIDELITY … PHYSICAL REVIEW A 100, 012323 (2019)

The derivation is provided in Appendix D. As a remark,
note that the expressions of GM, vM, and quantum Fisher
information are equivalent to those found in Refs. [27,47],
but our derivation based on quantum fidelity is significantly
simpler and more straightforward. Furthermore, replacing a
single parameter θ by a vector of multiparameter �θ and
defining the SLD operators L̂θ j by ∂ρ̂�θ /∂�θ j = ρ̂�θ L̂θ j + L̂θ j ρ̂�θ ,
the expression of the quantum Fisher information matrix
Hjk (�θ ) = Tr[ρ̂�θ {L̂θ j , L̂θk }+] can be easily derived by using a
similar method [48,49].

In the following sections, we find optimal measurements
for displacement, phase, squeezing, and loss parameter esti-
mation in relation to our results for quantum fidelity.

A. Displacement parameter estimation

For a single-mode Gaussian probe state ρ̂, the displace-
ment operation D̂(α) only changes the first moment while
keeping the second moments fixed:

u → u + (α, 0)T, V → V,

where α ∈ R is assumed without loss of generality. Therefore,
the first moment vectors and the covariance matrices of ρ̂α and
ρ̂α+dα are related as

uα+dα = uα + (dα, 0)T, Vα+dα = Vα,

respectively. Since the covariance matrix is invariant, corre-
sponding to the case of the intersection point in Fig. 2, one can
immediately see that the optimal measurement for quantum
fidelity between ρ̂α and ρ̂α+dα is type (iii), so that the optimal
measurement for estimation of the displacement parameter
α is also type (iii). Explicitly, using the expression of vM,
one can easily obtain the SLD operator and quantum Fisher
information,

L̂α = D̂(uα )
([

V −1
α

]
11x̂ + [

V −1
α

]
12 p̂

)
D̂†(uα )

= [
V −1

α

]
11(x̂ − uα ) + [

V −1
α

]
12 p̂,

H (α) = [
V −1

α

]
11.

Thus, the optimal measurement is homodyne detection as
expected.

B. Phase parameter estimation

Let us consider a single-mode Gaussian probe state ρ̂

that undergoes a phase shifter R̂(θ ) = e−iθQ̂TQ̂/2 with a phase
parameter θ to be estimated. Since the displacement operation
performed to the probe state can be factored out as shown
in Eq. (9), we focus on only the state with zero mean for
simplicity, i.e.,

ρ̂ → ρ̂θ = R̂(θ )Ŝ(ξ )ρ̂TŜ†(ξ )R†(θ ).

The relevant states under investigation are ρ̂θ and ρ̂θ+dθ , but
the full expressions with an arbitrary angle θ get involved
without altering the type of optimal measurement. We thus
focus on the states ρ̂θ and ρ̂θ+dθ at θ = 0 and further as-
sume ρ̂0 and ρ̂dθ to be the p-squeezed thermal state and a
rotated squeezed thermal state, respectively, without loss of
generality.

Let us proceed with ρ̂0 and ρ̂θ first, and then take the limit
θ → 0 at the end. The covariance matrices of ρ̂0 and ρ̂θ are,
respectively, written as

V0 ∝
(

e2r 0
0 e−2r

)
,

Vθ ∝
(

cosh 2r + cos 2θ sinh 2r sinh 2r sin 2θ

sinh 2r sin 2θ cosh 2r − cos 2θ sinh 2r

)
,

where the proportionality becomes an equality with adding a
prefactor of (2n̄ + 1)/2. Through the Gaussian unitary opera-
tion V̂ , these states are transformed to a squeezed thermal state
and a thermal state with the same number of thermal quanta.
Thus, one may immediately infer from Fig. 2 that the optimal
measurement is type (ii) regardless of θ . Let us see if this is
indeed the case. For the states ρ̂0 and ρ̂θ , it can be shown that

GM = A

(− sin θ cos θ

cos θ sin θ

)
,

where a constant A is given such that cos A= (4n̄2+4n̄ + 2)/
[(4n̄2 + 2n̄ + 1)(4n̄2 + 6n̄ + 3) + (2n̄ + 1)2 cos 2θ + 2(2n̄ +
1)2 cosh 4r sin2 θ ]1/2. Since the eigenvalues of GM are
different, the optimal measurement for quantum fidelity
between ρ̂0 and ρ̂θ is type (ii). To apply this to quantum
Fisher information, we take the limit θ → 0, resulting in

GM = (2n̄ + 1) sinh 2r

2n̄2 + 2n̄ + 1
dθ

(
0 1
1 0

)
.

Hence,

M̂ = 1 − (2n̄ + 1) sinh 2r

2(2n̄2 + 2n̄ + 1)
dθ (x̂ p̂ + p̂x̂) = 1 + L̂θdθ/2,

(20)

where L̂θ is the SLD operator in phase estimation [42].
This reveals that the operators M̂ and L̂θ have the common
eigenbasis. It is now clear that the optimal measurement for
phase parameter estimation is type (ii), as also recently found
via the SLD operator in Ref. [42]. Also note that while the
above result is derived by an explicit optimal measurement
for quantum fidelity, the same result can be easily derived by
using Eq. (18).

C. Squeezing parameter estimation

We consider squeezing parameter estimation with an arbi-
trary Gaussian state as a probe state,

ρ̂ → ρ̂ζ = Ŝ(ζ )D̂(u)Ŝ(ξ )ρ̂TŜ†(ξ )D̂†(u)S†(ζ ),

where we assume ζ ∈ R for simplicity. It corresponds to the
case when we estimate the strength of the squeezing parameter
along the p̂ axis. Since ρ̂ζ and ρ̂ζ+dζ have different squeezing
parameters under the same average number of thermal quanta,
just like the case of phase estimation, the optimal measure-
ment is type (ii). Indeed, one can derive the SLD operator
using Eq. (18),

L̂θ = 2n̄+1

2n̄2+2n̄+1
D̂(u)Q̂Tdiag[e−2ζ (cosh 2r−cos θs sinh 2r),

− e2ζ (cosh 2r + cos θs sinh 2r)]Q̂D̂†(u) + ν,
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which is clearly type (ii) because the signs of eigenvalues of
GM are different. Quantum Fisher information can also be
easily obtained as

H (s) = 2(2n̄ + 1)2

2n̄2 + 2n̄ + 1
(cosh2 2r − cos2 θs sinh2 2r)

+ 4|α|2
2n̄ + 1

[cosh 2r − sinh 2r cos(2θc + θs)],

where we have defined u = √
2|α|(cos θc, sin θc)T and θc is

the displacement angle.

D. Loss parameter estimation

Consider a single-mode Gaussian probe state ρ̂ that under-
goes a phase-insensitive loss channel, and the dynamics of the
state is described by the quantum master equation as

d ρ̂

dt
= γ

2
(2âρ̂â† − â†âρ̂ − ρ̂â†â), (21)

where â = (x̂ + i p̂)/
√

2 is the annihilation operator and γ

is the loss rate to be estimated. The solution of the above
differential equation for a single-mode Gaussian probe state
can be given in terms of the first moment vector and the
covariance matrix as [24]

ut=0 → ut = e−γ t/2u0,

Vt=0 → Vt = e−γ tV0 + (1 − e−γ t )12/2.

Note that the dynamics of the covariance matrix does not
change the symplectic transformation diagonalizing the co-
variance matrix. Therefore, the Gaussian unitary operation V̂
may transform these states to two thermal states with different
number of thermal quanta. It is thus clear from Fig. 2 that the
optimal parameter for quantum fidelity between ρ̂γ and ρ̂γ+dγ

is type (i), so the optimal measurement for the loss parameter
estimation is also type (i). Specifically, one can easily obtain
that

GM = A × diag(sin4 φ − e−2r cos4 φ,

sin4 φ − e2r cos4 φ)tdγ ,

H (γ ) = cos2 φ(1 − 2 sin2 φ cos2 φ) sinh2 r

sin2 φ(1 + 2 sin2 φ cos2 φ sinh2 r)
t2,

where we have defined cos2 φ = e−γ t and A = 4/

(−2 sinh2 r cos 4φ + cosh 2r + 7) sin2 φ and zero-mean
input states are assumed for simplicity. The matrix GM is
obviously negative definite; thus it corresponds to type (i).
This reproduces the result in Refs. [39,40]. The optimality of
type (i) holds also for other phase-insensitive loss parameter
estimations as long as the symplectic matrix that diagonalizes
the covariance matrix remains the same with loss parameter
γ or time t .

V. DISCUSSION

We have found the optimal POVMs for quantum fidelity
between two multimode Gaussian states in a closed analytical
form. The full generality of our result has allowed us to further
elaborate on the case of single-mode Gaussian states in depth.
We have demonstrated that there exist only three different

types of optimal measurements, along with Gaussian unitary
operations. An excitation-number-counting measurement is
optimal when the covariance matrices of the states are diag-
onalized by the same symplectic matrix, while the projection
onto the eigenbasis of x̂ p̂ + p̂ x̂ is optimal when the average
numbers of thermal quanta of two quantum states are equal.
While there exist other cases where the aforementioned opti-
mal measurements are, respectively, optimal, the optimality of
the quadrature measurement holds only for two cases: when
the covariance matrices are the same or when the squeezing
strength of ρ̂0 is equal to a particular ratio, represented in
Eqs. (12), of thermal quanta contributions between the two
states.

We have also shown the relevance of the optimal measure-
ment for quantum fidelity to quantum parameter estimation.
We have proven the equivalence between the optimal mea-
surement for quantum fidelity and that for quantum Fisher
information, enabling one to readily derive optimal mea-
surements for quantum parameter estimation using Gaussian
states. We expect our approach, based on the fundamental
relation we proved, to pave a way to study quantum parameter
estimation or other quantum information processing.

A particularly interesting potential application of our opti-
mal measurements is quantum hypothesis testing [5,50–52].
The minimal error probability of quantum state discrimi-
nation is given by the Helstrom bound, achieved only by
the Helstrom measurement [5]. However, finding a closed
form of the Helstrom measurement for Gaussian states is
generally challenging. The quantum fidelity is known to set
an upper bound for the error of quantum state discrimination
[23,53,54], and the optimal measurement for quantum fidelity
enables one to lower the error of particular schemes such as
the maximum-likelihood test [55]. In this context, one could
address the question of whether the optimal measurements
we have found can be exploited for variants of quantum
state discrimination such as quantum illumination [56,57] and
quantum reading [58].

While the excitation-number-resolving detection and the
quadrature variable measurement are experimentally feasible
with current technology, the measurement setup projecting
onto the eigenbasis of the operator x̂ p̂ + p̂ x̂ is not yet known.
We hope that an appropriate measurement setup will be
constructed in the near future in response to the significance
having arisen not only from this work but also from the recent
study for phase estimation [42]. We also leave further classi-
fication of the optimal measurements for multimode Gaussian
states as future work, which can be straightforwardly made
from our results at the expense of increased complexity.
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APPENDIX A: SIMPLIFICATION OF THE OPERATOR M̂

Here, we simplify the operator M̂ = ρ̂
−1/2
1√

ρ̂
1/2
1 ρ̂0ρ̂

1/2
1 ρ̂

−1/2
1 with ρ̂0 =e− (Q̂−v0 )TG0 (Q̂−v0 )

2 and ρ̂1 =e− Q̂TG1Q̂
2 .

Note that elTi�Q̂e−Q̂TGQ̂/2 ∝ e−(Q̂−u)TG(Q̂−u)/2 with u =
(e−i�G − 1)−1l , which is frequently used in this section.
Simplifying ρ̂0 in the following way:

ρ̂0 = e
1
2 vT

0 i�e−i�G0 v0 e(e−i�G0 v0−v0 )Ti�Q̂e− Q̂TG0Q̂
2 ∝ elT

0 i�Q̂e− Q̂TG0Q̂
2

with l0 = (e−i�G0 − 1)v0, one can have

K̂ = ρ̂
1/2
1 ρ̂0ρ̂

1/2
1 ∝ e− Q̂TG1Q̂

4 elT
0 i�Q̂e− Q̂TG0Q̂

2 e− Q̂TG1Q̂
4 .

Bringing all the displacement operators to the left side, one
can further simplify the matrix K̂ as

K̂ ∝ ekTi�Q̂e− Q̂TGK Q̂
2 ,

where we have defined k = e−i�G1/2l0 and

e− Q̂TGK Q̂
2 = e− Q̂TG1Q̂

4 e− Q̂TG0Q̂
2 e− Q̂TG1Q̂

4 . (A1)

Defining uK as (e−i�GK − 1)uK = k, the operator K̂ takes the
Gibbs-exponential form, written as

K̂ ∝ e−(Q̂−uK )TGK (Q̂−uK )/2,

where uK is a real vector. The operator M̂ = ρ̂
−1/2
1

√
K̂ ρ̂

−1/2
1

can thus be written as

M̂ ∝ e
Q̂TG1Q̂

4 elT
1 i�Q̂e− Q̂TGK Q̂

4 e
Q̂TG1Q̂

4 ,

where l1 = (e−i�GK /2 − 1)uK . Again, we bring all the dis-
placement operators to the left side,

M̂ ∝ emTi�Q̂e− Q̂TGMQ̂
2 ,

where m = ei�G1/2l1 and

e− Q̂TGMQ̂
2 = e

Q̂TG1Q̂
4 e− Q̂TGK Q̂

4 e
Q̂TG1Q̂

4 . (A2)

When GM = 0, corresponding to the case that G0 = G1, we
obtain M̂ ∝ emTi�Q̂, where m = ei�G1/2l1 is a pure imaginary
vector. Especially if G0 = G1 = ⊕n

j=1g j12, we obtain m =
−i[⊕n

j=1 tanh(g j/2)12]�v0. If G0 = G1 are not diagonal, we
introduce a symplectic transformation that diagonalizes the
Gibbs matrices, G0 = G1 = (S−1)T[⊕n

j=1g j12]S−1, or, equiv-

alently, leading to e−Q̂TG0Q̂/2 = ÛSe−Q̂T[⊕n
j=1g j12]Q̂/2Û †

S , where

ÛSQ̂Û †
S = S−1Q̂. As a consequence,

M̂ ∝ ÛSevT
0 [⊕n

j=1 tanh(g j/2)12]Q̂Û †
S = evT

0 [⊕n
j=1 tanh(g j/2)12]S−1Q̂,

where we have used Eq. (4).
When GM �= 0, the operator M̂ can always be written in the

Gibbs-exponential form,

M̂ ∝ e−(Q̂−uM )TGM(Q̂−uM )/2, (A3)

where uM = (e−i�GM − 1)−1m. Therefore, M̂ can be written
as

M̂ ∝ exp
[ − 1

2 Q̂TGMQ̂ − vT
MQ̂

]
.

Here, vM =0 if v0 = 0, vM = GMuM if G0 �= G1, and GM = 0
and vM = (S−1)T[⊕n

j=1 tanh(g j/2)12]v0 if G0 = G1. From
Eqs. (A1) and (A2), it is clear that GM is the solution of

ei�GM ei�G1 ei�GM = ei�G0 ,

and the vector uM is written as

uM = (e−i�GM − 1)−1ei�G1/2(e−i�GK /2 − 1)(e−i�GK − 1)−1

× e−i�G1/2(e−i�G0 − 1)v0.

Finally, in order to return to the original problem between

two general Gaussian states, ρ̂0 = e− (Q̂−u0 )TG0 (Q̂−u0 )
2 and ρ̂1 =

e− (Q̂−u1 )TG1 (Q̂−u1 )
2 , we simply introduce a displacement operator

D̂(u1) with u0 − u1 = v0, so that, by using Eq. (4), we obtain
M̂ of the original problem written as

M̂ ∝ D̂(u1) exp
[ − 1

2 Q̂TGMQ̂ − vT
MQ̂

]
D̂†(u1). (A4)

APPENDIX B: FULL EQUATION FOR d1 AND d2

We simplify Eq. (7) for the single-mode case by assuming
G0 and G1 to be Gibbs matrices of a general single-mode
Gaussian state and a thermal state, respectively. Expanding
the matrices by Pauli matrices and using

cosh g1 = 2n̄1 + 1

2n̄1(n̄1 + 1)
, sinh g1 = 2n̄2

1 + 2n̄1 + 1

2n̄1(n̄1 + 1)
,

the left-hand side of Eq. (7) is written as

L012 + L1σ̂x + L2σ̂y,

where

L0 = (d1 + d2)
2n̄1 + 1

2n̄1(n̄1 + 1)

sinh 2
√

d1d2

2
√

d1d2
+ 2n̄2

1 + 2n̄1 + 1

2n̄1(n̄1 + 1)
cosh 2

√
d1d2, (B1)

L1 = −i(d1 − d2)

[
2n̄2

1 + 2n̄1 + 1

2n̄1(n̄1 + 1)

sinh 2
√

d1d2

2
√

d1d2
+ 2n̄1 + 1

2n̄1(n̄1 + 1)

(d1 + d2) sinh2 √
d1d2

2d1d2

]
, (B2)

L2 = 2n̄2
1 + 2n̄1 + 1

2n̄1(n̄1 + 1)

(d1 − d2)2 − (d1 + d2)2 cosh 2
√

d1d2

4d1d2
− 2n̄1 + 1

2n̄1(n̄1 + 1)

2
√

d1d2(d1 + d2) sinh 2
√

d1d2

4d1d2
. (B3)
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The right-hand side, on the other hand, is written as

R012 + R1σ̂x + R2σ̂y,

where

R0 = 2n̄2
0 + 2n̄0 + 1

2n̄0(n̄0 + 1)
, (B4)

R1 = i(2n̄0 + 1) sinh 2r0

2n̄0(n̄0 + 1)
, (B5)

R2 = − (2n̄0 + 1) cosh 2r0

2n̄0(n̄0 + 1)
. (B6)

Equations of (B1) to (B6) enable d1 and d2 to be written as
functions of r0, n̄0, and n̄1.

APPENDIX C: PURE STATE LIMIT

Consider a single-mode state with a diagonal covariance
matrix of

V =
(

1
2 + ε 0

0 1
2 + ε

)
.

Such state is pure in the limit of ε → 0. The analysis can be
trivially extended to a nondiagonal case by adding a squeezing
operation SV ST. One can find that

ei�G = W − 1

W + 1
=

(
1

ε
+ 1

)
P + εQ + O(ε2), (C1)

e−i�G = W + 1

W − 1
=

(
1

ε
+ 1

)
Q + εP + O(ε2), (C2)

where W = −2Vi� and

P = 1

2

(
1 −i
i 1

)
, Q = 1 − P.

Note P2 = P and Q2 = Q, so they are projection operators.
The Gibbs matrix of the operator M̂ satisfies

ei�G1 = e−i�GM ei�G0 e−i�GM . (C3)

In the limit where G1 corresponds to the pure state |ψ1〉 〈ψ1|,
we use Eq. (C1) to write ei�G1 ≈ P

ε
. Then a possible solution

for e−i�GM is e−i�GM ≈ αP because the above equation (C3)
becomes α2Pei�G0 P = ei�G1 ≈ P

ε
, which is approximately

true for some α. Indeed, for any state ρ̂0 with nonzero overlap
with ρ̂1, it is Pei�G1 P ∝ P. Therefore, e−i�GM ∝ P ∝ ei�G1 ,
namely, M̂ ∝ 1 − |ψ1〉 〈ψ1|, where all approximations made
in the above equations refer to the corrections that disappear in
the limit of ε → 0. The operator M̂ implies that the measure-
ment with projectors {|ψ1〉 〈ψ1| , 1 − |ψ1〉 〈ψ1|} is optimal.

APPENDIX D: THE RELATION BETWEEN OPTIMAL
MEASUREMENTS FOR QUANTUM FIDELITY

AND QUANTUM FISHER INFORMATION

Let ρ̂0 = ρ̂ + d ρ̂ and ρ̂1 = ρ̂. For simplicity, we assume ρ̂

is a full-rank state, which implies that ρ̂0 and ρ̂1 are full-rank

states. Let
√

ρ̂
1/2
1 ρ̂0ρ̂

1/2
1 = ρ̂ + X , where X ∝ d ρ̂. Taking the

square, we get

ρ̂
1/2
0 ρ̂1ρ̂

1/2
0 = ρ̂2 + ρ̂1/2d ρ̂ρ̂1/2 = ρ̂2 + ρ̂X + X ρ̂,

leading to ρ̂1/2d ρ̂ρ̂1/2 = ρ̂X + X ρ̂. For ρ̂ = ∑
k pk|k〉〈k|

with 〈k|l〉 = δkl , one can show

Xnm =
√

pn
√

pm

pn + pm
dρ̂nm.

When the states are full rank, the first optimality condition be-

comes E1/2
x (1 − μxρ̂

−1/2
1

√
ρ̂

1/2
1 ρ̂0ρ̂

1/2
1 ρ̂

−1/2
1 ) = 0. In the limit

of small d ρ̂,

ρ̂
−1/2
1

√
ρ̂

1/2
1 ρ̂0ρ̂

1/2
1 ρ̂

−1/2
1

= 1+ρ̂−1/2X ρ̂−1/2 =1+
∑
n,m

d ρ̂nm

pn + pm
|n〉〈m|=1+L̂dθ/2,

where L̂θdθ = 2
∑

n,m d ρ̂nm/(pn + pm)|n〉〈m| is the SLD op-
erator, so that the condition becomes

Ê1/2
x

(
1 − μxρ̂

−1/2
1

√
ρ̂

1/2
1 ρ̂0ρ̂

1/2
1 ρ̂

−1/2
1

)

= Ê1/2
x [1 − μx(1 + L̂θ dθ/2)] = 0.

This results in

Ê1/2
x (1 − λxL̂θ ) = 0

with a constant λx, which is equivalent to the optimal condi-
tion of Eq. (12) for quantum Fisher information.

Now, we turn to the second condition. For two quantum
states that are infinitesimally close, Eq. (2) can be simplified
as

Tr
[
U ρ̂

1/2
0 Êxρ̂

1/2
1

] = Tr
[√

ρ̂
1/2
1 ρ̂0ρ̂

1/2
1 ρ̂

−1/2
1 Êxρ̂

1/2
1

]

= Tr[(1 + L̂θdθ/2)Êxρ̂] ∈ R.

One can immediately see that this is equivalent to Eq. (13).

APPENDIX E: LIMIT OF GM MATRIX

Consider the problem of estimating parameter θ . The ma-
trix GM is given by the solution of

ei�GM = e−i�Gθ /2
√

ei�Gθ /2ei�Gθ+dθ ei�Gθ /2e−i�Gθ /2.

Since the zeroth order of the two matrices Gθ and Gθ+dθ

is equal in an infinitesimal limit of dθ , the zeroth order of
GM is zero. Therefore, one can write i�GM = Cdθ for some
unknown matrix C and, similarly, i�Gθ = A and i�Gθ+dθ =
A + Bdθ for some matrices A and B. From the above equation,
it can be shown that C is the solution of

eA+Bdθ ≈ eA + eACdθ + CdθeA + O(dθ )2.

Using the notation from Ref. [37], one may write ei�Gθ =
Wθ −1
Wθ +1 and expand the matrices Wθ as Wθ+dθ = WA + WBdθ

with Wθ = WA. Therefore,

eA+Bdθ = ei�Gθ+dθ = 1 − 2
1

Wθ+dθ + 1

= eA + dθ

2
(eA − 1)WB(eA − 1) + O(dθ )2,

and C is the solution of

eAC + CeA = 1
2 (eA − 1)WB(eA − 1),
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or C can be implemented into the discrete Lyapunov equation
written as

C − W −1
θ CW −1

θ = W −1
θ

∂Wθ

∂θ
W −1

θ ,

for which (Wθ + 1)C(Wθ − 1) + (Wθ − 1)C(Wθ + 1) = 2WB

is used. The solution of the Lyapunov equation is

C =
∞∑

m=0

W −m−1
θ

∂Wθ

∂θ
W −m−1

θ ,

and thus

GM = i�
∞∑

m=0

W −m−1
θ

∂Wθ

∂θ
W −m−1

θ dθ.

Especially when ∂ n̄ j/∂θ = 0 and isothermal states, i.e.,
n̄ j = n̄ for all j,

C =
∞∑

m=0

(−1)m+1W −2m−2
θ

∂Wθ

∂θ
= − 1

2(2n̄2 + 2n̄ + 1)

∂Wθ

∂θ
,

(E1)

where we have used W 2
θ = (2n̄ + 1)212n. Thus,

GM = − 1

2n̄2 + 2n̄ + 1
�

∂Vθ

∂θ
�dθ.

It can also be shown that from the definition of C and
Wθ = −2Vθ i�, GM is also the solution of

4Vθ GMVθ + �GM� + 2dθ
∂Vθ

∂θ
= 0. (E2)

Writing in the basis, in which Vθ is symplectically diagonal-
ized, one can recover the previous result [47],

(GM) jk = 2V s
θ

∂V s
θ

∂θ
V s

θ − �
∂V s

θ

∂θ
�/2

λ2
jλ

2
k − 1

dθ, (E3)

where the superscript of s denotes operators being trans-
formed by the symplectic operator S, λ j’s are the symplectic
eigenvalues of Vθ , and S is a symplectic matrix that diagonal-
izes Vθ .

The vector uM for an infinitesimal dθ is written as

uM = (−i�GM)−1ei�Gθ /2(e−i�Gθ /2 − 1)(e−2i�Gθ − 1)−1

× e−i�Gθ /2(e−i�Gθ − 1)
∂uθ

∂θ
dθ = G−1

M V −1
θ

∂uθ

∂θ
dθ/2,

where we have used ei�Gθ = Wθ −1
Wθ +1 . Thus,

vM = GMuM = V −1
θ

∂uθ

∂θ
dθ/2. (E4)

As a final remark, we highlight that Eq. (E2) with GM and
vM facilitates the derivation of the quantum Fisher informa-
tion, being made as

H (θ ) = Tr
[
D̂†(uθ )ρ̂θ D̂(uθ )

(
Q̂TGMQ̂ − 2vT

MQ̂ + ν
)2]/

dθ2

= Tr
[
ρ̂0

θ

(
Q̂TGMQ̂

)2+4
(
vT

MQ̂
)2+ν(Q̂TGMQ̂)+ν2

]/
dθ2

= −Tr

[
∂Vθ

∂θ
GM

]/
(dθ ) + ∂uθ

∂θ
V −1

θ

∂uθ

∂θ
,

where ρ̂0
θ = D̂†(uθ )ρ̂θ D̂(uθ ) is a Gaussian state with zero

mean and the same covariance matrix as ρ̂θ . We also have used
Tr[ρ̂0

θ Q̂nQ̂mQ̂l Q̂k] = ∑
(mlk) Tr[ρ̂0

θ Q̂nQ̂m]Tr[ρ̂0
θ Q̂l Q̂k], where

(mlk) denotes a cyclic permutation, and Tr[ρ̂0
θ Q̂nQ̂m] =

Vnm + i�nm/2 [59]. Note that the method we provide above
can be straightforwardly applied to multiparameter cases so
as to derive a quantum Fisher information matrix.
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