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Abstract
In this paperwe consider the quantum resources required tomaximize themean values of any
nontrivial quantumobservable.We show that the task ofmaximizing themean value of an observable
is equivalent tomaximizing some formof coherence, up to the application of an incoherent operation.
For any nontrivial observable, there always exists a set of preferred basis states where the superposition
between such states is always useful for optimizing themean value of a quantumobservable. The
usefulness of such states is expressed in terms of an infinitely large family of valid coherencemeasures
which is then shown to be efficiently computable via a semidefinite program.We also show that these
coherencemeasures respect a hierarchy that gives the robustness of coherence and the l1 normof
coherence additional operational significance in terms of such optimization tasks.

1. Introduction

Quantumcoherence has long been recognized as a fundamental aspect of quantummechanics. In comparison,
the identification of quantum coherence as a useful and quantifiable resource is amuchmore recent
development. Progress in this area has been greatly accelerated due to the resource theoretical framework for
quantum coherence [1–3]. Inspired by the resource theory of entanglement [4, 5], the notion of what quantum
coherence is and how it can be quantified is now axiomatically defined, thus allowing quantum coherence
phenomena to be discussedmuchmore unambiguously. Since this development,many coherencemeasures
have been proposed. Some knownmeasures include geometricmeasures [2], the robustness of coherence [6–8],
and entanglement basedmeasures [9]. Coherencemeasures have nowbeen studied in relation to a diverse range
of quantum effects such as quantum interference [10], exponential speed-up in quantum algorithms [11, 12]
and quantummetrology [13, 14], nonclassical light [15–17], quantummacroscopicity [18, 19] and quantum
correlations [20–25]. An overview of coherencemeasures and their structuremay be found in [26, 27]. Also
related is the study of coherence witnesses, which concerns the detection, but not necessarily the quantification,
of quantum coherences via an observable [6–8, 10, 28].

In this paper, we discuss how to construct a coherencemeasure from a quantumobservableM. The structure
of this paper follows: in section 2we briefly review some essential concepts such as theKraus andChoi–
Jamiolkowski representations of quantum channels, the resource theory of coherence, and semidefinite
programming. In section 3, we show that optimizing themean value of the observable á ñM for an input state is
the same asmaximizing the coherence of the input state pertaining to a specific class of bases, up to the
application of some incoherent operation. Given any nontrivial observableM, it is therefore always possible to
construct a coherencemeasure for some specific set of bases.We also show that the converse is possible, by
identifying observablesM and constructing a coherencemeasure for any given basis. In section 4, we prove that
thismeasure is computable via a semidefinite program. In section 5, we demonstrate that the robustness of
coherence and the l1 normof coherence establishes the quantum limits of such tasks. The relationship between
our proposedmeasures and coherencewitnesses is also discussed. In section 6, we present examples that
illustrate the key ideas of our approach and provide several examples of previously knownmeasures that turn
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out to be special cases of our proposedmeasures. Finally, in section 7we summarize and discuss the implications
of our results.

2. Preliminaries

We review some elementary concepts concerning coherencemeasures, quantum channels, and semidefinite
programs.

Wefirst briefly describe the formalismof quantum channels, whichwe take here tomean the set of all
Completely Positive, Trace Preserving (CPTP)maps. There are several equivalent characterizations of quantum
maps, but for our purposes, wewill be concernedwith theKraus [29] and theChoi–Jamiolkowski
representations [30, 31]. In theKraus representation, a quantumoperation is represented by amap of the form

r rF = å( ) †K Ki i i which is completely specified by a set of operators { }Ki calledKrausOperators. TheKraus
operatorsmust satisfy the completeness relation å =†K Ki i i in order to qualify as a valid quantumoperation.
In theChoi–Jamiolkowski representation, a quantummapΦ is represented by an operator
F = å F ñ á Ä ñ á( ) (∣ ∣) ∣ ∣J i j i ji j A B, which satisfies F =[ ( )]JTrA B. The action ofΦ on some state ρ is then

recovered via themap  r rF Ä = F[ ( ) ] ( )JTrB A B
T

A . A simple relationship connects both equivalent
representations. For amapΦ represented byKraus operators = å ñá{ ∣ ∣}K k j ki j k i j k, , , , the correspondingChoi–

Jamiolkowski representation is F = å( ) †J v vi i i where = å ñ ñ∣ ∣v k j k:i j k i j k, , , .
The notion of coherence that wewill employ in this paperwill be the one identified in [1, 2], where a set of

axioms are identified in order to specify a reasonablemeasure of quantum coherence. The axioms are as follows:
For a given fixed basis ñ{∣ }i , the set of incoherent states  is the set of quantum states with diagonal density

matrices with respect to this basis. Incoherent completely positive and trace preservingmaps (ICPTP) are
quantummaps thatmap every incoherent state to another incoherent state. Consider some set of ICPTPmaps
 . Given this, we say that  is ameasure of quantum coherence if it satisfies following properties: (C1)
(Faithfulness)  r( ) 0 for any quantum state ρ and equality holds if and only if r Î . (C2a) (Weak
monotonicity)  is non-increasing under any ICPTPmap F Î , i.e. r rF( ) ( ( ))C C . (C2b) (Strong
monotonicity)  ismonotonic on average under selective outcomes, i.e. for any ICPTPmap F Î such that

r rF = å( ) K Kn n n, r rå( ) ( )C p Cn n n , where r r= †K K pn n n n and r= [ ]†p K KTrn n n for allKnwith

å =†K Kn n n and  Í†K Kn n . (C3) (Convexity)  is convex, i.e. l r l s+ -( ) ( ) ( )C C1
 lr l s+ -( ( ) )C 1 , for any densitymatrix ρ andσwith  l0 1.

Onemay check that a particular operation is incoherent if its Kraus operators alwaysmaps a diagonal density
matrix to another diagonal densitymatrix. One important example of such an operation is theCNOT gate.We
can also additionally distinguish between themaximal set of ICPTPmaps, whichwe refer to asmaximally
incoherent operations (MIO) [1] from the set of ICPTPmapswhose Kraus operators additionally satisfy
 Í†K Kn n , whichwe refer to as simply incoherent operations (IO) [2]. From this definition, it is clear that
ÌIO MIO.We highlight that bothMIO and IO are commonly used abbreviations, and that other possible sets

of ICPTPmaps are also actively being considered (see [26] for examples). In this article, wewill typically consider
eitherMIO and IO for the set .

Finally, we review some basic notions regarding semidefinite programs. A semidefinite program is a linear
optimization problemover the set of positivematricesX, subject to a set of constraints that can be expressed in
the following form:


f = = ¼

( )

( )

AX

X B i m

max Tr

subject to , 1, , ,
X

i i

0

whereA andBi areHermitianmatrices andfi is a linear,Hermiticity preservingmap (i.e. itmaps every
Hermitianmatrix to anotherHermitianmatrix) representing the ith constraint. The above is called the primal
problem. The optimal solution to the primal problem is always upper bounded by the optimal solution to the
dual problem,when they exist. The dual problemmay bewritten as the following optimization problemover all
possibleHermitianmatricesYi:

* 

å

å f

= =

=

( )

( )

{ }†
B Y

Y A

min Tr

subject to .

Y Y i

m

i i

i

m

i i

1

1

i i

In this case, *fi refers to the conjugatemap that satisfies *f f=[ ( )] [ ( ) ]† †C D C DTr Tri i for everymatrixC
andD.
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The solutions to the primal and dual problems are usually equal except in themost extreme cases.
Nonetheless, this needs to be verified on a case by case basis. A sufficient condition for both primal and dual
solution to be equal is called Slater’s Theorem, which states that if the set of positivematricesX that satisfies all
the constraintsfi is nonempty, and if the set ofHermitianmatricesYi that satisfies the strict inequality

*få >= ( )Y Ai
m

i i1 is also nonempty, then the optimal solutions for both problems, also referred to as the optimal
primal value and the optimal dual value,must be equal.

3. Coherencemeasures frommaximally incoherent operations

In this section, wewill discuss how a quantumobservableMmay be used to construct a coherencemeasure that
satisfies axioms (C1)–(C3) (see section 2). The following theorem introduces a quantity that satisfies the strongly
monotonic condition (C2b), whichwill prove useful whenwe eventually construct the coherencemeasure.

Theorem1. For any quantum observable M and quantum state ρ, the quantity


rF

FÎ
( ( ))Mmax Tr

is stronglymonotonic under incoherent operations, where may be substituted with either the set of operationsMIO
or IO.

Proof.Wefirst observe that any incoherent operation represented by some set of incoherent Kraus operators
{ }Ki

IO is, by definition, also amaximally incoherent operation. Note that for any set ofmaximally incoherent
operations W W Î{ ∣ }MIOi i

MIO MIO , themap r rW = å W( ) ( )†K K: i i i i
MIO IO IO is alsomaximally incoherent since it is

just a concatenation of the incoherent operation represented by { }Ki
IO , followed by performing amaximally

incoherent operation Wi
MIO conditioned on themeasurement outcome i. Let us assume that rW ( )i i

MIO is the

optimalmaximally incoherent operationmaximizing rW( ( ))MTr i i
MIO for the state

r r r= ( )† †K K K K: Tri i i i i
IO IO IO IO , we then have the following series of inequalities:



å

å

å

r r

r

r

r

F W

= W

= W

= F

FÎ

F Î

( ( )) ( ( ))

[ ( )]

[ ( )]

( ( ))

†

M M

M K K

M p

p M

max Tr Tr

Tr

Tr

max Tr ,

i
i i i

i
i i i

i
i i i

MIO

MIO IO IO

MIO

MIOi

where r r r= ( )† †K K K K: Tri i i i i
IO IO IO IO and r= ( )†)p K K: Tri i i

IO IO .We note that the last line is simply the
expression for strongmonotonicity, which proves the result for the case when isMIO. Identical arguments
applywhen considering IO, which completes the proof. ,

In the above proof, we see that the optimization overMIO yields a valid coherencemonotone inwithin the
regime of IO, so drawing a sharp distinction between the two sets of operations is not always necessary.

We note that satisfying strongmonotonicity qualifies the quantity as a coherencemonotone, but is
insufficient to fully qualify it as a coherencemeasure. In order for that to happen, we need to demonstrate that

 rF =FÎ ( ( ))Mmax Tr 0 iff ρ is an incoherent state, and  rF >FÎ ( ( ))Mmax Tr 0whenever ρ is a coherent
state. It is clear that this is only true for some special cases ofM. However, the following theorem shows that even
ifM does not by itself satisfy the above conditions, it is still possible to construct a valid coherencemeasure
usingM.

Theorem2. LetM be someHermitian quantum observable in a d-dimensional Hilbert space. Then there exists a

basis ñ{∣ }i such that á - ñ =( )∣ ∣i M i 0M

d

Tr for every ñ∣i .
Furthermore, for every nontrivial quantum observableM, the quantity




r r= F -
FÎ

( ) [( ( )] ( )M M d: max Tr TrM

is always a valid coherencemeasure w.r.t. any basis ñ{∣ }i that satisfies á - ñ =( )∣ ∣i M i 0M

d

Tr for every ñ∣i . Since
such a basis always exists, the coherencemeasure M also always exists. The set of quantummaps may be
subtituted with eitherMIO or IO.

Proof.Webegin by observing that thematrix ¢ = -M M M

d

Tr is trace zero. SinceM′ is nontrivial (not
proportional to the identity operator), it implies that the sumof its positive eigenvalues and negative eigenvalues

3
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must be exactly equal. Let l l l= ¼


( ), , d1 be the vector of eigenvalues ofM′ arranged in decreasing order.We
recall the Schur–Horn theorem,which states that for every vector = ¼

 ( )v v v, , d1 , there exists aHermitian

matrix with the same vector of eigenvalues l

, but with diagonal entries = ¼

 ( )v v v, , d1 so long as the vectors

satisfy themajorization condition l
 


v . It is clear that the zero vector = ¼

 ( )v 0, , 0 always satisfies this
condition. Therefore, there always exist a basis ñ{∣ }i forM′where themain diagonals are all zero, such that
á ¢ ñ =∣ ∣i M i 0 for every ñ∣i , which proves thefirst part of the theorem. See proposition 1for an example of such a
basis usingmutually unbiased bases. Proposition 1 presents an alternative proof for theexistence of such bases
but it is important to note that not every basis that satisfies the condition á ¢ ñ =∣ ∣i M i 0 for every ñ∣i is necessarily
mutually unbiased.

Now,we proceed to prove that  r( )M is a coherencemeasure of with respect to the basis ñ{∣ }i . The strong
monotonicity condition is already satisfied due to theorem 1. The convexity of themeasure is immediate from
the linearity of the trace operation and the definition of M as amaximization overMIOor IO. Therefore, we
only need to establish the faithfulness property of themeasure.

In order to prove this, recall that in the basis ñ{∣ }i , the diagonal elements ofM′ is all zero. Therefore, there
always exists some projection onto a 2 dimensional spaceM′ such that the corresponding submatrix has the

form
*

⎜ ⎟
⎛
⎝

⎞
⎠

r
r
0

0
.We can assumewithout loss of generality that the projection is onto the subspace ñ ñ{∣ ∣ }0 , 1 , since

at this point, the numerical labelling of the basis is arbitary.
For some coherent quantum state ρ, there is at least one nonzero off-diagonal element. Since basis

permutation is an incoherent operation, we can assume the nonzero off-diagonal element is r01. In fact, we can
assume that it is the only nonzero off-diagonal element as we can freely project onto the subspace spanned by

ñ ñ{∣ ∣ }0 , 1 and completely dephase the rest of theHilbert space via an incoherent operation, which allows us to
prove the general result by only considering the 2 dimensional case. Suppose this leads to a 2 dimensional

submatrix of the form
*

⎛
⎝⎜

⎞
⎠⎟

p a

a p
1

2
where a is nonzero since ρ is coherent.

Directly computing
* *

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

r
r

p a

a p
Tr

0
0

1

2
, we get the expression * *+ = +f f-∣ ∣( )r a a r ra e ei i . This final

quantity can always bemade positive by performing the incoherent unitary that performs ñ  ñ∣ ∣0 0 and
ñ  ñf-∣ ∣1 e 1i which is equivalent tomaking both a and r positive quantities. Since r is strictly positive asM′ is a

nontrivialmatrix, this implies >ar 0 if ρ is a coherent state, so there always exists at least one incoherent
operationΦ such that r¢F >[ ( )]MTr 0 for every coherent state ρ.

Finally, we just observe thatM′ has zero diagonal elements w.r.t. the basis ñ{∣ }i , so r¢F =[ ( )]MTr 0
whenever ρ is incoherent andΦ isMIOor IO. This completes the proof. ,

Theorem 2 above establishes several facts. First, observe that since  r( )M is a coherencemeasure and
nonnegative, r -[( )] ( )M M dTr Tr can only be positive when ρ is coherent (the basis is specified by the
theorem). This establishes that every nontrivial observableM is, in fact, a witness of some formof coherence. One
just needs to subtract the constant ( )M dTr from themean value á ñM to verify the presence of coherence.

Second, it establishes that ifM is a coherencewitness, then it can be interpreted as the lower bound of the
bona fide coherencemeasure M . Recall that themeasure M quantifies the operational usefulness of a quantum
state when one considersMIOor IO type quantumoperations and the task is tomaximize themean value of a
given observableM. Other examples of coherencemeasures with operational interpretations in terms ofMIOor
IO include the relative entropy of coherence, which quantifies the number ofmaximally coherent qubits you can
distill using IO [32], as well as quantities considering howmuch entanglement and Fisher information can be
extracted viaMIOor IO [9, 14].

Third, theorem 2defines the preferred incoherent bases where the coherence is useful for optimizing á ñM
and shows that such bases always exist. The following proposition states that the coherencewith respect to any
basis that ismutually unbiasedwith respect to the eigenbasis of the observableMwill always satisfy the necessary
condition in theorem2.

Proposition 1. Let a ñ{∣ }i be the complete set of eigenbases of some nontrivial quantum observableM, and let b ñ{∣ }i

be any complete basis that ismutually unbiasedw.r.t. a ñ{∣ }i . Then the basis b ñ{∣ }i always satisfies

b bá - ñ =( )∣ ∣M 0i
M

d i
Tr for every b ñ∣ i .

In other words, w.r.t. anymutually unbiased basis b ñ∣ i , the diagonal elements of -M M

d

Tr is always zero.

Proof. Let the dimension of theHilbert space be d.We then have b aá ñ =∣ ∣ ∣i j d
2 1 . Since a ñ{∣ }i is the complete

eigenbasis ofM, l a a= å ñá∣ ∣M i i i i and b bá ñ = å =
l∣ ∣Mi i j d

M

d

Trj . This implies that

4
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b bá - ñ =∣( )∣M 0i
M

d i
Tr for every = ¼i d1, , , which is the required condition.Note that this can be

considered an alternative proof of the first statement in theorem 2. ,

In theorem 2,we established the existence of a coherencemeasure M but the proof is not constructive in the
sense that given the observableM, it does not immediately informus of a procedure to obtain the basis ñ{∣ }i and

correspondingmeasure M . Proposition 1 closes this gap. Given any observableM, onemay obtain the
eigenbasis, find another basis that ismutually unbiasedwith respect to this eigenbasis, and construct M . An
overview of how to constructmutually unbiased bases can be found in [33]. Note thatmutually unbiases bases
are not the only kinds of bases satisfying theorem2.

Wenow consider the reverse construction. Suppose instead of starting froma given observableM and
inferring the basis for the coherencemeasure, wewish to beginwith some basis ñ{∣ }i and construct an

observableMwith correspondingmeasure M that quantifies the coherence in the basis ñ{∣ }i . Themethod to do
this also follows from theorem2, aswe can choose anyHermitianmatrix to beM so long as the leading diagonals
are zero. This is guaranteed to lead to a reasonablemeasure according to theorem2. Such amatrix is easy to
construct, as any arbitraryHermitianmatrix written in the basis ñ{∣ }i with its leading diagonal elements replaced
with zerowill suffice. This is summarized in the formof the following corollary.

Corollary 2.1.Consider any complete basis ñ{∣ }i and any arbitraryHermitianmatrixHwhich has at least one

nonzero off-diagonal element. Then using thematrix = - å á ñ ñá∣ ∣ ∣ ∣M H i H i i ii , the correspondingmeasure M
(see theorem 2)will always be ameasure of the coherence w.r.t. the basis ñ{∣ }i .

4. A semidefinite program for computing coherencemeasures

Previously, we have considered bothMIO and IOduring the construction of our coherencemeasures. Here, we
show that forMIOs, the corresponding coherencemeasure M

MIO is efficiently computable via a semidefinite
program.Many other quantities related to coherencemay be phrased as a semidefinite program. For examples,
see [6, 7, 34–37].

Let usfirst define thematrix r= Ä Ä ñ á∣ ∣A M: 1 1A B
T

C acting on  Ä ÄA B C. Furthermore, wewill
assume that  = =( ) ( ) ddim dimA B and  =( )dim 2C .

We nowprove the following:

Theorem3. For any quantum observableM, the optimization problem

rF
FÎ

( ( ))Mmax Tr
MIO

is equivalent to the semidefinite program







å

ñ á =
Ä ñ á Ä ñ á

= ñ á Ä ñ á Ä ñ á ñ á

" = ¼
=

( )

( ∣ ∣)
( ∣ ∣ ∣ ∣)

( ∣ ∣ ∣ ∣ ∣ ∣)∣ ∣

AX

X

X i i

X j j i i j j

i d

max Tr

subject to Tr 1 1

Tr 1 1

Tr 2 2

1, , ,

X

AC C B

BC A B C

j

d

ABC A B C A

0

1

where r= Ä Ä ñ á∣ ∣A M: 1 1A B
T

C .
Note that all thematrices here are assumed to bewritten in a basis of the type specified in theorem 2.

Proof.Webegin byfirst noting that thematrixX can bewritten as thematrix

*
*

⎜ ⎟⎛
⎝

⎞
⎠

X
X

.1

2

The ∗ indicates possible nonzero elements, but they do not appear in the objective functionwe are trying to
optimize, nor do they appear within the linear constraints, so they can be arbitrary so long asX�0. Thematrix
Awritten inmatrix form looks like

rÄ⎛
⎝⎜

⎞
⎠⎟

M 0

0 0
.A B

T

5

New J. Phys. 21 (2019) 023013 KChuanTan et al



Computing ( )AXTr , we get

 r= Ä( ) [ ( ) ]AX X MTr Tr Tr .A B A B
T

A1

Now, the constraint ñ á =( ∣ ∣)XTr 1 1AC C B implies =( )XTrA B1 , soX1 actually represents a valid quantum
operation in theChoi–Jamiolkowski representation. This implies ( )AXTr has the form rF[ ( ) ]MTrA A for some
valid quantumoperationΦ.

All that remains is for us to prove that under the set of constraints



å
Ä ñ á Ä ñ á

= ñ á Ä ñ á Ä ñ á ñ á

( ∣ ∣ ∣ ∣)
( ∣ ∣ ∣ ∣ ∣ ∣)∣ ∣

X i i

X j j i i j j

Tr 1 1

Tr 2 2

BC A B C

j
ABC A B C A

for all i=1,K, d and j=1,K, d,Φmust be amaximally incoherent operation.Wefirst note that the number
ñ á Ä ñ á Ä ñ á( ∣ ∣ ∣ ∣ ∣ ∣)X j j i iTr 2 2ABC A B C is just themain diagonal elements of thematrixX2, so itmust be

nonnegative sinceX is positive andX2 is a principle submatrix ofX.We can therefore rewrite the constraint as
 lÄ ñ á Ä ñ á = å ñ á( ∣ ∣ ∣ ∣) ∣ ∣X i i j jTr 1 1BC A B C j i j A, where li j, is nonnegative. This necessarilymeans that every

incoherent state ñá∣ ∣i i ismapped to a diagonal state lå ñá∣ ∣j jj i j, under the quantummap represented byX1,
which definesmaximally incoherent operations, and completes the proof. ,

Given the primal problem in theorem3, we can alsowrite down the dual problem,which is detailed in the
following corollary:

Corollary 3.1.The dual to the primal problem in theorem 3 is the following optimization over all possible Hermitian
YA andYB:

 



å rÄ + Ä ñ á Ä

á ñ " = ¼

=

=

( )

∣ ∣

∣ ∣

†
Y

Y Y i i M

j Y j j d

min Tr

subject to

0, 1, , .

Y Y
B

A B
i

d

A B A B
T

A A

1

B B

Furthermore, the optimal primal value is equal to the optimal dual value.

Proof.Thefirst constraint in the primal problem can bewritten as f = ñ á =( ) ( ∣ ∣)X X: Tr 1 1AC C B. The
conjugatemap can be verified to be themap *f = Ä Ä ñ á( ) ∣ ∣Y Y 1 1B A B C , since it satis-
fies *f f=[ ( )] [ ( ) ]Y X Y XTr TrB B .

The rest of the constraints can bewritten as



å
f = Ä ñ á Ä ñ á

- ñ á Ä ñ á Ä ñ á ñ á =

( ) ( ∣ ∣ ∣ ∣)
( ∣ ∣ ∣ ∣ ∣ ∣)∣ ∣

X X i i

X j j i i j j

: Tr 1 1

Tr 2 2 0.
i BC A B C

j
ABC A B C A

In this case the conjugatemap is

*

å
f = Ä ñ á Ä ñ á

- á ñ ñ á Ä ñ á Ä ñ á

( ) ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

Y Y i i

j Y j j j i i

: 1 1

2 2 .

i A
i

A
i

B C

j
A
i

A A B C

Summing over the variable i, we have

*å å

å

f = Ä ñ á Ä ñ á

- á ñ ñ á Ä ñ á Ä ñ á

( ) ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

Y Y i i

j Y j j j i i

: 1 1

2 2 .

i
i A

i

i
A
i

B C

i j
A
i

A A B C
,

.
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The dual program can therefore bewritten as:

 



å

å

r

Ä Ä ñ á + Ä Ä ñ á

- Ä ñ á Ä ñ á

- á ñ ñ á Ä ñ á Ä ñ á

Ä Ä ñ á

=
( )

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣

†
Y

Y Y

Y i i

j Y j j j i i

M

min Tr

subject to 1 1 1 1

1 1

2 2

1 1 .

Y Y
B

A B C A B C

i
A
i

B C

i j
A
i

A A B C

A B
T

C

,

B B

The third line of the constraint is actually just -å á ñ ñ á Ä ñ á Ä ñ á∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣j Y j j j i i 2 2 0i j A
i

A A B C, , which is
equivalent to the contraint that themain diagonal ofY i

A is all negative. As such, the program can be further
simplified to the following:

 



å rÄ + Ä ñ á Ä

á ñ " = ¼

=
( )

∣ ∣

∣ ∣

†
Y

Y Y i i M

j Y j j d

min Tr

subject to

0, 1, ,

Y Y
B

A B
i

A
i

B A B
T

A
i

A

B B

which is the form that was presented in the corollary. Finally, we just need to check that the primal and dual
programs satisfies Slater’s conditions. For the primal problem, the optimization is over allMIO’s, so the primal
feasible set is nonempty (for instance, we can just consider theChoi–Jamiolkowski representation of the identity
operation, which also falls underMIO). Furthermore, there exists at least one set ofY i

A andYB s.t.
 rÄ + å Ä ñ á > Ä∣ ∣Y Y i i MA B i A

i
B A B

T since one can always set =Y 0A
i , and =Y xB B where

l r> Ä( )x MA B
T

max and l ( )Amax represents the largest eigenvalue ofA. As such, Slater’s conditions are satisfied
and the primal optimal value is equal to the dual optimal value. ,

5. Relation to robustness and l1 normof coherence

It was observed in [6, 7] that the robustness of coherence , whichmay be interpreted as theminimal amount
of quantumnoise that can be added to a systembefore it becomes incoherent, is a coherencemeasure that is also
simultaneously themean value of an observable. That is, for any state ρ, there always exists some optimal witness
Wρ such that r r=r( ) ( )WTr . It was also demonstrated that the l1 normupper bounds the robustness, so
  r r( ) ( )l1 . The coherence weight is another similar examplewhere themeasure is given by themean value
of an observable [37]. Note that for both the robustness of coherence and the coherenceweight, the optimal
observables depend on the state. The following theorem shows that both the robustness and the l1 norms of
coherence are fundamental upper bounds of M . In [28], it was also observed thatwhenM is a witness that
achieves itsmaximumvalue for themaximally coherent state, then M

IO is upper bounded by the l1 normof
coherence under certain normalization conditions.

Theorem4Hierarchy of coherencemeasures. For any given state r and observableM, the following hierarchy of
the coherencemeasures holds:

       r r r r( ) ( ) ( ) ( ),M M M M l
IO MIO

1

where  l= -( )M:M
M

dmin
Tr and l ( )Mmin is the smallest eigenvalue of the observableM. Furthermore, all the

inequalities are tight.

Proof. In [6, 7], it was shown that  r( ) is equivalent tomaximizing rWTr over all Hermitian observablesW,
subject to the constraint that  -W and that the diagonal entries ofW are nonpositive. Note that our
convention differs from the one presented in [6, 7] by a negative sign.

We always displaceM and consider thematrix ¢ = -M M M

d

Tr , and it is clear that a positive scaling factor

does not fundamentally change M , i.e.   r r=( ) ( )kkM M for k 0 where isMIOor IO. As such, without
any loss in generality, we can assume thatM is a tracelessmatrix where the leadingmatrix elements are zero, and
that its smallest eigenvalue is normalized such that l = -( )M 1min . This implies that  = 1M . Observe that
under these assumptions,M automatically satisfies the constraints onW that was described in the preceding
paragraph.

Recall that  r r= FFÎ( ) ( ( ))M: max TrM MIO . Consider the quantity rF( ( ))MTr and let *F be the conjugate
map such that *r rF = F( ( )) ( ( ) )M MTr Tr . Then, sinceΦ is a CPTPmap and the conjugatemap preserves the
trace, we have * l r r lF = F =r r( ( )) ( ( ) ) ( ) ( )M M M Mmin Tr min Trmin min where theminimum is taken
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over all possible densitymatrices. Furthermore, we see that asΦ isMIOor IO, the leading diagonals of *F ( )M
must be zero if the leading diagonals ofM are zero. This again comes from the definition of the conjugatemap

*r rF = F( ( )) ( ( ) )M MTr Tr . From this, we can determine that *F ( )M always satisfies the necessary constraints
forW described above, and this is true for anyΦ that is an ICPTPmap, sowemust have   

r r( ) ( )M M .
It was already known that   r r( ) ( )l1 , andwemust have that  r r( ) ( )M M

IO MIO since ÌIO MIO,
which leads to thefinal chain of inequalities

       r r r r( ) ( ) ( ) ( ).M M M M l
IO MIO

1

To see that the inequalities are tight, we need to demonstrate that there are cases ofM and ρwhere equality is
achieved. It is already known that when the state ρ is themaximally coherent state   r r=( ) ( )l1 [6, 7].
Consequently, we also know that when ρ ismaximally coherent = å ñár ¹ ∣ ∣W i ji j andwe can choose = rM W ,

which is enough to achieve   r r=( ) ( )M M
MIO . Finally, we can also verify that  r r=( ) ( )M M

IO MIO is achieved
when the input state ρ ismaximally coherent andwe choose = å ñá¹ ∣ ∣M i ji j . Therefore, all the inequalities are
tight. ,

Here, we also briefly discuss the computational resources necessary to evaluate M
MIO and R, which are both

computable via semidefinite programs.Wenote that thematrix sizes required to calculate R are d×dwhere d
is the dimension of theHilbert space. In comparison, thematrix sizes required for M

MIO are ´d d2 2 due to the
optimization overmaximally incoherent operations via theChoi–Jamiolkowski representation. The problem
sizes for M

MIO and R are therefore scales with ( )O d4 and ( )O d2 respectively. As such, M
MIO will generally take

longer to compute than R. However, bothmeasures are computable in polynomial time as semidefinite
programs can be computed to anyfinite accuracy in polynomial time [38].

6. Examples

In this section, we discuss examples that illustrate our key results.We first consider the simplest system
consisting of a single spin. Let ñ ñ{∣ ∣ }, be the basis vectors corresponding to a spin pointing in the+z and the
−z directions respectively. Suppose ourmeasurement observable is a Paulimeasurement along the x axis. In this

case, our observableM is the Paulimatrix s = ( )0 1
1 0x . Notice thatσx always is always zero along its leading

diagonals, as was the case considered in theorem 2. Supposewe performmany Pauli Xmeasurements and the
outcome of themeasurement is always+1, thenwe can be certain that the statemust be ñ + ñ(∣ ∣ )0 11

2
which

corresponds to amaximally coherent qubit. The larger themean values of yourmeasurement, themore
confident you are that the state is close to themaximally coherent state, which in turn suggests that the state
containsmore coherence. Theorems 1 and 2 can be interpreted as a reflection of this confidence, generalized to
arbitrary finite dimensional systems. Themaximization overMIO and IO,which are both sets of operations that
do not increase coherence, are further required in order tomake this relationshipmore quantitative, such that it
satisfies the axioms (C1)–(C3) (See section 2).

Furthermore, we also see that the chosen basis ñ ñ{∣ ∣ }, ismutually unbiasedwith respect to the eigenbasis
ofσx, which again is the case being considered in proposition 1.Observe that the designation of the+zdirection
is arbitrary. Given the direction+x, we can equivalently define any direction along the y–z plane as our new z
axis. Consequently, we can be assured that any basis corresponding to a direction orthogonal to the x axis is
mutually unbiasedwith respect to the eigenbasis ofσx. Ameasurement along a given axis is therefore related to
the amount of coherence along an orthogonal direction.More generally, any qubit observableM can always be
written in the form  s= +

 ·M a r0 where s s s s=
 ( ), ,x y z is the standard vector of Paulimatrices and


r is a

real three dimensional vector. In this case, the outcomes of themeasurementM contains information about the
coherence in a basis that is orthogonal to


r in the Bloch sphere. Proposition 1 generalizes this observation to

higher dimensions.
We now consider higher dimensional,multipartite scenarios and present numerical examples of our

computablemeasure M
MIO.

Let us consider for spin systems the totalmagneticmoment operator. For a systemofN spins we can choose
as our classical basis ñ ñ=⨂ {∣ ∣ },i

N
i i1 where ñ ñ{∣ ∣ },i i is the eigenbasis of the local spin-z operator. In order to

witness the coherence between these basis states, a simplemeasurement of themagnetization in the x direction
will suffice (see theorem2 aswell as proposition 1). The total spin-x operator is defined as

å=
=

S Sx
i

N

x
i

1
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with local spin operators Sx
i . Choosing Sx as our observable, anymeasurement of á ñSx is automatically a lower

bound to the corresponding coherencemeasure Sx
. Note that because one can equivalently choose tomeasure

the totalmagnetization along any direction on the equatorial plane, any non zeromeasurement of á ñSx directly
implies the presence of coherence in the z direction.

Onemay also choose tofind the ‘optimal’measure byfinding then implementing the optimal observable
achieving r r=r( ) ( )WTr [6, 7]. However, the physical implementation of such an observableWρ is not
always simple. Instead, onemay opt to perform a simplermeasurement such as Sx, which corresponds to the
computablemeasure S

MIO
x

using the semidefinite programdescribed in theorem3. This example illustrates how
the resource requirements for experimentally detecting andmeasuring quantum coherencemay be simplified
via the direct application of theorem2 and proposition 1. Figure 1 compares l1,  and S

MIO
x

for the state

r = + - ñá( ) ∣ ∣p p w w1 7 8 7 where ñ = ñ + ñ + ñ∣ (∣ ∣ ∣ )w : 001 010 1001

3
and Î [ ]p 0, 1 . Note the hierarchy

of the coherencemeasures      r r r( ) ( ) ( )M M M l
MIO

1
(see theorem4).

Several existing coherencemeasures can also be shown to fall under the framework that was discussed in this
article. For instance, in [14], superradiance is studiedwithin the context of coherence. In the idealizedmodel for
superradiance, there areN-number of two-level atomic systemswith the energy levels denoted by ñ∣ ( )e i and ñ∣ ( )g i

respectively. From this, we define the raising and lowering operators acting on the ith subsystem as
= ñá+ ∣ ∣( ) ( ) ( )D e g:i i i and = ñá- ∣ ∣( ) ( ) ( )D g e:i i i , and the collective component of the emission rate, referred to as the

superradiant quantity, is á ñ = å á ñ¹ + -
( ) ( )S D DN i j
i j .We see that SN is a traceless observable whose leading diagonal

elements are all zero in the axis defined by ñ∣ ( )e i and ñ∣ ( )g i . This neatly falls underneath our framework, so any
witnessing of superradiance is in fact, a witness of coherence between among basis states and a computable
measure S

MIO
N

may be constructed.We note that this is a considerable improvement upon the originalmeasure
in [14], which uses the computationally difficult convex roof construction in order to generalize themeasure to a
generalmixed state. A comparison of S

MIO
N

with other coherencemeasures for the pure state

y q q qñ = ñ + ñ Ä∣ ( ) ( ( )∣ ( )∣ )g ecos sin 3 is shown infigure 2. Note that in this case we choseN=5 instead of
N=3 as themeasurewill saturate before themaximally coherent state is reached. Saturation of themeasure is
most easily explained using the following simplified example.We know thatσx is a good choice of observable to
measure the coherence w.r.t. the basis ñ ñ{∣ ∣ }0 , 1 . Onemay easily dilate this into a 4×4 blockmatrix of the form
s⎜ ⎟

⎛
⎝

⎞
⎠

0
0 0

.x However, even though it is a 4×4matrix, it is clear that themeasure corresponding to thismatrix will

saturate with the superposition of only 2 orthogonal vectors via the state ñ + ñ(∣ ∣ )0, 0 0, 11

2
. This coherence

measurewill therefore saturate before reaching themaximally coherent state
ñ + ñ + ñ + ñ(∣ ∣ ∣ ∣ )0, 0 0, 1 1, 0 1, 11

2
, simply because the rank of thematrix is too low. A similar situation exists

for S
MIO

N
, which can be avoided by increasing the parameterN. Note that evenwhen ameasure saturates, this

does not imply that the axioms (C1)–(C3) for coherencemeasures are violated.
Another example that falls under our framework is the fidelity of coherence distillation, which is discussed in

greater detail in [34]. Thefidelity of coherence is defined as themaximumoverlapwith themaximally coherent
state optimized over some set of operations , whichmay beMIOor IO. Formally, it is defined as the following
quantity:

Figure 1.Comparisons among the l1 normof coherence l1(green, solid), the robustness of coherence (red, dashed–dotted), and
the coherencemeasure corresponding tomagnetizationmeasurement Sx(blue, dotted).We consider the single parameter, 3 qubit
state r = + - ñá( ) ∣ ∣p p w w1 7 8 7 , where ñ = ñ + ñ + ñ∣ (∣ ∣ ∣ )w : 001 010 1001

3
and Î [ ]p 0, 1 .

9

New J. Phys. 21 (2019) 023013 KChuanTan et al






r r= F YñáY
FÎ

( ) ( ( )∣ ∣)F max Tr ,

where Yñ = å ñ=∣ ∣ii
d

d1
1 is themaximally coherent state.We see that the in the basis ñ{∣ }i , the leading diagonal

elements of thematrix YñáY -∣ ∣
d

1 are all zero, so  -F
d

1 is in fact a coherencemeasure of the type described
in theorem2.

7. Conclusion

In this article, we demonstrated that every nontrivial Hermitian observableM corresponds to a coherence
witness and a coherencemeasure M for some specific incoherent bases, where the set of operationsmay be
eitherMIOor IO. In the case ofMIO,we show that themeasure is always computable via a semidefinite
program, leading to an infinitely large set of computable coherencemeasures. Themeasures also show that the
task of optimizing á ñM is the same as the task ofmaximizing the coherence of the input state, up to the
application of some incoherent operation (Theorem2). They, therefore, have the operational interpretation of
the usefulness of a given quantum state ρ for the purpose of optimizing themean value of the observable á ñM .
These coherencemeasures also satisfy a hierarchy        r r r r( ) ( ) ( ) ( )M M M M l

IO MIO
1

(Theorem4).
This demonstrates that the robustness of coherence  also has an interpretation as the ultimate usefulness of a
state ρ for the purpose of optimizing any observableM. The l1 normof coherence l1 is also interesting because it

is expressible in a closed form formula that is sometimes better suited for analysis, in comparison to M
MIO and

 which both require numerical optimization to compute.
A key conclusion of our results, in particular theorem2, is that every nontrivial quantumobservable

corresponds to a computable coherencemeasure, which also implies that every such quantumobservable is also
a coherencewitness. Thismay in some cases allow coherence to be verified in the laboratory using simpler
measurements, whichwas discussed in section 6. In spin systems, for example, amagnetizationmeasurement is
sufficient and relatively simpler to implement over amathematically optimalmeasurement [8].Moreover, the
measurement outcomes of such observables are always, up to a constant displacement, a lower bound to a
corresponding coherencemeasure M . Due to the hierarchy of coherencemeasures (see 4), they are also non-
trivial lower bounds to the robustness of coherence and the l1, although the upper bound given by 


M is tighter

in general.We hope that the techniques presented herewill be useful to simplify the requirements for the
detection andmeasurement of nonclassical quantum effects in the laboratory, as well as allow new coherence
measures with novel physical interpretations to be discovered.
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