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Abstract

In this paper we consider the quantum resources required to maximize the mean values of any
nontrivial quantum observable. We show that the task of maximizing the mean value of an observable
is equivalent to maximizing some form of coherence, up to the application of an incoherent operation.
For any nontrivial observable, there always exists a set of preferred basis states where the superposition
between such states is always useful for optimizing the mean value of a quantum observable. The
usefulness of such states is expressed in terms of an infinitely large family of valid coherence measures
which is then shown to be efficiently computable via a semidefinite program. We also show that these
coherence measures respect a hierarchy that gives the robustness of coherence and the /; norm of
coherence additional operational significance in terms of such optimization tasks.

1. Introduction

Quantum coherence haslong been recognized as a fundamental aspect of quantum mechanics. In comparison,
the identification of quantum coherence as a useful and quantifiable resource is a much more recent
development. Progress in this area has been greatly accelerated due to the resource theoretical framework for
quantum coherence [1-3]. Inspired by the resource theory of entanglement [4, 5], the notion of what quantum
coherence is and how it can be quantified is now axiomatically defined, thus allowing quantum coherence
phenomena to be discussed much more unambiguously. Since this development, many coherence measures
have been proposed. Some known measures include geometric measures [2], the robustness of coherence [6-8],
and entanglement based measures [9]. Coherence measures have now been studied in relation to a diverse range
of quantum effects such as quantum interference [10], exponential speed-up in quantum algorithms[11, 12]
and quantum metrology [13, 14], nonclassical light [ 15—17], quantum macroscopicity [ 18, 19] and quantum
correlations [20-25]. An overview of coherence measures and their structure may be found in [26, 27]. Also
related is the study of coherence witnesses, which concerns the detection, but not necessarily the quantification,
of quantum coherences via an observable [6-8, 10, 28].

In this paper, we discuss how to construct a coherence measure from a quantum observable M. The structure
of this paper follows: in section 2 we briefly review some essential concepts such as the Kraus and Choi-
Jamiolkowski representations of quantum channels, the resource theory of coherence, and semidefinite
programming. In section 3, we show that optimizing the mean value of the observable (M) for an input state is
the same as maximizing the coherence of the input state pertaining to a specific class of bases, up to the
application of some incoherent operation. Given any nontrivial observable M, it is therefore always possible to
construct a coherence measure for some specific set of bases. We also show that the converse is possible, by
identifying observables M and constructing a coherence measure for any given basis. In section 4, we prove that
this measure is computable via a semidefinite program. In section 5, we demonstrate that the robustness of
coherence and the /; norm of coherence establishes the quantum limits of such tasks. The relationship between
our proposed measures and coherence witnesses is also discussed. In section 6, we present examples that
illustrate the key ideas of our approach and provide several examples of previously known measures that turn
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out to be special cases of our proposed measures. Finally, in section 7 we summarize and discuss the implications
of our results.

2. Preliminaries

We review some elementary concepts concerning coherence measures, quantum channels, and semidefinite
programs.

We first briefly describe the formalism of quantum channels, which we take here to mean the set of all
Completely Positive, Trace Preserving (CPTP) maps. There are several equivalent characterizations of quantum
maps, but for our purposes, we will be concerned with the Kraus [29] and the Choi—Jamiolkowski
representations [30, 31]. In the Kraus representation, a quantum operation is represented by a map of the form
®(p) = ¥, K; pK; which is completely specified by a set of operators { K;} called Kraus Operators. The Kraus
operators must satisfy the completeness relation 3, K K; = 1in order to qualify as a valid quantum operation.
In the Choi-Jamiolkowski representation, a quantum map  is represented by an operator
J(@) = 32 @(li)a (jI) ® |i)s ( jl which satisfies Try[J (@)] = lI. The action of @ on some state p s then
recovered via the map Tr[J (P) 1, ® pg] = ®(p,). Asimple relationship connects both equivalent
representations. For a map ¢ represented by Kraus operators {K; = 3_; /k; ;| j) (k|}, the corresponding Choi-
Jamiolkowski representation is J (®) = 3, v; where v; := >, ki kl ) 1K)

The notion of coherence that we will employ in this paper will be the one identified in [1, 2], where a set of
axioms are identified in order to specify a reasonable measure of quantum coherence. The axioms are as follows:

For a given fixed basis {|7) }, the set of incoherent states Z is the set of quantum states with diagonal density
matrices with respect to this basis. Incoherent completely positive and trace preserving maps (ICPTP) are
quantum maps that map every incoherent state to another incoherent state. Consider some set of ICPTP maps
O. Given this, we say that C is a measure of quantum coherence if it satisfies following properties: (C1)
(Faithfulness) C(p) > 0 for any quantum state p and equality holds ifand onlyif p € 7. (C2a) (Weak
monotonicity) C is non-increasing under any ICPTP map ® € O,ie. C(p) = C(P(p)).(C2b) (Strong
monotonicity) C is monotonic on average under selective outcomes, i.e. for any ICPTP map & € O such that
O(p) = 32, KupKy, C(p) > 32, 5,C(p,), where p, = K, pK,! /p, and p, = Tr[K, pK,] forall K, with
> K,K; = land K,IK; C T.(C3)(Convexity) C is convex, i.e. \C(p) + (1 — N C (o)
> C(Ap + (1 — MN)o), foranydensity matrix pand owith 0 < A < 1.

One may check that a particular operation is incoherent if its Kraus operators always maps a diagonal density
matrix to another diagonal density matrix. One important example of such an operation is the CNOT gate. We
can also additionally distinguish between the maximal set of ICPTP maps, which we refer to as maximally
incoherent operations (MIO) [1] from the set of ICPTP maps whose Kraus operators additionally satisfy
IC,IKnT C T, which we refer to as simply incoherent operations (IO) [2]. From this definition, it is clear that
IO C MIO. We highlight that both MIO and IO are commonly used abbreviations, and that other possible sets
of ICPTP maps are also actively being considered (see [26] for examples). In this article, we will typically consider
either MIO and IO for the set O.

Finally, we review some basic notions regarding semidefinite programs. A semidefinite program is a linear
optimization problem over the set of positive matrices X, subject to a set of constraints that can be expressed in
the following form:

max Tr(AX)
X0

subject to  ¢;(X) =B;, i=1,...,m,

where A and B; are Hermitian matrices and ¢; is a linear, Hermiticity preserving map (i.e. it maps every
Hermitian matrix to another Hermitian matrix) representing the ith constraint. The above is called the primal
problem. The optimal solution to the primal problem is always upper bounded by the optimal solution to the
dual problem, when they exist. The dual problem may be written as the following optimization problem over all
possible Hermitian matrices Y;:

m
min Tr(B;Y;
{Y,':Y’T} IZ::I ( 1 1)

subject to > ¢ (Y) > A.

i=1

In this case, gi);k refers to the conjugate map that satisfies Tr[C'¢,(D)] = Tr[(b;k (C)' D] for every matrix C
and D.
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The solutions to the primal and dual problems are usually equal except in the most extreme cases.
Nonetheless, this needs to be verified on a case by case basis. A sufficient condition for both primal and dual
solution to be equal is called Slater’s Theorem, which states that if the set of positive matrices X that satisfies all
the constraints ¢;is nonempty, and if the set of Hermitian matrices Y; that satisfies the strict inequality
it gi)?k(l/,') > A is also nonempty, then the optimal solutions for both problems, also referred to as the optimal
primal value and the optimal dual value, must be equal.

3. Coherence measures from maximally incoherent operations

In this section, we will discuss how a quantum observable M may be used to construct a coherence measure that
satisfies axioms (C1)—(C3) (see section 2). The following theorem introduces a quantity that satisfies the strongly
monotonic condition (C2b), which will prove useful when we eventually construct the coherence measure.

Theorem 1. For any quantum observable M and quantum state p, the quantity
max Tr(M®(p))
O

is strongly monotonic under incoherent operations, where O may be substituted with either the set of operations MIO
orIO.

Proof. We first observe that any incoherent operation represented by some set of incoherent Kraus operators
{K/©} is, by definition, also a maximally incoherent operation. Note that for any set of maximally incoherent
operations { QMC|OMO ¢ MIO}, the map Q(p) := > QMIO(g 10 pKiIO"') is also maximally incoherent since it is
justa concatenation of the incoherent operation represented by { K/°}, followed by performing a maximally
incoherent operation QM conditioned on the measurement outcome i. Let us assume that QM€ (p,) is the
optimal maximally incoherent operation maximizing Tr(M QM ( p;)) for the state
pii= KO pK 10T / Tr(K© pK°7), we then have the following series of inequalities:
max Tr(M®(p)) > Tr(M(p))
PeMIO
=Tr MY QMO pK[O)]
1

=Tr (M p,MO(p)]
= . Tr(M®;(p,)),
Zi: B max. r(M®;(p;))

where p,:= K/ pK1°T / Tr(K[° pK[°T) and p, := Tr(K© pK/°"). We note that the last line is simply the
expression for strong monotonicity, which proves the result for the case when O is MIO. Identical arguments
apply when considering IO, which completes the proof. O

In the above proof, we see that the optimization over MIO yields a valid coherence monotone in within the
regime of IO, so drawing a sharp distinction between the two sets of operations is not always necessary.

We note that satisfying strong monotonicity qualifies the quantity as a coherence monotone, but is
insufficient to fully qualify it as a coherence measure. In order for that to happen, we need to demonstrate that
maxge o Tr(M®(p)) = 0iff pisan incoherent state, and maxge o Tr(M®P(p)) > 0 whenever pisa coherent
state. It is clear that this is only true for some special cases of M. However, the following theorem shows that even
if M does not by itself satisfy the above conditions, it is still possible to construct a valid coherence measure
using M.

Theorem 2. Let M be some Hermitian quantum observable in a d-dimensional Hilbert space. Then there exists a
TrM

basis {|i) } such that (i| (M - ]l) |i) = 0 forevery|i).
Furthermore, for every nontrivial quantum observable M, the quantity

C$(p) := max Tr[(M®(p)] — Tr(M) /d
PO

TrM
d

such a basis always exists, the coherence measure CS; also always exists. The set of quantum maps © may be
subtituted with either MIO or IO.

is always a valid coherence measure w.r.t. any basis {|i) } that satisfies (i| (M — Jl) |i) = 0 forevery|i). Since

Proof. We begin by observing that the matrix M = M — %Jl is trace zero. Since M’ is nontrivial (not
proportional to the identity operator), it implies that the sum of its positive eigenvalues and negative eigenvalues

3
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must be exactly equal. Let X = (\p...,\y) be the vector of eigenvalues of M’ arranged in decreasing order. We

recall the Schur—Horn theorem, which states that for every vector v = (v, ..., 1), there exists a Hermitian
matrix with the same vector of eigenvalues A, but with diagonal entries ¥ = (v}, ..., 1;7) so long as the vectors
satisfy the majorization condition ¥ < A.Itis clear that the zero vector ¥ = (0, ..., 0) always satisfies this

condition. Therefore, there always exist a basis {|7) } for M’ where the main diagonals are all zero, such that

(i| M’|i) = 0 for every |i), which proves the first part of the theorem. See proposition 1for an example of such a
basis using mutually unbiased bases. Proposition 1 presents an alternative proof for the existence of such bases
but it is important to note that not every basis that satisfies the condition (i| M’|i) = 0 for every |i) is necessarily
mutually unbiased.

Now, we proceed to prove that C§;(p) is a coherence measure of with respect to the basis {|7) }. The strong
monotonicity condition is already satisfied due to theorem 1. The convexity of the measure is immediate from
the linearity of the trace operation and the definition of C$; as a maximization over MIO or IO. Therefore, we
only need to establish the faithfulness property of the measure.

In order to prove this, recall that in the basis {|7) }, the diagonal elements of M’ is all zero. Therefore, there
always exists some projection onto a 2 dimensional space M’ such that the corresponding submatrix has the

form ( ?k (r)) We can assume without loss of generality that the projection is onto the subspace {|0), |1)}, since
r

at this point, the numerical labelling of the basis is arbitary.

For some coherent quantum state p, there is at least one nonzero off-diagonal element. Since basis
permutation is an incoherent operation, we can assume the nonzero off-diagonal element is p,,,. In fact, we can
assume that it is the only nonzero off-diagonal element as we can freely project onto the subspace spanned by
{10), |1)} and completely dephase the rest of the Hilbert space via an incoherent operation, which allows us to
prove the general result by only considering the 2 dimensional case. Suppose this leads to a 2 dimensional

a
) where a is nonzero since p is coherent.

submatrix of the form p;
a p,

p, a y -
Directly computing Tr(r(:< (r))(ai ’ ],we get the expression r*a + a*r = |ra|(e'? + e~'?). This final
2

quantity can always be made positive by performing the incoherent unitary that performs |0) — |0) and
|1) — e~i?|1) which is equivalent to making both a and r positive quantities. Since r is strictly positive as M’ is a
nontrivial matrix, this implies ar > 0if pis a coherent state, so there always exists at least one incoherent
operation ® such that Tr[M'®(p)] > 0 for every coherent state p.

Finally, we just observe that M has zero diagonal elements w.r.t. the basis {|7) }, so Tr[M'®(p)] = 0
whenever pisincoherent and ® is MIO or IO. This completes the proof. O

Theorem 2 above establishes several facts. First, observe that since C$(p) is a coherence measure and
nonnegative, Tr[(Mp)] — Tr(M)/d can only be positive when p is coherent (the basis is specified by the
theorem). This establishes that every nontrivial observable M is, in fact, a witness of some form of coherence. One
just needs to subtract the constant Tr(M) /d from the mean value (M) to verify the presence of coherence.

Second, it establishes that if M is a coherence witness, then it can be interpreted as the lower bound of the
bona fide coherence measure C$;. Recall that the measure C$; quantifies the operational usefulness of a quantum
state when one considers MIO or IO type quantum operations and the task is to maximize the mean value of a
given observable M. Other examples of coherence measures with operational interpretations in terms of MIO or
IO include the relative entropy of coherence, which quantifies the number of maximally coherent qubits you can
distill using 10 [32], as well as quantities considering how much entanglement and Fisher information can be
extracted viaMIO or IO [9, 14].

Third, theorem 2 defines the preferred incoherent bases where the coherence is useful for optimizing (M)
and shows that such bases always exist. The following proposition states that the coherence with respect to any
basis that is mutually unbiased with respect to the eigenbasis of the observable M will always satisfy the necessary
condition in theorem 2.

Proposition 1. Let {| ;) } be the complete set of eigenbases of some nontrivial quantum observable M, and let {| 3;) }
be any complete basis that is mutually unbiased w.r.t. {|«;) }. Then the basis {| 3;) } always satisfies

(5;] (M - TrdMJl)Iﬂﬁ = 0 forevery|3)).

In other words, w.r.t. any mutually unbiased basis | 3;), the diagonal elements of M — TrTM]l is always zero.

Proof. Let the dimension of the Hilbert space be d. We then have [ 5;| ;) > = i. Since {| ;) } is the complete

eigenbasisof M, M = >, A\j|;) (| and (8;| M|3;) = > A TrdM.This implies that

4
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(B;|(M — TITMJI) |5;) = Oforeveryi = 1, ..., d, which is the required condition. Note that this can be
considered an alternative proof of the first statement in theorem 2. O

In theorem 2, we established the existence of a coherence measure C$; but the proofis not constructive in the
sense that given the observable M, it does not immediately inform us of a procedure to obtain the basis {|7) } and
corresponding measure C$. Proposition 1 closes this gap. Given any observable M, one may obtain the
eigenbasis, find another basis that is mutually unbiased with respect to this eigenbasis, and construct C§;. An
overview of how to construct mutually unbiased bases can be found in [33]. Note that mutually unbiases bases
are not the only kinds of bases satisfying theorem 2.

We now consider the reverse construction. Suppose instead of starting from a given observable M and
inferring the basis for the coherence measure, we wish to begin with some basis {|7) } and construct an
observable M with corresponding measure C$; that quantifies the coherence in the basis {|i) }. The method to do
this also follows from theorem 2, as we can choose any Hermitian matrix to be M so long as the leading diagonals
are zero. This is guaranteed to lead to a reasonable measure according to theorem 2. Such a matrix is easy to
construct, as any arbitrary Hermitian matrix written in the basis {|7) } with its leading diagonal elements replaced
with zero will suffice. This is summarized in the form of the following corollary.

Corollary 2.1. Consider any complete basis {|i) } and any arbitrary Hermitian matrix H which has at least one
nonzero off-diagonal element. Then using the matrix M = H — Y.,(i| H|i)|i) (i|, the corresponding measure C$
(see theorem 2) will always be a measure of the coherence w.r.t. the basis {|i) }.

4. A semidefinite program for computing coherence measures

Previously, we have considered both MIO and 1O during the construction of our coherence measures. Here, we
show that for MIOs, the corresponding coherence measure CYHO is efficiently computable via a semidefinite
program. Many other quantities related to coherence may be phrased as a semidefinite program. For examples,
see[6,7,34-37].

Let us first define the matrix A:=M, ® pg ® |1)c(1]actingon Hy ® Hp ® Hc. Furthermore, we will
assume that dim(H,) = dim(Hp) = d and dim(Hc) = 2.

We now prove the following:

Theorem 3. For any quantum observable M, the optimization problem

max Tr(M®(p))
$eMIO

is equivalent to the semidefinite program

max Tr(AX)
X0

subject to  Tryc(X [1)c(1]) = 1
Trpc(X1a @ [i)p(i] @ [1)c(1])

d
=2 Trasc(X | f)a (1 ® 15 (il @ [2)c (2D1)a (]
=1
Vi=1,..d,
where A:=M, ® pp @ |1)c(1].
Note that all the matrices here are assumed to be written in a basis of the type specified in theorem 2.

Proof. We begin by first noting that the matrix X can be written as the matrix

X] *
* X2 )

The = indicates possible nonzero elements, but they do not appear in the objective function we are trying to
optimize, nor do they appear within the linear constraints, so they can be arbitrary solongas X > 0. The matrix
A written in matrix form looks like

(MA ® P; 0)
0 0
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Computing Tr(AX), we get

Tr(AX) = Tra[Trp(X 14 ® pp)Mal.

Now, the constraint Tryc(X |1)c (1]) = lpimplies Try(X;) = I, so X, actually represents a valid quantum
operation in the Choi—Jamiolkowski representation. This implies Tr(AX) has the form T, [®(p) My] for some
valid quantum operation ®.

All that remains is for us to prove that under the set of constraints

Trpe(X14 @ |i)g (i] @ [1)c(1])

=2 Trasc(X 1)a (7l @ 1i)s (il @ 12)c (2D17)a (il
J

foralli = 1,...,dandj = 1, ...,d, ® must be a maximally incoherent operation. We first note that the number
Trapc(X |i)a (jl ® i) {(i] ® |2)c(2[)isjust the main diagonal elements of the matrix X5, so it must be
nonnegative since X is positive and X, is a principle submatrix of X. We can therefore rewrite the constraint as
Trpe(Xly @ |i)s (il @ [1)c(1]) = 3Z; Aijj 1j)a (jl where A; j is nonnegative. This necessarily means that every
incoherent state |7) (i|is mapped to a diagonal state 3=; A; j| j) ( j| under the quantum map represented by X;,
which defines maximally incoherent operations, and completes the proof. O

Given the primal problem in theorem 3, we can also write down the dual problem, which is detailed in the
following corollary:

Corollary 3.1. The dual to the primal problem in theorem 3 is the following optimization over all possible Hermitian
Y, andYg:

min  Tr(Yp)
Y=Y}

d
subject to ly ® Y5 + > Ya ® |i)g(i| = Ma ® pp
i=1

(] Yalj)a <0, Vji=1,..,4d.

Furthermore, the optimal primal value is equal to the optimal dual value.

Proof. The first constraint in the primal problem can be written as ¢(X) := Tryc(X |1)c (1]) = 1Ig. The
conjugate map can be verified to be the map ¢*(Yp) = Iy ® Yz ® |1)c (1], since it satis-
fies Tr[Y3(X)] = Tr[¢*(Yp)X].
The rest of the constraints can be written as
(X)) := Trpe(X1a @ |i)p (i] @ [1)c(1])

= 2 ToscX Lj)a (1 @ 1i)s (il @ 12)c (2D1ja (jl = 0.
J

In this case the conjugate map is

YY) =Y4 @ |iYp (il ® [1)c (1]

- 2_{il Yi Iialia (il @ 1i)s (il @ [2)c (21-
J

Summing over the variable i, we have
S =3 Vi@ lip(il @ [1)c(1]
i i

=G YA Ialia (il @ 1i)s (il @ 12)c (2.

i,]
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The dual program can therefore be written as:
min Tr(Yp)
Y=Yy
subject to Iy ® Y5 @ [1)c (1] + Y4 @ 15 ® [1)c (1]

=2V @ i (il @ [1)c (1

- Z(J’I Yi i)alia (Gl ® 1i)s (il ® [2)c (2]
> M, ® pl, @ [1)c(1].

The third line of the constraint is actually just — 3=, .(jl Yi1i)alia(jl @ 1is(i] @ [2)c(2] = 0,whichis
equivalent to the contraint that the main diagonal of Y is all negative. As such, the program can be further
simplified to the following:

min Tr(Yp)
Yp=Y}

subject to 1y ® Y + Yi® i) (i| > My ® pg

Gl Yilja <0, Vji=1,..,d

which is the form that was presented in the corollary. Finally, we just need to check that the primal and dual
programs satisfies Slater’s conditions. For the primal problem, the optimization is over all MIO’s, so the primal
feasible set is nonempty (for instance, we can just consider the Choi—Jamiolkowski representation of the identity
operation, which also falls under MIO). Furthermore, there exists at least one set of Yiand Ygs.t.

Iy ® Yp+ 3,V @ |ig(i| > My ® p£ since one can always set Y4 = 0,and Y3 = xl where

X > Apax(My ® pg) and A, (A) represents the largest eigenvalue of A. As such, Slater’s conditions are satisfied
and the primal optimal value is equal to the dual optimal value. O

5. Relation to robustness and /; norm of coherence

It was observed in [6, 7] that the robustness of coherence C, which may be interpreted as the minimal amount
of quantum noise that can be added to a system before it becomes incoherent, is a coherence measure that is also
simultaneously the mean value of an observable. That is, for any state p, there always exists some optimal witness
W, such that Tr(W, p) = Cr(p). It was also demonstrated that the /; norm upper bounds the robustness, so
Cr(p) < Cy(p). The coherence weight is another similar example where the measure is given by the mean value
of an observable [37]. Note that for both the robustness of coherence and the coherence weight, the optimal
observables depend on the state. The following theorem shows that both the robustness and the I; norms of
coherence are fundamental upper bounds of C$}. In [28], it was also observed that when M is a witness that
achieves its maximum value for the maximally coherent state, then Cl; is upper bounded by the /; norm of
coherence under certain normalization conditions.

Theorem 4 Hierarchy of coherence measures. For any given state p and observable M, the following hierarchy of
the coherence measures holds:

Cip) < C¥P(p) < NMuCr(p) < NuCilp),

TrM
d

where Ny := ‘ Amin(M) — and Apin (M) is the smallest eigenvalue of the observable M. Furthermore, all the

inequalities are tight.

Proof. In [6, 7], it was shown that C(p) is equivalent to maximizing Tr pW over all Hermitian observables W,
subject to the constraint that W > —1 and that the diagonal entries of W are nonpositive. Note that our
convention differs from the one presented in [6, 7] by a negative sign.

We always displace M and consider the matrix M = M — TrdMJl, and it is clear that a positive scaling factor

does not fundamentally change C$), i.e. C5),(p) = kCS;(p) for k > 0 where O is MIO or IO. As such, without
any loss in generality, we can assume that M is a traceless matrix where the leading matrix elements are zero, and

that its smallest eigenvalue is normalized such that Ap;, (M) = —1. This implies that A; = 1. Observe that
under these assumptions, M automatically satisfies the constraints on W that was described in the preceding
paragraph.

Recall that Cﬁ(p) = maxgpemio T1(M®P(p)). Consider the quantity Tr(M®(p)) and let * be the conjugate
map such that Tr(M®(p)) = Tr(®*(M) p). Then, since ® isa CPTP map and the conjugate map preserves the
trace, we have A\, (P*(M)) = min, Tr (®(p)M) > min, Tr (pM) = Apin(M) where the minimum is taken
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over all possible density matrices. Furthermore, we see that as ® is MIO or IO, the leading diagonals of ®*(M)
must be zero if the leading diagonals of M are zero. This again comes from the definition of the conjugate map
Tr(M®(p)) = Tr(®*(M) p). From this, we can determine that ®*(M) always satisfies the necessary constraints
for W described above, and this is true for any ® that is an ICPTP map, so we must have C %(p) < NuCr(p).

It was already known that Cz(p) < C;(p), and we must have that Cﬁ(p) < C%’I/Ilo(p) since IO C MIO,
which leads to the final chain of inequalities

C(p) < CYO(p) < MuCr(p) < NuCi(p).

To see that the inequalities are tight, we need to demonstrate that there are cases of M and p where equality is
achieved. It is already known that when the state p is the maximally coherent state Cz(p) = C;(p) [6, 7].
Consequently, we also know that when p is maximally coherent W, = 3=, _ 1)  jland we can choose M = W,
which is enough to achieve CMO(p) = NuCr(p). Finally, we can also verify that CiQ(p) = CMIO(p) is achieved
when the input state p is maximally coherent and we choose M = 3, |i) (jl. Therefore, all the inequalities are

tight. O

Here, we also briefly discuss the computational resources necessary to evaluate C\i'© and Cg, which are both
computable via semidefinite programs. We note that the matrix sizes required to calculate Cg ared x dwhered
is the dimension of the Hilbert space. In comparison, the matrix sizes required for C}1'© are d> x d? due to the
optimization over maximally incoherent operations via the Choi—Jamiolkowski representation. The problem
sizes for CY'© and Cy are therefore scales with O (d*) and O (d?) respectively. As such, CY\{© will generally take
longer to compute than Cr. However, both measures are computable in polynomial time as semidefinite

programs can be computed to any finite accuracy in polynomial time [38].

6. Examples

In this section, we discuss examples that illustrate our key results. We first consider the simplest system
consisting of a single spin. Let {| 1), || )} be the basis vectors corresponding to a spin pointing in the +zand the
—z directions respectively. Suppose our measurement observable is a Pauli measurement along the x axis. In this
01
10
diagonals, as was the case considered in theorem 2. Suppose we perform many Pauli X measurements and the

case, our observable M is the Pauli matrix o, = ( ) Notice that o, always is always zero along its leading

outcome of the measurement is always +1, then we can be certain that the state must be %(I 0) + |1)) which
corresponds to a maximally coherent qubit. The larger the mean values of your measurement, the more
confident you are that the state is close to the maximally coherent state, which in turn suggests that the state
contains more coherence. Theorems 1 and 2 can be interpreted as a reflection of this confidence, generalized to
arbitrary finite dimensional systems. The maximization over MIO and 10, which are both sets of operations that
do notincrease coherence, are further required in order to make this relationship more quantitative, such that it
satisfies the axioms (C1)—(C3) (See section 2).

Furthermore, we also see that the chosen basis {| 1), || )} is mutually unbiased with respect to the eigenbasis
of o, which again is the case being considered in proposition 1. Observe that the designation of the 4z direction
is arbitrary. Given the direction +x, we can equivalently define any direction along the y—z plane as our new z
axis. Consequently, we can be assured that any basis corresponding to a direction orthogonal to the x axis is
mutually unbiased with respect to the eigenbasis of 0. A measurement along a given axis is therefore related to
the amount of coherence along an orthogonal direction. More generally, any qubit observable M can always be
written in the form M = aol + 7 - ¢ where ¢ = (o, 0y, 0;) is the standard vector of Pauli matrices and 7 isa
real three dimensional vector. In this case, the outcomes of the measurement M contains information about the
coherence in a basis that is orthogonal to 7 in the Bloch sphere. Proposition 1 generalizes this observation to
higher dimensions.

We now consider higher dimensional, multipartite scenarios and present numerical examples of our
computable measure CY1©.

Let us consider for spin systems the total magnetic moment operator. For a system of N spins we can choose
as our classical basis @ ; {|1);, |1 )i} where {|1);, |);} is the eigenbasis of the local spin-z operator. In order to
witness the coherence between these basis states, a simple measurement of the magnetization in the x direction
will suffice (see theorem 2 as well as proposition 1). The total spin-x operator is defined as

N .
Se=Y3.Si
i=1
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Figure 1. Comparisons among the /; norm of coherence Cj, (green, solid), the robustness of coherence Cr (red, dashed—dotted), and
the coherence measure corresponding to magnetization measurement Cg, (blue, dotted). We consider the single parameter, 3 qubit
state p = (1 + p/7)1/8 — p/7|w) (w|, where |w) := %(|001> -+ 1010) + |100)) and p € [0, 1].

with local spin operators Sk. Choosing S, as our observable, any measurement of (S,) is automatically a lower
bound to the corresponding coherence measure C SOX . Note that because one can equivalently choose to measure
the total magnetization along any direction on the equatorial plane, any non zero measurement of (S, ) directly
implies the presence of coherence in the z direction.

One may also choose to find the ‘optimal’ measure by finding then implementing the optimal observable
achieving Tr(W, p) = Cr(p) [6, 7]. However, the physical implementation of such an observable W, is not
always simple. Instead, one may opt to perform a simpler measurement such as S,, which corresponds to the
computable measure CE{HO using the semidefinite program described in theorem 3. This example illustrates how
the resource requirements for experimentally detecting and measuring quantum coherence may be simplified
via the direct application of theorem 2 and proposition 1. Figure 1 compares C;, Cx and cgflo for the state

p =1+ p/DI/8 — p/7|w)(w|where |w):= %(IOOU + 1010) 4 [100))and p € [0, 1]. Note the hierarchy

of the coherence measures CY2%(p) < NyCr(p) < Nu Ci(p) (see theorem 4).

Several existing coherence measures can also be shown to fall under the framework that was discussed in this
article. For instance, in [14], superradiance is studied within the context of coherence. In the idealized model for
superradiance, there are N-number of two-level atomic systems with the energy levels denoted by |e®”) and |g(")
respectively. From this, we define the raising and lowering operators acting on the ith subsystem as
DY :=1e®) (g0 ]and DD := |g®) (|, and the collective component of the emission rate, referred to as the
superradiant quantity, is (Sy) = >, j<Df>D£j )). We see that Sy is a traceless observable whose leading diagonal
elements are all zero in the axis defined by |e(?) and |g®). This neatly falls underneath our framework, so any
witnessing of superradiance is in fact, a witness of coherence between among basis states and a computable
measure CIS\;IVIO may be constructed. We note that this is a considerable improvement upon the original measure
in [14], which uses the computationally difficult convex roof construction in order to generalize the measure to a
general mixed state. A comparison of CIS‘:[VIO with other coherence measures for the pure state
[¥(0)) = (cos(B)|g) + sin(d)|e))®* is shown in figure 2. Note that in this case we chose N = 5 instead of
N = 3 as the measure will saturate before the maximally coherent state is reached. Saturation of the measure is
most easily explained using the following simplified example. We know that o, is a good choice of observable to
measure the coherence w.r.t. the basis {|0), |1) }. One may easily dilate thisintoa4 x 4 block matrix of the form
(%" 8) However, even thoughitisa4 X 4 matrix, itis clear that the measure corresponding to this matrix will
saturate with the superposition of only 2 orthogonal vectors via the state %(| 0, 0) + |0, 1)). This coherence
measure will therefore saturate before reaching the maximally coherent state
%( [0, 0) + 10, 1) + |1, 0) + |1, 1)), simply because the rank of the matrix is too low. A similar situation exists

for Cgﬂlo, which can be avoided by increasing the parameter N. Note that even when a measure saturates, this
does not imply that the axioms (C1)—(C3) for coherence measures are violated.

Another example that falls under our framework is the fidelity of coherence distillation, which is discussed in
greater detail in [34]. The fidelity of coherence is defined as the maximum overlap with the maximally coherent
state optimized over some set of operations O, which may be MIO or IO. Formally, it is defined as the following
quantity:
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Figure 2. A comparison of Cg(blue, dashed) with C; (green, solid) and Cr (red, dashed—dotted) for the state
[1(0)) = (cos(9)|g) + sin(6)|e))®3 |0)22. Note thata 5 qubit system (as opposed to a 3 qubit one) was chosen in order to avoid
saturation of the measure Cgy, when N = 3. While the quantities are different, the qualitative behaviours are similar across

0 e [0, g] For pure states, C;, and Cr matches in general.

Fo(p) = max Tr(®(p)|V) (V]),
dcO

where |U) = Z?:l % |7) is the maximally coherent state. We see that the in the basis {|) }, the leading diagonal
elements of the matrix |¥) (U] — %Il are all zero, so Fp — % isin facta coherence measure of the type described
in theorem 2.

7. Conclusion

In this article, we demonstrated that every nontrivial Hermitian observable M corresponds to a coherence
witness and a coherence measure C$, for some specific incoherent bases, where the set of operations © may be
either MIO or IO. In the case of MIO, we show that the measure is always computable via a semidefinite
program, leading to an infinitely large set of computable coherence measures. The measures also show that the
task of optimizing (M) is the same as the task of maximizing the coherence of the input state, up to the
application of some incoherent operation (Theorem 2). They, therefore, have the operational interpretation of
the usefulness of a given quantum state p for the purpose of optimizing the mean value of the observable (M).
These coherence measures also satisfy a hierarchy C\0(p) < C\9(p) < NuCr(p) < N MCi(p) (Theorem 4).
This demonstrates that the robustness of coherence Cx, also has an interpretation as the ultimate usefulness of a
state p for the purpose of optimizing arny observable M. The [; norm of coherence C;, is also interesting because it
is expressible in a closed form formula that is sometimes better suited for analysis, in comparison to CYi'© and
Cx which both require numerical optimization to compute.

Akey conclusion of our results, in particular theorem 2, is that every nontrivial quantum observable
corresponds to a computable coherence measure, which also implies that every such quantum observable is also
a coherence witness. This may in some cases allow coherence to be verified in the laboratory using simpler
measurements, which was discussed in section 6. In spin systems, for example, a magnetization measurement is
sufficient and relatively simpler to implement over a mathematically optimal measurement [8]. Moreover, the
measurement outcomes of such observables are always, up to a constant displacement, alower bound toa
corresponding coherence measure C$. Due to the hierarchy of coherence measures (see 4), they are also non-
trivial lower bounds to the robustness of coherence and the I;, although the upper bound given by CY is tighter
in general. We hope that the techniques presented here will be useful to simplify the requirements for the
detection and measurement of nonclassical quantum effects in the laboratory, as well as allow new coherence
measures with novel physical interpretations to be discovered.
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