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We show that the symmetric portion of correlated coherence is always a valid quantifier of entanglement,
and that this property is independent of the particular choice of coherence measure. This leads to an
infinitely large class of coherence based entanglement monotones, which is always computable for pure
states if the coherence measure is also computable. It is already known that every entanglement measure
can be constructed as a coherence measure. The results presented here show that the converse is also true.
The constructions that are presented can also be extended to include more general notions of nonclassical
correlations, leading to quantifiers that are related to quantum discord, thus providing an avenue for
unifying all such notions of quantum correlations under a single framework.
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Introduction.—Entanglement is perhaps the most well
studied form of quantum correlations [1] and forms the
basis of many useful quantum protocols, such as quantum
cryptography [2], quantum teleportation [3], and super-
dense coding [4]. Generalized notions of quantum corre-
lations that include but supersede entanglement have also
been considered, most prominently in the form quantum
discord [5,6], for which there is mounting evidence that
nonclassical effects may persist in multipartite scenarios
[7–10] even when entanglement is not available.
In a separate development, there is recently a growing

amount of interest in the resource theory of coherence
[11–13]. Such theories are not limited to the multipartite
setting. Nonetheless, there is considerable interest in the
study of correlations from the point of view of coherence
[14–17]. Other applications include an ever increasing
number of physical scenarios, such as quantum macro-
scopicity [18,19], quantum algorithms [20,21], interferom-
etry [22], and nonclassical light [23–25]. Reference [26]
provides a recent overview of the developments to date.
Especially relevant are the results in Ref. [14]. There, it was
shown that coherence can be faithfully converted into
entanglement, and that each entanglement measure corre-
sponds to a coherence measure of the type considered
in Ref. [12].
In this Letter, we report a series of constructions that

allow nonclassical correlations to be quantified using
coherence measures. The arguments do not depend on
the particular coherence measure used, and do not even
depend on the particular flavor of coherence measure that is
employed [11,12,27–29], so long as they satisfy some
minimal set of properties. This suggests that entanglement
and discord are intrinsically embedded in any reasonable
resource theory of coherence. This also establishes that
the converse of the relationship in Ref. [14] is true, so

that for every coherence measure, there corresponds an
entanglement measure. We stress that the arguments are
not limited to the coherence resource theory proposed in
Ref. [12], as our framework does not depend on the choice
of noncoherence producing operations [26]. In addition, we
also show that discordlike quantifiers of nonclassical
correlations are naturally embedded in any such resource
theories of coherence. This operation-free approach con-
trasts with other approaches considered in Refs. [28,30],
which are based on some hybrid set of free operations from
both coherence and entanglement theories.
Preliminaries.—We review some elementary concepts

concerning coherence measures. Coherence is a basis
dependent property of a quantum state. For a given fixed
basis B ¼ fjiig, the set of incoherent states I is the set of
quantum states with diagonal density matrices with respect
to this basis. States with nonzero off diagonal elements
form the set of coherent states that are nonclassical.
The notion of nonclassicality in coherence resource

theories is unambiguous, but different resource theories
sometimes consider different sets of noncoherence, pro-
ducing operations in order to justify different coherence
measures (see Ref. [26] for a summary). For our purposes,
we will not require specific properties of such operations.
Resource theories of coherence generally obey several
axioms. Let C be a measure of coherence belonging to
some coherence resource theory, then CðρÞ must satisfy the
following: (C1) CðρÞ ≥ 0 for any quantum state ρ and
equality holds if and only if ρ ∈ I . (C2) The measure must
not increase under a noncoherence producing map Φ, i.e.,
CðρÞ ≥ C½ΦðρÞ�. (C3) The measure must be convex, i.e.,
λCðρÞ þ ð1 − λÞCðσÞ ≥ C½λρþ ð1 − λÞσ�, for any density
matrix ρ and σ with 0 ≤ λ ≤ 1. An additional property
referred to as strong monotonicity is also sometimes
considered [12], but strongly monotonic measures that
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are convex will satisfy the condition (C2), and so does not
need to be considered separately.
The following quantity was considered in Ref. [15] while

studying the relationship between coherence and quantum
correlations:

CðA∶BjρABÞ ≔ CðρABÞ − CðρAÞ − CðρBÞ: ð1Þ

Where the coherence measure C was chosen to be the l1
norm of coherence. It was noted that since it is always
possible to choose local bases for the subsystems A and B
such that CðρAÞ and CðρBÞ vanish, the coherence in the
system is no longer stored locally, and must exist within the
correlations between subsystems A and B.
It was further demonstrated that minimizing this quantity

with respect to all possible local bases BA and BB satisfying
CðρAÞ ¼ CðρBÞ ¼ 0 is related to quantum correlations such
as discord and entanglement. Formally, they considered:
Definition 1: Correlated coherence.—

CminðA∶BjρABÞ ≔ min
BA∶B

CðA∶BjρABÞ; ð2Þ

where the minimization is performed over the set of local
bases BA∶B ≔ fðBA;BBÞjCðρAÞ ¼ CðρBÞ ¼ 0g.
We will henceforth refer to Eq. (1) as the generalized

correlated coherence and Eq. (2) as just the correlated
coherence. The correlated coherence is invariant under
local unitary operations, since for any state ρAB and local
basis BA∶B ¼ fjiiAjjiBg, the correlated coherence for the
stateUAρABU

†
A and basis BA∶B ¼ fUAjiiAjjiBg is identical.

Subsequently, entropic versions of the generalized corre-
lated coherence was also studied in Ref. [31] and more
recently in Refs. [32,33].
In the next section, we prove that, using CminðA∶BjρABÞ

as our basic building block, every coherence measure can
be used to construct a valid entanglement quantifier.
Quantifying entanglement.—We begin with some neces-

sary definitions.
Definition 2: Symmetric extensions.—A symmetric ex-

tension of a bipartite state ρA1B1
is an extension ρA1;…;

AnB1;…; Bn satisfying TrA2;…;AnB2;…;Bn
ðρA1;…;AnB1;…;Bn

Þ ¼
ρA1B1

that is, up to local unitaries, invariant under the swap

operation ΦAi↔Bi
SWAP between any subsystems Ai of Alice and

Bi of Bob; i.e., there exists some unitary UA1;…;An
such that

ΦAi↔Bi
SWAP ðUA1;…;An

ρA1;…;AnB1;…;Bn
U†

A1;…;An
Þ

¼ UA1;…;An
ρA1;…;AnB1;…;Bn

U†
A1;…;An

ð3Þ

Note that this definition is different from the one considered
in the separability criterion of Ref. [34], which also
considered state extensions that exhibit a different kind
of symmetry. Subsequently, for notational compactness, we
will use unprimed letters A, B for the system of interest, and

primed letters A0, B0 for the ancillas in the extension. We
now consider the correlated coherence of such extensions.
Definition 3: Symmetric correlated coherence.—The

symmetric correlated coherence, for any given coherence
measure C, is defined to be the following quantity:

ECðρABÞ ¼ min
A0B0

CminðAA0∶BB0jρAA0BB0 Þ; ð4Þ

where the minimization is performed over all possible
symmetric extensions of ρAB. Note that the ancillas A0 and
B0 may, in general, be composite systems.
The above quantifies the minimum correlated coherence

over extensions that possess exchange symmetry between
Alice and Bob. Since such a minimization always decreases
the correlated coherence, we interpret this quantity as the
portion of the correlated coherence that is symmetric.
We now prove several elementary properties. First, we

observe that ECðρABÞ is a convex function of state:
Proposition 1: Convexity.—ECðρABÞ is a convex func-

tion of state, i.e.,

X

i

piECðρiABÞ ≥ EC

�X

i

piρ
i
AB

�
ð5Þ

where pi defines some probability distribution s.t.
P

ipi ¼
1 and ρiAB is any normalized quantum state.
Proof.—Let ρi�AA0BB0 be the optimal extension such that

ECðρiABÞ ¼ CminðAA0∶BB0jρi�AA0BB0 Þ. We have the following
chain of inequalities:

X

i

piECðρiABÞ

¼
X

i

piCminðAA0∶BB0jρi�AA0BB0 Þ ð6Þ

¼
X

i

piCminðAA0A00∶BB0B00jρi�AA0BB0 ⊗ ji; iiA00B00 hi; ijÞ

ð7Þ

≥Cmin

�
AA0A00∶BB0B00j

X

i

piρ
i�
AA0BB0 ⊗ ji;iiA00B00 hi;ij

�

ð8Þ

≥ EC

�X

i

piρ
i
AB

�
ð9Þ

The inequality in Eq. (8) occurs because there is at least one
local basis that is upper bounded by Eq. (7). To see this,
suppose for every i and ρi�AA0BB0 , the optimal basis for
evaluating CminðAA0∶BB0jρi�AA0BB0 Þ is fjαi;jiAA0 jβi;kiBB0 g.
Then it is clear that the optimal local basis for ρi�AA0BB0 ⊗
ji; iiA00B00 hi; ij must be fjαi;jiAA0 jiiA00 jβi;kiBB0 jiiB00g since this
was just essentially a relabelling of the basis. Since the
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coherence measure C is convex, the classical mixture of
quantum states cannot increase the amount of coherence
with respect to the basis fjαi;jiAA0 jiiA00 jβi;kiBB0 jiiB00 g.
Finally, one can verify that the local coherences with
respect to this basis is always zero, so this is just one
particular local basis that satisfies the necessary constraints.
The inequality in Eq. (9) comes from the observation thatP

ipiρ
�
AA0BB0 ⊗ ji; iiA00B00 hi; ij is a particular symmetric

extension of
P

ipiρ
i
AB. ▪

Next, we demonstrate the connection between ECðρABÞ
and nonseparability, which defines entanglement.
Proposition 2: Faithfulness.—ECðρABÞ ¼ 0 iff ρAB is

separable, and strictly positive otherwise.
Proof.—First, note that all coherence measures are

nonnegative over valid quantum states, and, as such,
ECðρABÞ, being the coherence of some extension (see
Definition 3), must also be nonnegative.
Suppose some bipartite state ρAB is separable. By

definition, a quantum state is separable when it can be
written in the form ρAB ¼ P

ipiρ
i
A ⊗ σiB. However, one

may always write the local states in their diagonal forms
ρiA ¼ P

jqi;jjai;jiAhai;jj and σiB ¼ P
kri;kjbi;kiBhbi;kj

which, up to a relabelling of variables, is equivalent to a
convex sum of separable pure states of the form
ρAB ¼ P

isijaiiAhaij ⊗ jbiiBhbij. Note that fjaiig and
fjbiig are not necessarily orthonormal sets, and that some
of the states jaii and/or jbii may be identical for different
subscripts i. This always permits an extension of the form
ρAA0BB0 ¼ P

isijaiiAhaij ⊗ jiiA0 hij ⊗ jbiiBhbij ⊗ jiiB0 hij
for some orthonormal set fjiig. It can then be directly
verified that CminðAA0∶BB0jρAA0BB0 Þ ¼ 0 so we must have
ECðρABÞ ¼ 0 for every separable state.
We now prove the converse. Suppose ECðρABÞ ¼ 0.

Then there must exist some extension for which
CminðAA0∶BB0jρAA0BB0 Þ ¼ 0. This implies that there must
exist local bases on AA0 and on BB0 such that the coherence
is zero, so ρAA0BB0 must be diagonal in this basis, i.e.,
ρAA0BB0 ¼ P

itijαiiAA0 hαij ⊗ jβiiBB0 hβij. Directly tracing
out the subsystems A0 and B0 will lead to a decomposition
of the form ρAB ¼ P

isijaiiAhaij ⊗ jbiiBhbij, so ρAB must
be a separable state.
We then observe that since ECðρABÞ must be nonneg-

ative, and it is zero iff ρAB is separable, then it must be
strictly positive for every entangled state. □

Next, we show that ECðρABÞ always decreases under
local operations and classical communications (LOCC)
type operations.
Proposition 3: Monotonicity.—For any LOCC protocol

represented by a quantum map ΦLOCC, we have

ECðρABÞ ≥ EC½ΦLOCCðρABÞ�:
A sketch of the proof is as follows: first we observe that

EC is invariant under local unitary operations and the
addition of a pure state ancilla. Since any local operation

may be achieved by adding a pure state ancilla, perform-
ing a unitary, then tracing out the ancilla, the quantity
EC cannot increase under local quantum operations.
Furthermore, the exchange symmetry of the state extension
between Alice and Bob ensures that EC is nonincreasing
under the copying of classical information. Every LOCC
operation may be decomposed as a local operation,
classical communication, followed by another local oper-
ation, so EC is necessarily nonincreasing under LOCC
operations. A full proof is presented in Ref. [35].
An entanglement monotone is one that satisfies the

conditions of convexity, faithfulness, and monotonicity
(See Propositions 1–3), which leads to our main result.
Theorem 1: Entanglement monotone.—EC is a valid

entanglement monotone for every choice of coherence
measure C.
Entanglement for pure states.—Choosing the coherence

measure to be the relative entropy of coherence, which is
defined as CðρABÞ ¼ S½ΔðρABÞ� − SðρABÞ where ΔðρABÞ is
the completely dephased state [12], then for pure states,
the measure EC exactly coincides with the well-known
entropy of entanglement. This is because pure quantum
states only have trivial extensions and always permit
the Schmidt decomposition jψiAB ¼ P

i

ffiffiffiffi
λi

p ji; iiAB where
we observe that the local bases fjiiAg and fjiiBg satisfy the
condition CðρAÞ ¼ CðρBÞ ¼ 0. In this basis, S½ΔðρABÞ� ¼
SðPiλiji; iiABhi; ijÞ ¼ S½TrBðjψiABhψ jÞ�, which is the
expression for the entropy of entanglement. This shows
that the entropy of entanglement is at least an upper bound
of EC. It remains to be proven that the local bases fjiiAg
and fjiiBg achieve the required minimization in EC. This is
in fact a property of all continuous coherence measures.
Theorem 2: EC for pure states.—For any continuous

coherence measure C and pure state jψiAB with Schmidt
decomposition jψiAB ¼ P

i
ffiffiffiffi
λi

p ji; iiAB, ECðjψiABÞ ¼
CðjψiABÞ, where the coherence is measured with respect
to the local bases fjiiAg and fjiiBg specified by the
Schmidt decomposition.
We sketch the proof here. First, we observe that from the

Schmidt decomposition, jψiAB ¼ P
i

ffiffiffiffi
λi

p ji; iiAB, if the
coefficients λi are nondegenerate, then the local bases
fjiiAg and fjiiBg are the only bases, up to overall phase
factors, that satisfy the condition CðρAÞ ¼ CðρBÞ ¼ 0,
which proves the theorem for the nondegenerate case.
This can be extended to the degenerate case, by slightly
perturbing the state and then applying Nielsen’s Theorem
[36]. A continuity argument then proves Theorem 2.
A more complete discussion may be found in Ref. [35].
Theorem 2 reveals that, for every coherence measure and

pure bipartite state, there is always a basis where the
coherence exactly quantifies the entanglement. It also
shows that for every coherence measure that is computable,
there corresponds a computable entanglement measure
over pure states. We have already seen that the relative
entropy of coherence corresponds to the entropy of
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entanglement, and the same outcome is obtained if we were
to choose the entanglement of formation [37]. For
the l1 norm of coherence, we get the simple closed
form formula ECðjψiABÞ ¼

P
i≠j

ffiffiffiffiffiffiffiffi
λiλj

p
where jψiAB ¼P

i
ffiffiffiffi
λi

p ji; iiAB. This turns out to be the concurrence for
a 2 qubit pure state [38]. Other coherence measures with
known closed form formulas include the affinity of coher-
ence [39] and the geometric coherence [14]. See Fig. 1 for a
comparison of these measures. In general, there exists an
infinite number of computable coherence measures [40].
We also note that once one has an entanglement monotone
for pure states, then it is possible to generalize it to mixed
states via a convex roof construction [41], which provides
yet another avenue for generating new entanglement
measures from coherence measures.
Generalizations to quantum discord.—In the previous

section, the symmetric portion of the correlated coherence
was considered, in which case it was found to directly
address entanglement. We now show that dropping the
requirement of symmetry naturally leads to discordlike
measures of correlation.
For quantum discord, the set of states that has zero

discord and are thus “classical,” are the set of classical-
quantum states that can be written in the form ρAB ¼P

ipijiiAhij ⊗ ρiB. One may readily address this set of
classical-quantum states by considering extensions without
the requirement that it is symmetric. Let us consider the
following:
Definition 4: Asymmetric discord of coherence.—The

asymmetric discord of coherence, for any given coherence
measure C, is defined to be the following quantity:

DCðρABÞ ¼ min
B0

CminðA∶BB0jρABB0 Þ ð10Þ

where the minimization is performed over all possible
extensions satisfying TrB0 ðρABB0 Þ ¼ ρAB.

We then observe that this always defines a discordlike
quantifier for every coherence measure C.
Theorem 3: Asymmetric Discord.—DCðρABÞ ¼ 0 iff ρAB

is classical quantum; i.e., the state can be written as ρAB ¼P
ipijiiAhij ⊗ ρiB where fjiiAg is some orthonormal set. It

is strictly positive otherwise.
Proof.—First, suppose ρAB¼

P
ipijiiAhij⊗ρiB. Writing

ρiB in terms of its pure state decomposition, we have

ρAB ¼
X

i

pijiiAhij ⊗
X

j

qijjβi;jiBhβi;jj:

This state always permits an extension on Bob’s side of the
form

ρABB0 ¼
X

i

pijiiAhij ⊗
X

j

qijjβi;jiBhβi;jj ⊗ ji; jiB0 hi; jj

for which CminðA∶BB0jρABB0 Þ ¼ 0 and so DCðρABÞ ¼ 0.
Conversely, if DCðρABÞ ¼ 0, then this implies that we

can write ρABB0 ¼ P
ipijiiAhij ⊗ jβiiBB0 hβij. This is a

classical-quantum state and will remain classical quantum
even if we trace out the subsystem B0. This proves the
converse statement, so we must haveDCðρABÞ ¼ 0 iff ρAB is
classical quantum.
Since C is a coherence measure and so is non-

negative, and DCðρABÞ ¼ 0 iff ρAB is classical quantum,
we must have that for any non-classical-quantum state,
DCðρABÞ > 0. This completes the proof. □

The most general notion of nonclassical correlation is
one where the set of classical states is the set of classical-
classical states, or completely classical states. These
are quantum states that can always be written in the
form ρAB ¼ P

i;jpijjiiAhij ⊗ jjiBhjj. This can be directly
addressed via the correlated coherence itself, without
consideration of any extensions of states, which is the
natural end point of the relaxation of constraints that were
previously considered in the transition from EC to DC
Theorem 4: Symmetric Discord.—CminðA∶BjρABÞ ¼ 0

iff ρAB is classical classical; i.e., the state can be written as
ρAB ¼ P

i;jpijjiiAhij ⊗ jjiBhjj, where fjiiAg and fjjiBg
are some orthonormal sets. It is strictly positive otherwise.
Proof.—First, suppose ρAB ¼ P

i;jpijjiiAhij ⊗ jjiBhjj.
It is then immediate clear by considering the basis
fjiiAjjiBg that CminðA∶BjρABÞ ¼ 0.
Conversely, if CminðA∶BjρABÞ ¼ 0, then this implies that

we can write ρAB ¼ P
i;jpijjiiAhij ⊗ jjiBhjj since there

must be some local basis fjiiAg and fjjiBg for which ρAB is
diagonal. This proves the converse statement so we must
have CminðA∶BjρABÞ ¼ 0 iff ρAB is classical classical.
Since CminðA∶BjρABÞ is a coherence measure and so is

nonnegative, and CminðA∶BjρABÞ ¼ 0 iff ρAB is classical
classical, we must have that for any non-classical-classical
state, CminðA∶BjρABÞ > 0. This completes the proof. □

FIG. 1. A comparison of EC for the state
ffiffiffi
p

p j0; 0i þffiffiffiffiffiffiffiffiffiffiffi
1 − p

p j1; 1i using different choices of the coherence measure
C. The measures compared are the coherence of formation (solid),
the relative entropy of coherence (solid), the l1 norm of coherence
(dashed), the affinity of coherence (dot dashed) and the geometric
coherence (dotted). Measures are normalized so they coincide at
p ¼ 0.5.
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We also observe that, for pure bipartite states,
CminðA∶BjjψiABÞ ¼ DCðjψiABÞ ¼ ECðjψiABÞ, so the dis-
cord quantifiers converge with entanglement over pure
states, which is a known property of quantum discord.
Conclusion.—We have presented a coherence based

construction that is always a valid quantifier of entangle-
ment. The construction is also generalizable to include
larger classes of quantum correlations, leading to discord-
like quantifiers of nonclassicality. The arguments are
independent of not only the type of coherence measure
used, they are also independent of the kind of noncoherence
producing operation that is being considered. Such entan-
glement measures must therefore exist for any convex
coherence quantifier that shares a common notion of
classicality. This suggests that notions of entanglement
and discord must exist in every reasonable resource theory
of coherence.
In Ref. [14], it was demonstrated that, for every

entanglement measure, there exists a corresponding coher-
ence measure. This was achieved by considering the
entanglement of the state after performing some prepro-
cessing in the form of an incoherent operation. We ask the
converse question: does every coherence measure corre-
spond to some entanglement measure? The results dis-
cussed in this Letter prove this in the affirmative. Therefore,
the number of possible entanglement measures must be
exactly equal to the number of coherence measures.
The fact that entanglement can always be defined as the

symmetric portion of correlated coherence also further
illuminates the role that is being played by incoherent
operations in Ref. [14]. Since coherence can always be
faithfully converted into entanglement, we see that inco-
herent operations may always faithfully shift local coher-
ences into the portion of the correlated coherence that is
symmetric.
As there is no bound coherence, one may always distill

pure coherent states from coherence in the asymptotic
regime [37]. On the other hand, entanglement is famously a
bound resource [42,43], so there exist entangled states from
which pure entangled states cannot be distilled using
LOCC. Despite this, Theorem 1 shows that coherence
and entanglement resource theories can still be bridged.
In any local basis, however, an entangled or discorded state
is always coherent, so pure coherent states can always be
distilled from them via incoherent operations.
We hope that the discussion presented here will inspire

further research into the interplay between coherence and
quantum correlations.
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