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Coherence, asymmetry, and quantum macroscopicity
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We investigate a measure of quantum coherence and its extension to quantify quantum macroscopicity.
The coherence measure can also quantify the asymmetry of a quantum state with respect to a given group
transformation. We then show that a weighted sum of asymmetry in each mode can be applied as a measure of
macroscopic coherence. To exclude the effects of microscopic superpositions, we suggest a method to introduce
a cutoff to the weighted sum that will specify the macroscopic portion of the coherence. This cutoff may be
interpreted as the fuzziness for a given measurement outcome. Based on the suggested measures, we investigate
the quantum macroscopicity for particular concrete examples in N -partite spin systems.
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I. INTRODUCTION

Quantum theory has been very successful in describing the
properties of microscopic systems based on the superposition
principle. Quantum coherence, which has its origin in the su-
perposition principle, provides useful operational applications
in quantum key distribution [1–3], computation [4–8], and
communication [9–11]. Recently, there have been attempts to
interpret quantum properties as a resource. Resource theories
based on the notion of free operations may provide useful
tools to quantify nonclassical phenomena, covering a diverse
range of topics that include entanglement [12,13], asymmetry
[14–20], and quantum thermodynamics [21–25], all of which
have been studied within this framework.

Baumgratz et al. [26] were the first to propose a general
framework to quantify quantum coherence using the off-
diagonal elements of density matrices defined with respect to
some preferred basis. This proposal was then followed up and
further developed by subsequent research [27–30]. It was noted
that the preferred basis should be carefully chosen to define
physically relevant incoherent states in the resource theory
[28,29]. In parallel, there have also been various approaches for
quantifying quantum coherence in the context of asymmetry
[14,17,18]. The resource theory of asymmetry was first pro-
posed to quantify the degree of symmetry breaking of a state
under a group transformation [16–18]. It has applications in
reference frame alignment [31], quantum metrology [32], and
quantum speed limits [33]. A more rigorous investigation of
asymmetry can be performed by dividing its contributions into
independent modes. This approach is the so-called “modes of
asymmetry,” which allows the concept to be applied to arbitrary
finite and compact Lie groups [17]. In the case of specific group
translations generated by an observable with nondegenerate
eigenvalues, the coherence defined in Ref. [26] coincides with
the translational asymmetry assuming that the eigenbasis of
the observable is taken as the preferred basis. The relationship
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between these different approaches to coherence [18] can
also be understood by distinguishing them into speakable and
unspeakable notions.

Independently, there have been a number of studies that
considered the notion of nonclassicality with macroscopic
superpositions. A quantum superposition in microscopic scales
can be observable today, but the question of the superposition
principle in the macroscopic world remains, as illustrated
by Schrödinger’s famous cat [34]. In this regard, various
experiments have been performed to generate and observe
such large-size quantum superpositions [35–40]. To quantify
the size of a macroscopic superposition, or the so-called
“quantum macroscopicity,” a number of proposals have been
made [41–48], e.g., based on phase space structures [41,45],
quantum Fisher information [42], and the minimal extension
of quantum theory [43]. Recently, an axiomatic approach to
quantum macroscopicity that uses a similar framework to that
of coherence [26] was also suggested [46], but it was shown to
be not sufficient for certain types of states [47], although they
may still be necessary.

In this paper, we provide an understanding of quantum
macroscopicity through the lens of coherence and asymmetry.
As a consequence, our study provides an avenue for the
interpretation of quantum macroscopicity as a simple weighted
sum of coherence and asymmetry. We first suggest a coherence
measure that satisfies the conditions in Ref. [26]. It quantifies
the asymmetry of a state when the eigenbasis of a group gener-
ator is taken as the preferred basis. Based on the intuition from
the phase-space-based measure of quantum macroscopicity
[41,45], we then introduce a general form of macroscopic
coherence by taking sums of the form (effective size) ×
(degree of coherence) for all possible modes. Interestingly, by
taking a specific form for the effective size of modes based
on eigenvalue spacing of a given observable, our measure
becomes an asymmetry measure with respect to a group
transformation given by the observable.

Furthermore, we point out that a collective observable
in a macroscopic system, otherwise called a macroscopic
observable [49], gives rise to the measure of quantum
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macroscopicity satisfying all the conditions in Ref. [46]. We
also discuss how microscopic coherences of a product state
can be distinguished from macroscopic superposition in order
to overcome inconsistencies of the framework suggested in
Ref. [46]. To do this, we introduce a scale parameter that re-
flects the inherent fuzziness of a measurement. By adjusting the
parameter, we demonstrate that microscopic coherences from
all product states can be excluded, and only the contribution
from macroscopic superposition remains. Finally, we apply
our measures in N -particle spin systems to demonstrate the
validity of our approach, and we also study how decoherence
can negatively impact quantum macroscopicity. We emphasize
that our approach provides an intuitive expression of quantum
macroscopicity by capturing both the “degree of coherence
(quantum)” and the “size of the system (macroscopicity)” in a
single measure that simultaneously fits within the framework
of quantum resource theories.

II. QUANTIFYING QUANTUM COHERENCE

A. Quantifying coherence

The resource theory of coherence can be constructed by a
set of incoherent states I and incoherent operations EIC [26].
For a given basis {|i〉}, an incoherent state δ̂ ∈ I contains
only diagonal terms, i.e., δ̂ = ∑

i pi |i〉〈i|, where pi � 0 and∑
i pi = 1. An incoherent operation can be characterized by

Kraus operators as EIC(ρ̂) = ∑
n K̂nρ̂K̂

†
n, where K̂nIK̂

†
n ⊆ I

and
∑

n K̂
†
nK̂n = 1. The conditions that should be satisfied

by a coherence measure C(ρ̂) based on Ref. [26] are as
follows. (C1) C(δ̂) � 0 and C(δ̂) = 0 if and only if δ̂ ∈ I. (C2)
Monotonicity under both (C2a) a trace-preserving incoherent
operation C(ρ̂) � C(EIC(ρ̂)) and (C2b) a selective operation on
average C(ρ̂) � ∑

n pnC(K̂nρ̂K̂
†
n/pn), where pn = TrK̂†

nρ̂K̂ .
(C3) Convexity

∑
i piC(ρ̂i) � C(

∑
i pi ρ̂i).

The overall sum of coherence between all the basis states,
say |i〉 and |j 〉 with i �= j , quantifies quantum coherence of
the state under consideration. In this manner, the l1 norm
Cl1 (ρ̂) = ∑

i �=j |ρij |, where ρij = 〈i|ρ̂|j 〉 was suggested as
a proper measure of coherence and was shown to satisfy
(C1)–(C3) [26]. The l2 norm given by Cl2 (ρ̂) = ∑

i �=j |ρij |2,
however, does not satisfy (C2b) [26]. A geometric measure,
which quantifies how far the state is apart from incoherent
states, can also be a coherence measure. For instance, the quan-
tum relative entropy CR(ρ̂) = minδ̂∈I S(ρ̂||δ̂) = S(ρ̂||ρ̂diag) is
a relevant measure of coherence, where ρ̂diag = ∑

i ρii |i〉〈i|
and S(ρ̂||τ̂ ) = Tr(ρ̂ ln ρ̂ − ρ̂ ln τ̂ ). However, some geometric
measures of coherence based on the Bures distance and the
Hilbert-Schmidt norm have been found not to satisfy condi-
tion (C2b) [50]. Recently, noticing the connection between
entanglement and coherence [51], a geometric measure of the
type CF (ρ̂) := 1 − maxδ̂∈I F (ρ̂,δ̂) has been proven to satisfy
(C1)–(C3), where F (ρ̂,τ̂ ) = [Tr

√√
ρ̂τ̂

√
ρ̂]2 is the fidelity

between quantum states.

B. Coherence measure based on quantum affinity

The similarity of information-theoretical properties be-
tween fidelity F (ρ̂,τ̂ ) and quantum affinity A(ρ̂,τ̂ )2 =
[Tr

√
ρ̂
√

τ̂ ]2 was studied in Ref. [52]. Based on this obser-

vation, we introduce the following coherence measure:

Ca(ρ̂) = 1 − max
δ̂∈I

A(ρ̂,δ̂)2. (1)

Equivalent expressions of this measure are

Ca(ρ̂) =
∑
i �=j

|(
√

ρ̂)ij |2 = 1 −
∑

i

(
√

ρ̂)2
ii . (2)

This can be shown as follows. From the definition of
the incoherent state, δ̂ = ∑

i pi |i〉〈i|, we have A(ρ̂,δ̂) =∑
i

√
pi(

√
ρ̂)ii �

√∑
i pi

√∑
i(
√

ρ̂)2
ii =

√∑
i(
√

ρ̂)2
ii by the

Cauchy-Schwartz inequality. The equality is achieved when
pi = (

√
ρ̂)2

ii/
∑

i(
√

ρ̂)2
ii . Hence we get maxδ̂∈I A(ρ̂,δ̂)2 =∑

i(
√

ρ̂)2
ii = 1 − Ca(ρ̂), which completes the proof.

These equivalent expressions show that the measure Ca

captures the properties of both an interference-based and a
geometric-based measure of coherence. An interesting remark
is that even though the l2 norm for ρ̂ does not satisfy condition
(C2b), the l2 norm for

√
ρ̂ obeys the condition. Moreover, the

measure Ca is bounded between 0 and 1. The measure can also
be efficiently computable since the coherence of a state in any
given basis can be obtained by computing only the diagonal
terms (

√
ρ̂)ii . Finally, the following theorem verifies that the

measure Ca is a proper measure of quantum coherence:
Theorem 1. Affinity-based measure of coherence. With

respect to a basis set {|i〉}, Ca(ρ̂) = 1 − maxδ̂∈I A2(ρ̂,δ̂) =∑
i �=j |(√ρ̂)ij |2 is a measure of quantum coherence satisfying

conditions (C1)–(C3).
Proof. (C1) can be easily checked that Ca(ρ̂) = 0 iff

ρ̂ only contains diagonal terms. (C2a) can be proven by
using the property A(ρ̂,τ̂ ) � A(E(ρ̂),E(τ̂ )) for any trace-
preserving map E . We then have Ca(ρ̂) = 1 − A(ρ̂,δ̂∗)2 �
1 − A(EIC(ρ̂),EIC(δ̂∗))2 � 1 − maxδ̂∈I A(EIC(ρ̂),δ̂)2 =
Ca(EIC(ρ̂)), where δ̂∗ maximizes A(ρ̂,δ̂) for δ̂ ∈ I. (C2b)
can be proven by showing

∑
n pnCa(K̂nρ̂K̂

†
n/pn) � Ca(ρ̂)

for an incoherent operator set {K̂n}. We first show that
A(ρ̂,τ̂ ) � ∑

n A(K̂nρ̂K̂
†
n,K̂nτ̂ K̂

†
n) for Kraus operators with∑

n K̂
†
nK̂n = 1 (see the Appendix A ). We then have∑

n

pnCa(K̂nρ̂K̂†
n/pn) = 1 −

∑
n

pn max
δ̂n∈I

A(K̂nρ̂K̂†
n/pn,δ̂n)2

� 1 −
∑

n

A(K̂nρ̂K̂†
n,K̂nδ̂

∗K̂†
n/qn)2

= 1 −
∑

n

1

qn

A(K̂nρ̂K̂†
n,K̂nδ̂

∗K̂†
n)2

� 1 −
[∑

n

A(K̂nρ̂K̂†
n,K̂nδ̂

∗K̂†
n)

]2

� 1 − A(ρ̂,δ̂∗)2

= Ca(ρ̂),
(3)

where qn = TrK̂nδ̂
∗K̂†

n, and δ̂∗ gives the maximum value of
A(ρ̂,δ̂) for δ̂ ∈ I. Finally, (C3) can be proven by noticing
that Ca(ρ̂) = 1 − ∑

i(
√

ρ̂)2
ii = 1 − ∑

i Tr
√

ρ̂P̂i

√
ρ̂P̂i , where

P̂i = |i〉〈i|. According to Lieb’s concavity theorem [53],
Tr

√
ρ̂P̂i

√
ρ̂P̂i is then concave in ρ̂ for all i, which makes Ca(ρ̂)

convex. �
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III. QUANTUM COHERENCE AND ASYMMETRY

A. Quantifying asymmetry

A resource theory of asymmetry can be constructed via
translationally covariant operations [14,16]. In quantum me-
chanics, U (1) group translations can be generated by a given
observable L̂ via

Ux(ρ̂) = Ûxρ̂Û †
x , (4)

where Ûx = e−ixL̂ and x ∈ IR. An observable L̂ can be ex-
pressed using the eigendecomposition L̂ = ∑

i λi |i〉〈i|, where
λi assigns some physical quantity to the specific eigenstate |i〉.
For instance, if L̂ is the Hamiltonian, λi refers to an energy
eigenvalue of the system, and the related group operation
is a time translation. With respect to the group translations
Ûx , we can specify free states and free operations from a
resource theoretic viewpoint. The free states are in this case the
translationally covariant states satisfying Ux(ρ̂) = ρ̂, and the
free operations E are the translationally covariant operations
satisfying Ux ◦ E = E ◦ Ux for all x [16,18].

The degree of asymmetry can be quantified by some mea-
sure A(ρ̂), which gives A(ρ̂) = 0 for translationally covariant
states and also monotonically decreases under the translation-
ally covariant operations [14]. Examples of such measures of
asymmetry include information-based measures [16,18–20],
robustness of asymmetry [19], and asymmetry weight [20].

In this paper, we introduce an interference-based measure
of asymmetry by adapting the techniques discussed in the
previous section.

Theorem 2. Interference-based measure of asymmetry. For a
given observable L̂ = ∑

i λi |i〉〈i|, Aa(ρ̂) = ∑
λi �=λj

|(√ρ̂)ij |2
is a measure of asymmetry with respect to L̂.

The proof can be found in the Appendix B. This measure
depends on the amplitude of interference between the different
eigenstates of L̂, and it also includes the contribution by the
degenerate eigenvalues of λi .

B. Modes of asymmetry

The asymmetry of quantum states has been studied more
finely by decomposing a quantum state into modes defined
with respect to the eigenvalue spacing of the observable L̂

[17]. Analogous to the Fourier decompositions in the classical
signal processing, we can decompose quantum states and
channels into different modes. Through this, each particular
mode can have its own structure, thus allowing asymmetry to
be quantified in a more fine-grained manner [17].

Every quantum state ρ̂ can be expressed as the following
sum over modes defined via the distance ω:

ρ̂ =
∑
ω∈�

ρ̂(ω), (5)

where ρ̂(ω) = ∑
λi−λj =ω ρij |i〉〈j | and � is a set composed

of every possible spacing between the eigenvalues (i.e., ω =
λi − λj ) of the observable L̂. Using this mode decomposition,
an equivalent expression of the aforementioned free states is
given by ρ̂ = ρ̂(0), for which interference between the different
eigenvalue spacings does not exist [17,18,46]. The following
is an alternative definition of free operations.

Proposition 1. Covariant operations for modes of asym-
metry. A quantum operation E is a translationally covariant
operation if and only if E satisfies E(ρ̂(ω)) = E(ρ̂)(ω) for every
mode ω.

Proof. We observe that Ux(ρ̂) = e−iL̂x ρ̂eiL̂x =∑
ω∈� e−iωx ρ̂(ω) by taking eigenbases of the observable

L̂. Then we have (E ◦ Ux)(ρ̂) = E(
∑

ω∈� e−iωx ρ̂(ω)) =∑
ω∈� e−iωxE(ρ̂(ω)). On the other hand, we have

(Ux ◦ E)(ρ̂) = ∑
ω∈� e−iωxE(ρ̂)(ω). Two expressions are equal

for translations Ux for all x if and only if E(ρ̂(ω)) = E(ρ̂)(ω),
which completes the proof. �

Using modes of asymmetry, Marvian and Spekkens [17,18]
proposed a measure to quantify the degree of interference
stored within mode ω. The measure is given by

A(ω)
tr (ρ̂) = ‖ρ̂(ω)‖1, (6)

where ‖ · ‖1 is the trace norm. ‖ρ̂(ω)‖1 is nonincreasing under
covariant operations for every ω [17]. Furthermore, it can be
shown that any linear function of the modes forms a measure of
asymmetry, i.e., ‖∑

ω∈� c(ω)ρ̂(ω)‖1 is a measure of asymmetry
for any complex function c(ω) [18].

Based on this result, together with the previously suggested
interference-based measure, we introduce a different kind of
mode decomposition given by the following:

A(ω)
HS(ρ̂) =

∑
λi−λj =ω

|(
√

ρ̂)ij |2 = (‖
√

ρ̂
(ω)‖HS)2, (7)

where ‖ · ‖HS is the Hilbert-Schmidt norm. Unlike the modes
of asymmetry based on the trace norm A(ω)

tr (ρ̂), however, some
modes of A(ω)

HS(ρ̂) can increase by covariant operations (see the
Appendix C for an example).

For both measures A(ω)
tr and A(ω)

HS , we observe that the total
degree of asymmetry is given by the sum over ω with ω �= 0,
i.e.,

A(ρ̂)tr(a) =
∑

ω∈�−{0}
A(ω)

tr(HS)(ρ̂), (8)

which is nonincreasing by covariant operations. In this case,
we define each mode of coherence A(ω)(ρ̂) as ω coherence.

IV. QUANTIFYING QUANTUM MACROSCOPICITY

A. Quantum macroscopicity under covariant operations

A macroscopic physical system involves a large number of
particles or modes. To quantify quantumness in a macroscopic
system, it is natural to consider an observable, often called
a macroscopic observable [49], representing some collective
physical quantity of a composite system, such as a total
Hamiltonian, momentum, angular momentum (or spin), and
the center-of-mass position. The choice of an appropriate
observable depends on the character of the system and the
physics in which we are interested.

We note that many macroscopic observables are generators
of the (collective) group transformations in the macroscopic
system. For N -partite systems, generators of this type of group
transformations may be expressed as

L̂ =
N∑

n=1

L̂(n),
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where L̂(n) is a generator for each local party. For instance,
the total Hamiltonian Ĥtot = ∑N

n=1 Ĥ (n) gives rise to time
translation e−iĤtot t , total angular momentum �Jtot = ∑N

n=1
�J (n)

gives rise to rotation e−iθ �n· �Jtot along the axis �n, and the center-
of-mass position x̂cm = ∑N

n=1 x̂(n)/N or total momentum
p̂tot = ∑N

n=1 p̂(n) translates a conjugate parameter according to
e−ip0 x̂cm or e−ix0p̂tot , respectively. Moreover, the eigenvalues of
the collective generators L̂ may be highly degenerate since they
are given by the sum of eigenvalues of each local generator L̂(n).

In this sense, it is natural to consider the asymmetry
relative to some macroscopic observable, and its relationship to
quantum macroscopicity. An attempt to relate microscopic and
macroscopic coherence phenomena via the resource theoretic
framework was proposed by Yadin and Vedral [46] by disallow-
ing quantum operations that allow macroscopic coherence and
microscopic coherence to be interconverted. This is achieved
by considering the modes of asymmetry via ω. In fact, we
note by Proposition 1 that free operations in this framework
of quantum macroscopicity are equivalent to translationally
covariant operations with respect to the given macroscopic
observable. In particular, the quantum Fisher information and
the Wigner-Yanase-Dyson skew information are measures of
asymmetry that have been proven to satisfy the conditions to
quantify quantum macroscopicity suggested in Ref. [46].

B. Weighted measures of asymmetry

Following the method of quantifying macroscopic quan-
tum superposition within phase space presented in [41], we
consider the characterization of quantum macroscopicity by
performing a sum of the form (effective size) × (degree of
coherence) for every mode. In this scenario, the effective size
of the coherence is supplied by the eigenvalue spacing ω of an
observable L̂ and the degree of coherence is given by the mode
coherence (or asymmetry) for each ω.

As such, we introduce the following weighted sum of ω co-
herence as a measure for quantifying quantum macroscopicity:

M(ρ̂) =
∑
ω∈�

f (ω)A(ω)(ρ̂) (9)

for a given function f (ω), which characterizes the effective
size of each mode ω.

For the measure to be consistent, we require that f (ω) = 0
when ω = 0 in order to ensure that M(ρ̂) = 0 when ρ̂ is a
translationally covariant (i.e., free) state with respect to L̂. For
example, suppose we make a simple choice of f (ω) = ω2/2 =
|λi − λj |2/2 for the ω-coherence measure A(ω)

HS . In this case,
the weighted sum then gives rise to the Wigner-Yanse-Dyson
skew information: IW (ρ̂,L̂) = −(1/2)Tr[

√
ρ̂,L̂]2 [54], which

has been pointed out as a potential candidate for measuring
quantum coherence [55] and quantum macroscopicity [46].
Our approach then gives the skew-information-based mea-
sure of quantum macroscopicity with the interpretation of a
weighted sum of mode coherences.

We generalize this concept by proposing the possible classes
of weight functions f (ω) in order to construct consistent mea-
sures of macroscopicity via a weighted sum of ω coherences.

Theorem 3. Weighted measure of asymmetry
for the Hilbert-Schmidt norm. Suppose f (ω) =

ω2
∫
x∈X dx[sinc(ωx/2)]2g(x) for g(x) � 0 and X ⊂ IR.

Then

MHS(ρ̂) =
∑

ω∈�+
f (ω)A(ω)

HS(ρ̂) (10)

is a convex measure and is a monotone under covariant
operations, where �+ is the set of positive ω ∈ �.

We present the proof in Appendix D. The above construc-
tion generalizes the Wigner-Yanase-Dyson skew-information-
based measure IW (ρ̂,L̂), which can be retrieved by choosing
g(x) = δ(x), where δ(x) is the Dirac delta function. In this
case, f (ω) = ω2.

A trace-norm-based quantum macroscopicity using the
trace norm can also be constructed as follows, again by
considering the sum over modes of the form (effective size)
× (degree of coherence):

Theorem 4. Weighted measure of asymmetry for the trace
norm. For f (ω) � 0 for all ω and f (0) = 0,

Mtr(ρ̂) =
∑

ω∈�+
f (ω)A(ω)

tr (ρ̂) (11)

is a convex measure and monotone under covariant operations.
The proof is straightforward from the fact that A(ω)

tr (ρ̂) is
convex and monotone under covariant operations for every ω,
and f (ω) is a non-negative function. Similarly, we may take
f (ω) = ω2 to construct a measure of quantum macroscopicity
based on the trace norm, Mtr(ρ̂) = ∑

ω∈�+ ω2||ρ̂(ω)||1.

C. Conditions for macroscopic coherence measures and scaled
measure of coherence

In the previous section, we discussed weighted measures of
ω coherence for some weight function f (ω). To quantify the
“macroscopic” coherence of quantum states, we are addition-
ally required to impose an ordering between different eigen-
value spacings ω. Toward that end, we may take the effective
size f (ω) to be monotonically increasing when ω increases.

An important requirement for consistent quantum
macroscopicity measures is that products of many microscopic
superpositions should be distinguished from genuine
superpositions of macroscopically distinct states [56].
Examples of such an accumulation of microscopic coherences
are Bose-Einstein condensates and superconductivity. In this
sense, the conditions for quantum macroscopicity suggested
in Ref. [46] may not be sufficient to define consistent
measures because there exist measures satisfying them that
can give rise to higher degrees of quantum macroscopicity
for product states ρ̂⊗N than the Greenberger-Horne-Zeilinger
(GHZ) -type entangled states when the former is a simple
accumulation of coherence between microscopic states, while
the latter superposes macroscopically distinct states [47].
This implies that any given weight function f (ω) needs to be
checked against this condition in order to yield a consistent
macroscopic coherence measure.

Here, we introduce a particular class of weight functions,
parametrized by the scaling parameter σ , that will enable us
to distinguish GHZ states from product states. We call this a
scaled measure of quantum coherence based on the Hilbert-
Schmidt norm, which cuts off the microscopic contribution to
coherence by introducing a scale σ .
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Definition 1. Scaled measure of quantum coherence. For a
given scale parameter σ > 0, the scaled measure of quantum
coherence is defined as

Mσ (ρ̂) =
∑
ω∈�

[
1 − e

− ω2

8σ2

]
A(ω)

HS(ρ̂). (12)

It can be shown that the scaled measure Mσ is nonin-
creasing under translationally covariant operations by applying
Theorem 3 with g(x) = x2(

√
πτ )−1e−x2/τ 2

and taking τ =
(
√

2σ )−1. The parameter σ determines an effective cutoff
of the weight. To see this, note that for ω � σ , the weight
1 − exp[−ω2/(8σ 2)] is relatively small compared to the case
of ω � σ . This cutoff may be used to exclude the contribution
by microscopic coherence. In the limit where there is no cutoff
imposed, i.e., σ → 0, the scaled measure of coherence be-
comes Mσ (ρ̂) → Aa(ρ̂), which is the standard “unweighted”
measure of asymmetry.

This measure can also be interpreted as the deviation
of a quantum state for a fuzzy reference frame [57,58].
Note that Mσ (ρ̂) = ∫

DH (ρ̂,Ux(ρ̂))(
√

πτ )−1e−x2/τ 2
dx, so the

scaled measure of coherence has the interpretation of the
average Hellinger distance DH (ρ̂,τ̂ ) = (1/2)Tr[

√
ρ̂ − √

τ̂ ]2

generated by a group transformationUx over the broadening by
the Gaussian distribution, when the alignment of the reference
frame is imperfect.

The scaled measure of coherence is also related to the
measurement process with a finite precision [58,59] onto
the eigenbasis of the macroscopic observable. For the given
observable L̂ = ∑

i λi |i〉〈i|, the Gaussian smoothing of the
projections P̂i = |i〉〈i| is given by P̂i → Q̂σ

x = ∑
i

√
qσ

i (x)P̂i ,

where qσ
i (x) = (

√
2πσ )−1e−(x−λi )2/(2σ 2) with the domain x ∈

(−∞,∞). In this case, the effect of the imperfect measurement
process, �σ (ρ̂) = ∫

dx Q̂σ
x ρ̂Q̂

σ†
x , can be captured via the

measurement-induced disturbance suggested in Refs. [47,58],
which gives the lower bound of the scaled measure of coher-
ence,

1
2DB(ρ̂,�σ (ρ̂)) � Mσ (ρ̂) � 1 − e

− IW (ρ̂,L̂)

4σ2 , (13)

where DB(ρ̂,τ̂ ) = 2 − 2
√

F (ρ̂,τ̂ ) is the Bures distance. The
proof can be found in the Appendix E.

It is important to note that the skew information IW

is additive for a product state ⊗N
n=1ρ̂n with respect to a

collective operator
∑N

n=1 L̂(n), i.e., IW (⊗N
n=1ρ̂n,

∑N
n=1 L̂(n)) =∑N

n=1 IW (ρ̂n,L̂
(n)) � NL2

max/4, where Lmax is the maximum
among the eigenvalue differences of L̂(n). Then the upper
bound of (13) becomes

Mσ

( ⊗N
n=1 ρ̂n

)
� 1 − exp

[−NL2
max

/
(4σ )2

]
. (14)

If we take the cutoff to be σ = √
N ln N , we have

limN→∞ Mσ (⊗N
n=1ρ̂n) → 0, regardless of the local state ρ̂n

when Lmax is bounded by a finite value. Consequently, by
the convexity of Mσ , microscopic coherences contained in
any separable multipartite state are ruled out for the cutoff
σ = √

N ln N in the large particle limit of N � 1. The
bound (13) might also be useful for the direct detection of
quantum macroscopicity in laboratories with finite precision
measurements [58].

We also show that a general form of a scaling function
can be chosen such that Mσ (ρ̂) = ∑

ω∈� f (ω2/σ 2)A(ω)
HS(ρ̂)

is an asymmetry monotone for a concave function f (x) � 0
that is monotonically increasing with x � 0 and f (0) = 0. In
this case, by taking a collective observable

∑N
n=1 L̂(n) and the

cutoff σ = √
N ln N , we can rule out microscopic coherences

from every separable state ρ̂sep = ∑
i pi ⊗N

n=1 ρ̂i
n in N -partite

systems because

Mσ (ρ̂sep) �
∑

i

piMσ

( ⊗N
n=1 ρ̂i

n

)

=
∑

i

pif

(∑
ω∈� ω2A(ω)

HS

( ⊗N
n=1 ρ̂i

n

)
N ln N

)

=
∑

i

pif

(
2IW (⊗N

n=1ρ̂
i
n,

∑N
n=1 L̂(n))

N ln N

)

� f

(
L2

max

2 ln N

)

(15)

becomes zero when N → ∞ for a bounded Lmax.

V. APPLICATION TO N-PARTITE SPIN-1/2 SYSTEMS

A. Spin-coherent states and GHZ states

In this section, we investigate the quantum macroscopicity
of an N -partite spin-1/2 system with respect to the total spin
observable along the z axis, Ŝz = ∑N

n=1 ŝ(n)
z , where ŝ(n)

z =
11 ⊗ 12 ⊗ · · · ⊗ 1n−1 ⊗ (σ̂z/2) ⊗ 1n+1 ⊗ · · · ⊗ 1N is the local
spin observable with the Pauli operator σ̂z. Consequently, Ŝz

has an eigenvalue spectrum {−N/2,−N/2 + 1, . . . ,N/2 −
1,N/2} and the maximum difference between eigenvalues is
ωmax = N .

To test the consistency of our measure, we first compare a
class of product states of the form

|θ,φ〉 = [cos(θ/2)|0〉 + sin(θ/2)eiφ|1〉]⊗N,

which are the so called spin-coherent states. We compare this
with the generalized GHZ state:

|ψGHZ〉 = cos(θ/2)|0〉⊗N + sin(θ/2)eiφ |1〉⊗N

for θ ∈ [0,π ] and φ ∈ [0,2π ]. Each mode of asymmetry for
the spin-coherent state may then be verified to be

A(ω)
tr (|θ,φ〉)=

N∑
k=ω

√(
N

k

)(
N

k − w

)
cos2N−2k+ω(θ/2) sin2k−ω(θ/2) ≈ 1

2
exp

[
− ω2

2N sin2 θ

]
erfc

(
ω − 2N sin2(θ/2)√

2N sin2 θ

)
,

A(ω)
HS(|θ,φ〉)=

N∑
k=ω

(
N

k

)(
N

k−w

)
cos2(2N−2k+ω)(θ/2) sin2(2k−ω)(θ/2)≈ 1

2
√

πN sin2 θ
exp

[
− ω2

N sin2 θ

]
erfc

(
ω − 2N sin2(θ/2)√

N sin2 θ

)
,
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FIG. 1. The degree of quantum macroscopicity for spin-coherent states |θ,φ〉 and GHZ states |ψGHZ〉 based on the weighted measures of (a)
the trace norm (Mtr), (b) the Hilbert-Schmidt norm (MHS), and (c) the scaled measure of coherence (Mσ ) for σ = √

N ln N . Square symbols
and circular symbols refer to the coherent states with (θ,φ) = (π/2,0) and (π/4,0), respectively. Triangular symbols and diamond symbols
refer to the GHZ states with θ = π/2 and π/4, respectively.

respectively, where erfc(x) = (2/
√

π )
∫ ∞
x

e−t2
dt is the com-

plementary error function, and the approximations are given
when N � 1 using the normal approximation of binomial
distributions.

When we take the weight function to be f (ω) = ω2 for both
measures, we have Mtr(|θ,φ〉) ≈ √

π/2N3/2 sin3 θ ∝ N3/2

and MHS(|θ,φ〉) = (1/4)N sin2 θ ∝ N for a large number of
N . On the other hand, for the GHZ state |ψGHZ〉, each mode
of asymmetry is given by A(ω)

tr (|ψGHZ〉) = (1/2) sin θ (δN,ω +
δN,−ω) and A(ω)

HS(|ψGHZ〉) = (1/4) sin2 θ (δN,ω + δN,−ω), re-
spectively. In the case of f (ω) = ω2, both weighted
measures are given by Mtr(|ψGHZ〉) = (1/2)N2 sin θ and
MHS(|ψGHZ〉) = (1/4)N2 sin2 θ , which scale with N2. Fig-
ures 1(a) and 1(b) show that the product state and the GHZ
state scale differently with respect to the number of particles
N , so microscopic coherence in the product state can be
distinguished from macroscopic coherence in the GHZ state
in this manner. Thus, for both measures, the choice of weight
function f (ω) = ω2 passes the basic consistency check, and
they may be considered appropriate candidates for quantifying
quantum macroscopicity, as GHZ states always have a larger
macroscopicity than product states in the macroscopic limit.

We can also perform the check using the scaled measure
of quantum coherence Mσ discussed previously. The scaled
measure of coherence for a spin-coherent state |θ,φ〉 is given
by Mσ (|θ,φ〉) ≈ 1 − {1 + [N sin2 θ/(8σ 2)]}−1/2 for N � 1.
Note that every spin-coherent state |θ,φ〉 is separable, thus the
macroscopicity tends to Mσ (|θ,φ〉) → 0 for a large value of
N � 1 by Eq. (14) when σ = √

N ln N . Figure 1(c) demon-
strates how the product of microscopic coherence in a spin-
coherent state |θ,φ〉 behaves differently from that of the GHZ
state |ψGHZ〉 by taking the cutoff σ = √

N ln N . On the other
hand, the scaled measure of coherence for the GHZ state is
given by Mσ (|ψGHZ〉) = (1/2) sin2 θ (1 − exp[−N2/(8σ 2)]).
Thus, if we take σ = √

N ln N , the scaled measure for the
GHZ state, Mσ (|ψGHZ〉), gives a larger value for large N (see
Fig. 1), and so it also passes the consistency check. This can
be interpreted as evidence of genuine macroscopic coherence
in the N -partite spin system.

Quantum macroscopicity measures could be investigated
for a general product state |ψprod〉 = ⊗N

i=1|ψi〉, where |ψi〉 =
cos(θi/2)|0〉 + sin(θi/2)eiφi |1〉 with general total spin mea-
surement Ŝ�n = �n · �S with �n = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ)
and �S := (Ŝx,Ŝy,Ŝz). In this case, the Hilbert-Schmidt
norm based measure with the choice of weight func-

tion f (ω) = ω2 is MHS(|ψprod〉) = ∑N
i=1 var(|ψi〉,ŝ(i)

�n ) =
(1/4)

∑N
i=1 sin2 �i, where �i is an angle between two vec-

tors �mi = (sin θi cos φi, sin θi sin φi, cos θi) and �n. The scaled
measure of coherence for every product state, Mσ (|ψprod〉),
vanishes by choosing the scale parameter σ = √

N ln N when
N � 1 by Eq. (14).

On the other hand, quantum macroscopicity of the GHZ
state |ψGHZ〉 may scale differently depending on the choice
of the measurement basis. The trace-norm-based measure for
the GHZ state tends to oscillate by changing measurement
axis �n, which gives the highest value for ϑ ≈ π/4. The
Hilbert-Schmidt norm-based measure of the GHZ state is given
by MHS(|ψGHZ〉) = (1/4)N2 sin2 θ cos2 ϑ + (N/4) sin2 ϑ for
N > 2. Thus, quantum macroscopicity measures for the GHZ
state give significantly larger values than those for product
states unless ϑ is near π/2. When choosing the measurement
axis Ŝx (ϑ = π/2,ϕ = 0), however, quantum macroscopicity
of the GHZ state cannot be discriminated from product states
since both states contain small degrees of coherence between
distinct eigenstates of Ŝx with ω ∝ N , which vanishes when
N � 1.

The scaled measure of coherence shows a similar behavior
with the other two measures, but it seems more robust against
the choice of the measurement basis �n. In particular, in the limit
of the large system size N � 1, the scaled measure of coher-
ence for the GHZ state is given by Mσ (|ψGHZ〉) ≈ 0.5 except
for the narrow region near ϑ = π/2 while Mσ (|ψprod〉) = 0
for product states. The difference of quantum macroscop-
icity between the product state |0〉⊗N and the GHZ state
|0〉⊗N + |1〉⊗N is shown in Fig. 2 with respect to the total spin
measurement axis �n.

B. Decoherence effect

In this section, we study how decoherence affects the
quantum macroscopicity for the N -particle spin system. We
analyze the degree of macroscopic coherence present in the
system when the system experiences a decoherence channel
given by the following master equation in the Lindblad form,

L(ρ̂) = dρ̂

dτ
= Âρ̂Â† − 1

2
(Â†Âρ̂ + ρ̂Â†Â). (16)

We first analyze the case of the dephasing channel, which
corresponds to the case in which Â = Ŝz. In this case, the GHZ-
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FIG. 2. The degree of quantum macroscopicity for the product state |0〉⊗N (dashed curves) and the GHZ state |0〉⊗N + |1〉⊗N (solid curves)
with respect to the total spin measurement Ŝ�n for different �n = (sin ϑ sin ϕ, sin ϑ cos ϕ, cos ϑ). The weighted measures of (a) the trace norm
(Mtr), (b) the Hilbert-Schmidt norm (MHS), and (c) the scaled measure of coherence (Mσ ) for σ = √

N ln N are evaluated for N = 500. All
the measures do not depend on ϕ.

state |ψGHZ〉 evolves according to

ρ̂GHZ(τ ) = cos2(θ/2)(|0〉〈0|)⊗N + sin2(θ/2)(|1〉〈1|)⊗N

+ sin θ

2
e− N2τ

2 [e−iφ(|0〉〈1|)⊗N + eiφ(|1〉〈0|)⊗N ]

after time τ . Note that the off-diagonal terms experiences
exponential decay exp[−N2τ/2] so the quantum macroscop-
icity of the GHZ state rapidly degrades under the dephasing
channel.

We also study the dissipation channel described in the Lind-
blad form Eq. (16) by taking Â = Ŝ−, where Ŝ± = ∑N

n=1 ŝ
(n)
±

are collective ladder operators given by the sum of ladder
operators for each local party ŝ

(n)
± = ŝ(n)

x ± iŝ(n)
y . Figure 3

demonstrates that quantum macroscopicity is fragile under
both dephasing and dissipation channels. These results imply
that extremely noiseless environments are required in order
to generate and manipulate quantum states while preserving
macroscopic quantum coherence. We also note that the degree
of macroscopic coherence decays faster under the dephasing
channel than the dissipation channel for a given characteristic
time τ for the given parameters.

VI. CONCLUSION

We introduced a measure of coherence that simultane-
ously quantifies asymmetry with respect to an observable
L̂ = ∑

i λi |i〉〈i|. Our coherence and asymmetry measure can
then be decomposed into modes given through the eigenvalue

(a)

0.0005 0.0010 0.0015 0.0020

0.1

0.2

0.3

0.4

0.00 0.05 0.10 0.15 0.20

0.1

0.2

0.3

0.4

(b)
τ τ

FIG. 3. Decay of the scaled measure of quantum macroscopicity
when the initial state is given by the pure GHZ states |ψGHZ〉 =
cos(θ/2)|0〉⊗N + sin(θ/2)|1〉⊗N . The number of the particle is given
by N = 50. Both (a) the dephasing channel Â = Ŝz and (b) the
dissipation channel Â = Ŝ− lead to the rapid decay of macroscopic
coherence, even starting with the superposition |0〉⊗N + |1〉⊗N (θ =
π/2). For both figures, solid curves refer to θ = π/2, dashed curves
to θ = π/4, and dot-dashed curves to θ = π/8.

spacings ω = λi − λj specified by the observable L̂. Using
this, we may construct the so-called ω coherence and its
corresponding measure. This allows us to discuss coher-
ence, asymmetry, and macroscopic coherence on the same
level.

We pointed out that quantum macroscopicity could be con-
sidered via the asymmetry with respect to some macroscopic
observable that generates a collective group transformation on
the total system. As the system size gets larger, multiple modes
ω contribute to the coherence, and an “effective size” of modes
may be considered. From this viewpoint, we defined a class of
quantum macroscopicity measures from coherence and asym-
metry measures characterized by a sum of the form (effective
size) × (degree of coherence) for all the modes ω. Through
this, we demonstrated that many macroscopic measures of
coherence may be related to the total coherence of a system via
a simple weighted sum, of which the skew-information-based
measure is a special case. It will be interesting for future work
to investigate whether previously studied quantum macroscop-
icity measures such as quantum Fisher information IF (ρ̂,L̂) =
2∂2

xDB(ρ̂,Ux(ρ̂)) and generalized skew information Iα(ρ̂,L̂) =
(−1/2)Tr[ρ̂α,L̂][ρ̂1−α,L̂] can also be formulated in this
framework.

We also discussed how it is desirable to exclude microscopic
superpositions in order to implement a proper measure of
macroscopic coherence, which is not guaranteed simply by
the conditions proposed in Ref. [46] as shown in Ref. [47].
This necessarily imposes additional constraints on the weight
function, which must be verified in order to yield a consistent
measure. We then introduced a scaled measure of coherence,
where the coherence for each mode is differently weighted
by a given scaling parameter σ . This scaling parameter may
be interpreted as a fuzziness in the reference frame, which
rules out microscopic superpositions that are not detectable
for a given degree of fuzziness. In this way, the measure
assures that only the coherence between macroscopically
distinct states is considered. We then compared the degree
of quantum macroscopicity of a product state and a GHZ
state in N -particle spin systems. We showed that the micro-
scopic portion of the coherence present in product states is
effectively suppressed by introducing the cutoff σ = √

N ln N .
We also considered decoherence effects, and we demon-
strated numerically that the degree of quantum macroscop-
icity present in the GHZ state is extremely susceptible to
decoherence.
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Our study develops the conceptual notion of quantum
macroscopicity by accounting for both the “degree of coher-
ence (quantum)” and the “size of the system (macroscopicity)”
while simultaneously falling under the framework of the
resource theory of asymmetry. We stress that the arguments
presented are not limited to any particular systems, but may
also be applied to any general macroscopic observable L̂

for any macroscopic, composite systems. We expect that our
study would add insight into the general properties of genuine
macroscopic quantum effects.

Note added. Recently, we became aware of Ref. [60], in
which the same type of coherence measure was suggested
but without its extension to quantum macroscopicity measure.

We realized that Eq. (2) in Theorem 1 of our present paper is
identical to Eq. (2) of Ref. [60].
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APPENDIX A: COMPLETE PROOF OF THEOREM 1

We show that A(ρ̂,σ̂ ) � ∑
n A(K̂nρ̂K̂

†
n,K̂nσ̂ K̂

†
n) for the Kraus operator set

∑
n K̂

†
nK̂n = 1.

Proof. A set of Kraus operators {K̂} can be expressed using ancillary state τ̂2: K̂nρ̂K̂
†
n = Tr2(1 ⊗ �̂n)Û (ρ̂ ⊗ τ̂2)Û †(1 ⊗ �̂n).

Note that A(ρ̂,σ̂ ) is nonincreasing under partial trace A(ρ̂12,σ̂12) � A(Tr2ρ̂12,Tr2σ̂12) and satisfies the following properties for a
set of projection operators {�̂n}:

∑
n A(�̂nρ̂�̂n,�̂nσ̂ �̂n) = A(

∑
n �̂nρ̂�̂n,

∑
n �̂nσ̂ �̂n). Using these properties, we can show

that ∑
n

A(K̂nρ̂K̂†
n,K̂nσ̂ K̂†

n) =
∑

n

A(Tr2(1 ⊗ �̂n)Û (ρ̂ ⊗ τ̂2)Û †(1 ⊗ �̂n),Tr2(1 ⊗ �̂n)Û (σ̂ ⊗ τ̂2)Û †(1 ⊗ �̂n))

�
∑

n

A((1 ⊗ �̂n)Û (ρ̂ ⊗ τ̂2)Û †(1 ⊗ �̂n),(1 ⊗ �̂n)Û (σ̂ ⊗ τ̂2)Û †(1 ⊗ �̂n))

= A

(∑
n

(1 ⊗ �̂n)Û (ρ̂ ⊗ τ̂2)Û †(1 ⊗ �̂n),
∑

n

(1 ⊗ �̂n)Û (σ̂ ⊗ τ̂2)Û †(1 ⊗ �̂n)

)

� A(Û (ρ̂ ⊗ τ̂2)Û †,Û (σ̂ ⊗ τ̂2)Û †)

= A(ρ̂ ⊗ τ̂2,σ̂ ⊗ τ̂2)

= A(ρ̂,σ̂ )A(τ̂2,τ̂2)

= A(ρ̂,σ̂ ).

(A1)

�

APPENDIX B: PROOF OF THEOREM 2

For the nondegenerate case (i.e., λi �= λj if and only if
i �= j ), the proof is the same as that for Theorem 1. In
the case of degeneracy, we write a resource-free state σ̂ =∑

n pnσ̂n = ∑
n pn

∑
λ λ(n)|n,λ〉〈n,λ|, where each σ̂n is a

translationally covariant state, and
∑

λ λ(n)|n,λ〉〈n,λ| is its
eigendecomposition. Then we can follow the proof of Theorem
1 if we can always choose a set of bases {|n,λ〉}, which gives
Aa(ρ̂) = 1 − max{pn,λ(n),|n,λ〉} A2(ρ̂,σ̂ ) = ∑

λi �=λj
|(√ρ̂)ij |2.

Now we consider a projection P̂n onto the states with λi =
n. Using this projection, we can block-diagonalize

√
ρ̂ and

take eigendecomposition of each block P̂n(
√

ρ̂)P̂n in order to
obtain the desired free state.

APPENDIX C: INCREASING OF A(ω)
HS(ρ̂) BY A COVARIANT

OPERATION

We give an example of the case of increasing A(ω)
HS(ρ̂) by a

covariant operation. Consider the quantum state ρ̂ = |ψ〉〈ψ |,

where |ψ〉 = 3−1/2(|0〉 + |1〉 + |2〉),

ρ̂ = 1

3

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠. (C1)

Then we consider a partially decohering map on ω = ±1,
which is a translationally covariant operation. Under the
operation, the state ρ̂ evolves into

�(ρ̂) = 1

3

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠. (C2)

In this case, we can calculate each mode of coherences A(ω)
HS

for ρ̂ and �(ρ̂), A(±1)
HS (ρ̂) = 2/9 and A(±1)

HS (�(ρ̂)) = 0, while
A(±2)

HS (ρ̂) = 1/9 and A(±2)
HS (�(ρ̂)) = 1/6. Thus, for ω = 2 we

note that the mode of coherence is increased by a translationally
covariant operation.

Meanwhile, the total asymmetry decreases under the partial
decohering map: Aa(ρ) = ∑

ω∈{±1±2} A
(ω)
HS(ρ̂) = 2/3, while

Aa(�(ρ̂)) = ∑
ω∈{±1±2} A

(ω)
HS(�(ρ̂)) = 1/3.
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APPENDIX D: PROOF OF THEOREM 3

We first show that the following construction is possible
using the modes of asymmetry.

Proposition 2. Weighted measure of asymmetry.∑
ω∈�

(1 − e−iωx)A(ω)
HS(ρ̂) (D1)

is a convex measure and monotone under covariant operations
for every x.

Proof. We note that the Hellinger distance between a
quantum state and its symmetric transformation

DH (ρ̂,Ux(ρ̂)) = 1 − Tr[
√

ρ̂e−iL̂x
√

ρ̂eiL̂x] (D2)

is a measure of asymmetry, i.e., convex and nonincreas-
ing under translationally covariant operations [16] for any
x ∈ IR. Then by direct expansion on the eigenbasis of
L̂, we get DH (ρ̂,Ux(ρ̂)) = 1 − ∑

i,j |(√ρ̂)ij |2e−i(λi−λj )x =∑
ω∈�(1 − e−iωx)A(ω)

a (ρ̂). �
Note that A(−ω)

HS (ρ̂) = A(ω)
HS(ρ̂) by the hermiticity of the

density matrix, so the above quantity will always give
rise to real values. To make this explicit, we may alter-
natively perform the sum over �+, which is the set of
positive ω in �. We then have

∑
ω∈�(1 − e−iωx)A(ω)

HS(ρ̂) =
x2 ∑

ω∈�+ ω2[sinc(ωx/2)]2A(ω)
HS . Then we note that the

integration on x with multiplying a well-defined function
g(x)/x2 � 0,∫

dx g(x)
∑

ω∈�+
ω2[sinc(ωx/2)]2A(ω)

HS

=
∑

ω∈�+
ω2

∫
dx[sinc(ωx/2)]2g(x)A(ω)

HS,

does not change the monotonicity and convexity. Finally,
by defining f (ω) = ω2

∫
dx[sinc(ωx/2)]2g(x), MHS(ρ̂) =∑

ω∈�+ f (ω)A(ω)
HS(ρ̂) becomes a convex measure, which is

monotone under covariant operations.

APPENDIX E: PROOF OF THE BOUND EQ. (13)

Using the relation between the fidelity and the affinity [52],
we note that

1
2DB(ρ̂,�σ (ρ̂)) � DH (ρ̂,�σ (ρ̂)). (E1)

The first inequality of Eq. (13) can then be proved by

DH (ρ̂,�σ (ρ̂)) = 1 − Tr
√

ρ̂

√∫
dx Q̂σ

x ρ̂Q̂
σ†
x

� 1 −
∫

dx Tr
√

ρ̂Q̂σ
x

√
ρ̂Q̂σ†

x

= 1 −
∑
i,j

∫
dx

√
qσ

i (x)qσ
j (x)Tr

√
ρ̂P̂i

√
ρ̂P̂j

= 1 −
∑
i,j

e
− (λi−λj )2

8σ2 Tr
√

ρ̂P̂i

√
ρ̂P̂j

=
∑
ω∈�

[
1 − e

− ω2

8σ2
] ∑

λi−λj =ω

Tr
√

ρ̂P̂i

√
ρ̂P̂j

= Mσ (ρ̂),
(E2)

where the inequality comes from operator Jensen’s
inequality [61] and noting that Q̂σ

x = Q̂
σ†
x are unital

operators. Also note that
∫

dx
√

qσ
i (x)qσ

j (x) = exp[−(λi −
λj )2/(8σ 2)] for qσ

i (x) = (
√

2πσ )−1e−(x−λi )2/(2σ 2) and∑
λi−λj =ω Tr

√
ρ̂P̂i

√
ρ̂P̂j = ∑

λi−λj =ω |(√ρ̂)ij |2 = A(ω)
HS(ρ̂).

The second inequality holds by Jensen’s inequality,

Mσ (ρ̂) =
∑
ω∈�

[
1 − e

− ω2

8σ2
]
A(ω)

HS(ρ̂)

� 1 − e
− ∑

ω∈�
ω2

8σ2 A
(ω)
HS (ρ̂)

= 1 − e
− IW (ρ̂,L̂)

4σ2 ,

(E3)

where 1 − e
− ω2

8σ2 is a concave function of ω2.
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[59] J. Kofler and Č. Brukner, Phys. Rev. Lett. 99, 180403 (2007).
[60] C. Yu, Phys. Rev. A 95, 042337 (2017).
[61] F. Hansen and G. K. Pedersen, Bull. London Math. Soc. 35, 553

(2003).

012326-10

https://doi.org/10.1103/PhysRevLett.111.250404
https://doi.org/10.1103/PhysRevLett.111.250404
https://doi.org/10.1103/PhysRevLett.111.250404
https://doi.org/10.1103/PhysRevLett.111.250404
https://doi.org/10.1103/PhysRevLett.115.210403
https://doi.org/10.1103/PhysRevLett.115.210403
https://doi.org/10.1103/PhysRevLett.115.210403
https://doi.org/10.1103/PhysRevLett.115.210403
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1103/PhysRevX.5.021001
https://doi.org/10.1103/PhysRevX.5.021001
https://doi.org/10.1103/PhysRevX.5.021001
https://doi.org/10.1103/PhysRevX.5.021001
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevA.94.022329
https://doi.org/10.1103/PhysRevA.94.022329
https://doi.org/10.1103/PhysRevA.94.022329
https://doi.org/10.1103/PhysRevA.94.022329
https://doi.org/10.1088/1367-2630/14/7/073022
https://doi.org/10.1088/1367-2630/14/7/073022
https://doi.org/10.1088/1367-2630/14/7/073022
https://doi.org/10.1088/1367-2630/14/7/073022
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevA.93.052331
https://doi.org/10.1103/PhysRevA.93.052331
https://doi.org/10.1103/PhysRevA.93.052331
https://doi.org/10.1103/PhysRevA.93.052331
https://doi.org/10.1007/BF01491891
https://doi.org/10.1007/BF01491891
https://doi.org/10.1007/BF01491891
https://doi.org/10.1007/BF01491891
https://doi.org/10.1103/PhysRevLett.77.4887
https://doi.org/10.1103/PhysRevLett.77.4887
https://doi.org/10.1103/PhysRevLett.77.4887
https://doi.org/10.1103/PhysRevLett.77.4887
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1038/44348
https://doi.org/10.1038/44348
https://doi.org/10.1038/44348
https://doi.org/10.1038/44348
https://doi.org/10.1038/nature06054
https://doi.org/10.1038/nature06054
https://doi.org/10.1038/nature06054
https://doi.org/10.1038/nature06054
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.1243289
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/nature16155
https://doi.org/10.1103/PhysRevLett.106.220401
https://doi.org/10.1103/PhysRevLett.106.220401
https://doi.org/10.1103/PhysRevLett.106.220401
https://doi.org/10.1103/PhysRevLett.106.220401
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1016/j.optcom.2014.07.012
https://doi.org/10.1016/j.optcom.2014.07.012
https://doi.org/10.1016/j.optcom.2014.07.012
https://doi.org/10.1016/j.optcom.2014.07.012
https://doi.org/10.1103/PhysRevA.94.052105
https://doi.org/10.1103/PhysRevA.94.052105
https://doi.org/10.1103/PhysRevA.94.052105
https://doi.org/10.1103/PhysRevA.94.052105
https://doi.org/10.1103/PhysRevA.93.022122
https://doi.org/10.1103/PhysRevA.93.022122
https://doi.org/10.1103/PhysRevA.93.022122
https://doi.org/10.1103/PhysRevA.93.022122
https://doi.org/10.1088/1367-2630/aa68f5
https://doi.org/10.1088/1367-2630/aa68f5
https://doi.org/10.1088/1367-2630/aa68f5
https://doi.org/10.1088/1367-2630/aa68f5
http://arxiv.org/abs/arXiv:1706.06173
https://doi.org/10.1103/PhysRevA.71.022102
https://doi.org/10.1103/PhysRevA.71.022102
https://doi.org/10.1103/PhysRevA.71.022102
https://doi.org/10.1103/PhysRevA.71.022102
https://doi.org/10.1103/PhysRevA.91.042120
https://doi.org/10.1103/PhysRevA.91.042120
https://doi.org/10.1103/PhysRevA.91.042120
https://doi.org/10.1103/PhysRevA.91.042120
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1103/PhysRevA.69.032106
https://doi.org/10.1103/PhysRevA.69.032106
https://doi.org/10.1103/PhysRevA.69.032106
https://doi.org/10.1103/PhysRevA.69.032106
https://doi.org/10.1016/0001-8708(73)90011-X
https://doi.org/10.1016/0001-8708(73)90011-X
https://doi.org/10.1016/0001-8708(73)90011-X
https://doi.org/10.1016/0001-8708(73)90011-X
https://doi.org/10.1073/pnas.49.6.910
https://doi.org/10.1073/pnas.49.6.910
https://doi.org/10.1073/pnas.49.6.910
https://doi.org/10.1073/pnas.49.6.910
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1143/PTPS.69.80
https://doi.org/10.1143/PTPS.69.80
https://doi.org/10.1143/PTPS.69.80
https://doi.org/10.1143/PTPS.69.80
https://doi.org/10.1103/PhysRevLett.112.010402
https://doi.org/10.1103/PhysRevLett.112.010402
https://doi.org/10.1103/PhysRevLett.112.010402
https://doi.org/10.1103/PhysRevLett.112.010402
https://doi.org/10.1103/PhysRevLett.116.090801
https://doi.org/10.1103/PhysRevLett.116.090801
https://doi.org/10.1103/PhysRevLett.116.090801
https://doi.org/10.1103/PhysRevLett.116.090801
https://doi.org/10.1103/PhysRevLett.99.180403
https://doi.org/10.1103/PhysRevLett.99.180403
https://doi.org/10.1103/PhysRevLett.99.180403
https://doi.org/10.1103/PhysRevLett.99.180403
https://doi.org/10.1103/PhysRevA.95.042337
https://doi.org/10.1103/PhysRevA.95.042337
https://doi.org/10.1103/PhysRevA.95.042337
https://doi.org/10.1103/PhysRevA.95.042337
https://doi.org/10.1112/S0024609303002200
https://doi.org/10.1112/S0024609303002200
https://doi.org/10.1112/S0024609303002200
https://doi.org/10.1112/S0024609303002200



